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Abstract: Kinase inhibitors are a significant and continuously developing division of target therapeutics. The drug

discovery and improvement efforts have examined numerous attempts to target the signaling pathway of kinases. The

Kinase inhibitors have been heralded as a game-changer in cancer treatment. For developing kinase inhibitors as a

treatment for various non-malignant disorders like auto-immune diseases, is currently undergoing extensive research.

It may be beneficial to investigate whether cell-specific kinase inhibitor administration enhances therapeutic efficacy

and decreases adverse effects. The goal of the current review is to gain insight into the role of kinase inhibitors in

facilitating effective target drug delivery for the treatment of various anti-inflammatory, auto-immune, and anticancer

disorders. The aim of this review is also to shed light on drug discovery approaches for kinase inhibitors, their mode

of action, and delivery approaches. The variation in the binding of kinases bestows different target approaches in drug

design, which can be employed for designing the targeted molecules. Several target sites have been studied, exceeding

the design of drugs for various diseases like cancer, Alzheimer’s, rheumatoid arthritis, etc. Diverse delivery approaches

have also been studied for the targeted application of kinase inhibitors.

Introduction

Cellular metabolism, cell cycle regulation, cellular endurance,
and differentiation are the essential functions conducted by
kinases [1–3]. Nowadays, considerable attention has been
given to research on kinases. The signaling pathways
mediated by protein kinases have been related to a variety
of diseases, such as diabetes, inflammation, and cancer [4].
The kinases are categorized into a wide group lipid kinases,
carbohydrates, and protein kinases. According to human
genome sequencing, approximately 2% of the human
genome codes for protein kinases, which are further
classified as families and subfamilies. The major kinases
found in mammalian signaling pathways are lipid kinases,
tyrosine kinases, serine/threonine kinases, and dual kinases
(Ser/Thr and Ty). Protein kinases are enzymes that use the
end γ-phosphate group from ATP to phosphorylate serine,
tyrosine, or threonine residues in other proteins.
Phosphorylation changes target protein activity by

controlling signaling pathways by amplification, cellular
location, or interaction with other controlling proteins [5].
The study on human kinases revealed that there are 518
protein kinases grouped into families reliant on their
biological functions as well as statistical sequence
evaluation [6].

Kinase inhibitors are small molecules that inhibit kinases
and are of much use in therapeutic and diagnostic fields.
According to recent research, Kinase inhibitors serve as a
potential target for treating various diseases like
autoimmune disorders, cardiovascular diseases, cancer, and
inflammatory disorders [2]. As of November 24, 2022, the
US FDA had approved 72 small molecules that are
therapeutic protein kinase inhibitors. All drugs that have
been approved by the FDA work best when taken orally,
with the exception of temsirolimus, trilaciclib, and
netarsudil [7,8] (https://brimr.org/protein-kinase-inhibitors/).
Novel biologic agents, such as monoclonal antibodies, can
also be employed for targeting specific kinases. However,
target non-specificity and toxicity are the principal
disadvantages associated with kinase inhibitors. Small
molecules from natural sources may act together with
proteins and function as signaling molecules, which can be
further employed for human health. The kinase inhibitors
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from various plant products help treat several disorders
(Table 1).

In an in vivo study performed on cancer cell line 85As2
(Gastric cancer cell line), the steroidal alkaloid tomatidine as
well as tomatidine rich tomato leaf extract exhibited
reduction in proliferation of 85As2 cells as a result of
dysregulation of type 1 interferon-stimulated genes [26]. As
a result, several marine natural chemicals have been
exercised as lead drug composites that progress in future
medicines. Around 22 kinase inhibitors are synthesized
from marine bacteria, for instance, Bacillus and
Streptomyces species; 16 from marine fungi sources like
Penicillium, Aspergillus, etc.; two new kinase inhibitors
from deep-sea soft corals like Cladiella australis, Cladiella
pachyclados; 14 kinase inhibitors from marine animals like
sea cucumber, marine echinoderm, etc.; 10 from marine
algae-like cyanobacteria; 42 from marine sponges [5].

Role of kinase inhibitors in drug design
Kinase inhibitors are a rapidly growing and important
category of target therapeutics. To target kinases signaling,
drug discovery and development initiatives have looked at a
range of approaches. The role of kinases in drug designing
and as delivery systems has been described as follows:

Many protein kinases are part of “cascade systems,”
where multiple protein kinases sequentially activate each
other. A kinase cascade plays a vital role in amplification,
diversification of signal effects, and permission for grouping
signaling pathways to form networks. Because kinase
cascades exist, it is possible to find and produce drugs that
are not kinase inhibitors but prevent kinases from being
triggered due to the subsequent “upstream” kinase in the

cascade through attachment to them. PD98059 is certainly
the first kinase inhibitor developed for the Ras-Raf MEK-
ERK cascade, which acts through binding to MEK1 and
then blocking its stimulation via Raf [29,30]. The dual-
specificity protein kinases (MEK1/2) that block the RAS-
Raf-MEK MAP kinase pathway are trametinib, binimetinib,
cobimetinib, and selumetinib. Among these, binimetinib and
cobimetinib are used in combination with encorafenib and
vemurafenib, respectively for curing melanoma. Selumetinib
is employed for Von Recklinghausen disease [7]. Raf, Src,
epidermal growth factor, and breakpoint cluster area are all
kinase targets. Early on in the investigation of oncogenic
proteins, Abelson’s kinase (bcr-Abl) was discovered. Clinical
usage of these inhibitors has also resulted in the growth of
drug-resistant malignancies as additional consequences
[31,32]. The detection alongside subsequent exploitation of
numerous configurational positions of kinases is part of the
tale of developing these kinase inhibitors. Previously,
selectivity had been identified as a problem during the
development of kinase inhibitors that bind at the ATP
(Adenosine Triphosphate) pocket. As ATP is a cofactor
required for the functioning of the kinase, developmental
pressure has been applied to keep the binding site of
discrete kinases in a general shape and chemical similarity.
As a result, the active sites avoiding the direct binding of
ATP or kinase conformations with more structural and
chemical heterogeneity have been employed. The activation
and inactivation modes of kinases allow for the utilization of
conformational variability. A rationale based on the
structure was also proposed to prevent the formation of
drug-resilient mutations. Since the inactive version of a
kinase does not require binding with the conjoint substrate

TABLE 1

Describes the kinase inhibitors obtained from various plant sources

S.
No.

Natural plant category Examples Primary target References

1. Polyphenols Flavonoid
analogues

Quercetin, Apigenin CK2 inhibitor, Ser/Thr protein kinase [9,10]

Anthraquinones Rhein, Emodin IKKβ inhibitor; tyrosine kinase p56 inhibitor [11,12]

Quinone naphthazarin Aurora kinase A & B [13]

Phenolic acids Tannic acid, Ellagic acid Protein kinase C, CK2 [14,15]

Lignans Arctigenein, Honokilol ERK1/2, p38, EGFR inhibitor [16,17]

Coumarins Daphnetin, Coumesterol EGFR inhibitor; CK2 inhibitor [18,19]

Other polyphenols Resveratrol p38, PKB, PKC, Src, ERK1/2, JNK1/2, PI3K, and IKK [20]

2. Indolocarbazole analogues Staurosporine PKA, PKC, PKG, GSK-3β, MLCK, CAMKII, and CDK2, [21]

3. Furanosteroid analogues Halenaquinone pp60V-SRC [22]

4. Purine analogues Lymphostein Lymphocyte-specific protein tyrosine kinase [23]

5. Alkaloids Sanguinarine BCL-2, MAPKs, Akt, NF-κB, ROS, and microRNAs [24,25]

Steroidal alkaloid
tomatidine

Type I interferon-stimulated genes [26]

6. Other natural substances Hypothemycin; Harmine PDGFRα & β , SRC, ERK1/2, PKD1, TRKA, & TRKB;
MOA

[27,28]
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ATP, it has been found to have higher structural diversity. A
pioneer kinase inhibitor, Imatinib, exhibits binding to the
inactive forms of PDGF, c-Kit, and Abl kinases [33–36].
Imatinib is used to treat chronic myelogenous leukemia as it
causes inhibition of BCR-Abl, an oncogenic tyrosine kinase
fusion protein also employed to manage gastrointestinal
tumors and myeloproliferative disorders caused by
inhibition of c-Kit tyrosine kinase and PDGF receptors,
respectively. As a result, oncology happens to be the
therapeutic area of choice for the vast majority of drug
development efforts for kinase inhibitors [33,37]. Most of
the small protein kinase inhibitors that have been approved
or are on the verge of getting approval for their clinical use,
along with the majority of kinase inhibitors currently in the
clinical trial phase, intend to target tyrosine kinases and are
employed for the treatment of varied cancers. The global
market for kinase inhibitors is increasing gradually.
Although cancer will likely remain a top priority for kinase
medication development for several years, the number of
kinase inhibitors in clinical studies for many other disorders
has expanded [38–40]. For example, Janus Kinase inhibitors
such as tofacitinib and ruxolitinib have been approved to
treat rheumatoid arthritis and myelofibrosis, respectively
[29,41]. Inhibition of anaplastic lymphoma kinase (ALK) by
six approved molecules, i.e., Alectinib, Brigatinib, Ceritinib,
Crizotinib, Entrectinib, and Lorlatinib, has been employed
for the treatment of NSCLC (Non-Small Cell Lung Cancer)
(link). Targets used for developing kinase inhibitors for
diseases other than cancer are described in Fig. 1.

WNKs direct the phosphorylation and activation of two
interrelated protein kinases: SPAK (STE20/SPS1-related
Proline/Alanine-Rich Kinase), OSRK1 (Oxidative Stress
Responsive Kinase1), leading to the discovery that they
control blood pressure. The unique location of a catalytic
lysine residue on WNK isoforms might be of potential use
in contrast to many other kinases to build WNK-specific
ATP-competitive inhibitors, opening up a new avenue for
developing better blood pressure medications. Although it is
uncertain which WNK isoform of the four mammalian
isoforms is possibly essential to be blocked to lower NCC
(Na+/Cl− co-transporter) and NKCC2 (Na+/K+/2Cl− co-

transporter-2) activity in the kidney. Additionally, in some
studies, WNK4 was a negative controller of WNK1
signaling; signifying that blockage of this isoform might
enhance renal salt reassimilation and blood pressure [42].
Patients with mutations of LRKK2 acquire signs of disease
that are identical to both the onset and progression of
idiopathic Parkinson’s syndrome. LRKK2 is a multidomain
protein with a large GTPase and a kinase domain of 2527
residues. Numerous particular LRKK2 inhibitors have been
developed for the treatment of Parkinson’s syndrome.
Biological drugs, like adalimumab tend to neutralize TNF-α
and have a specific role in treating many inflammatory
disorders like Crohn’s disease, psoriatic arthritis, and
rheumatoid arthritis. Several Ser/Thr specific protein kinases
are involved in the Myeloid cell signaling pathway, which
regulates translation, transcription, processing, and secretion
of TNF-α along with other pro-inflammatory cytokines.
Many serine/threonine-specific protein kinases are involved
in these systems, which regulate TNF and other
proinflammatory cytokines’ transcription, translation,
processing, and secretion. However, it is challenging to
develop advanced drugs to target these signaling pathways
owing to the complexity in deciding the target protein
kinase due to the production of cytokines other than
IL-6/12 and TNF-α [29,43,44].

Targets for Developing Kinase Inhibitors

WNKs direct the phosphorylation and activation of two
interrelated protein kinases: SPAK (STE20/SPS1-related
Proline/Alanine-Rich Kinase), OSRK1 (Oxidative Stress
Responsive Kinase1), leading to the discovery that they
control the blood pressure. The ability to build WNK-
specific ATP-competitive inhibitors using the unique
location of a catalytic lysine residue on WNK isoforms, as
opposed to many other kinases, opens up a new avenue for
developing better blood pressure medications. Though, it is
uncertain which WNK isoform of the four mammalian
isoforms is possibly essential to be blocked to lower NCC
(Na+/Cl− co-transporter) and NKCC2 (Na+/K+/2Cl− co-
transporter-2) activity in the kidney. Additionally, in some

FIGURE 1. Expressing targets employed in the development of kinase
inhibitors [7].
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studies, WNK4 was a negative controller of WNK1 signaling,
signifying that blockage of this isoform might enhance the
renal salt re-assimilation and blood pressure [42]. Human
inherited blood pressure diseases are caused by mutations in
WNK1, WNK4, NCC, and NKCC2, emphasizing their
significance. According to recent studies, SPAK and OSR1
are interesting therapeutic candidates for the treatment of
hypertension since blocking these enzymes will decrease
NCC and NKCC2 activity, and hence prevent renal salt
reabsorption [45–47]. In a variety of cancers, aurora kinases
are overexpressed. When Aurora-A is overexpressed in
upper gastrointestinal adenocarcinomas in vitro,
camptothecin cannot cause apoptosis, increasing the lifespan
of cancerous cells [48]. Members of serine/threonine kinase
family, aurora kinase-A/B/C are crucial mitotic regulators
necessary for genomic stability [49]. The discovery of
protein kinase drugs may be traced back to the discovery of
Src, the first oncogenic type protein kinase, nearly 25 years
ago. It directed the global research attempts to explore the
genomic and proteomic associations of protein kinases in
various diseases, the mechanism of signal transduction
through protein kinases, approaches for stimulation and
inhibition of protein kinases, and the discovery of chemical
entities based on new protein kinase inhibitors. According
to recent human genome sequencing, protein kinases are
currently recognized as a superclass of therapeutic targets
with over 500 members. Table 2 can describe the classes of
protein kinases [29,45].

Given the vast number of druggable kinase foci and the
solid structural resemblance between the ATP binding sites
of diverse kinase targets, there is increasing interest in
studying inhibitors with various molecular roles to find
higher selectivity profiles. A large proportion of small
molecule kinase inhibitor (SMKIs) approved so far are ATP
competitive inhibitors. The Type I inhibitors bind to the
pivot area of the active kinase, i.e., DFG motif, and compete
with ATP inhibitors in every respect. Type II inhibitors
present binding to an enzymatically dormant kinase, i.e.,

DFG-out, and provide stabilization. Type III inhibitors retain
the kinase in the enzymatically inactive DFG-out
confirmation by occupying the neighbouring inducible
pocket or rear pocket. Type III inhibitors regulate kinase
activity in an allosteric manner by attaching distantly from
the catalytic ATP-binding site. These can be further divided
into two subtypes, namely Type IIIA and Type IIIB. MEK1/2
inhibitors, which bind at a particular cavity close to the
ATP-binding site, are some of the well-studied type III
inhibitors. Trametinib, Selumetinib, Binimetinib, and
Cobimetinib are allosteric inhibitors of MEK and are among
the MEK inhibitors currently approved by the FDA [38,53–
56]. The regions outside the ATP-binding sites are the focus
of Type IV inhibitors, also known as substrate-directed
inhibitors, which are allosteric inhibitors that do not overlap
with Type III inhibitors. Sirolimus, temsirolimus, and
everolimus are examples of Type IV inhibitors with FDA
approval. Type V is bivalent inhibitors that stably bind to
active kinase sites and peptide motifs that correspond to the
substrate that the kinase is targeting. Bivalent kinase
inhibitors are typically very effective and very selective
because they specifically target the cSrc tyrosine kinase, and
MAP kinases have been found in several investigations. Since
it has not yet received approval for use in clinical trials, this
kind of inhibitor is still being researched. Because of their
ability to interact with the cysteine nucleophiles in the pivot
area of the ATP-pockets and form a covalent adduct,
afatinib, neratinib, ibrutinib, and dacomitinib are covalent
inhibitors, and are categorized under Type VI. The Type VII
inhibitors are classified as non-classical allosteric inhibitors
that specifically target a receptor tyrosine kinase’s
extracellular domain. These are less potent than other types
of inhibitors and do not directly prevent binding at the
kinase domain/ligand-polypeptide binding site. SSR128129E
and WRG-28 are two examples of this type of kinase
inhibitor, which inhibits the FGFR (extracellular domain of
fibroblast growth factor receptor) family and DDRs
(discoidin domain receptors), respectively [7,41,53,56,57].

TABLE 2

Protein kinase classes and examples

Protein kinases

Receptor tyrosine kinase Non-receptor
tyrosine kinase

Receptor serine/Threonine kinase Non-receptor
serine/Threonine kinase

Epidermal growth factor receptor
(EGFR)
Fibroblast growth factor receptor
(FGFR)
Vascular endothelial growth factor
receptor (VEGFR)
Platelet-derived growth factor receptor
(PDGFR)
Colony-stimulating growth factor
receptor (CSGFR)
Nerve growth factor receptor (NGFR)
Insulin-like growth factor receptor
(ILGFR)
Insulin receptor

Src/Src family
Abl & BCR-Abl
C-terminal Src kinase
(CSK)
Janus Kinase [50]

Transforming growth factor beta
receptors (TGF-β)
[51,52]

cAMP-dependent protein
kinase
Cyclin-dependent kinase
Phosphoinositol-3-kinase
Protein Kinase C
Mitogen-activated protein
kinase
Rho-dependent protein kinase
Akt
mTOR (mammalian target of
rapamycin)
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The structured kinase mapping analyses revealed that
approximately 200 kinases have wide-open cysteine available
at the active sites, which could use in covalent inhibition
[57]. Kinase inhibitors are created by targeting various
kinases, as shown in Fig. 2.

AKT is an AGC kinase and a type of protein kinase B that
has been meticulously studied among protein kinases; recent
studies show a comprehensive focus on developing small
molecule kinase inhibitors based on AKT. It regulates cell
proliferation, endurance, and apoptosis through downstream
substrates like p21, p27, FoxO1, CREB, MDM2, GSK-3,
procaspase-9, and Bad. Overactive AKT signaling is effective
in bypassing apoptosis, allowing dysregulated cells to
proliferate more freely, and making these cells resistant to
radiotherapy in conjunction with chemotherapy [41].
Besides, AKT owns a PH domain (Pleckstrin Homology),
which controls functions due to binding with a
phosphatidylinositol lipid that enrolls AKT in the plasma
membrane. External growth factors trigger AKT signaling,
which stimulates the production of PIKs (phosphoinositide
-3-kinases). Phosphatidylinositol 4,5-bisphosphate (PIP2),
the second messenger, is phosphorylated by PI3K and
converted to PIP3 that further connects to AKT at PH
domain through electrostatic forces with the anionic
phosphate groups present in PIP3 [58,59]. The allosteric
AKT inhibitor MK-2206, a clinical phase II trial, is the
product of further medication development. In patients with
erlotinib resistance, a combination of MK-2206 with
erlotinib for NSCLC (non-small cell lung cancer)
demonstrated good results. Unlike prior ATP-competitive
AKT inhibitors, this inhibitor family showed eminent
selectivity against additional AGC family kinases, for
instance, PDK1, PKA, PKC, SGK, and S6K. Surprisingly,
these simply inhibited the comprehensive kinase and
escaped the inhibition of the AKT kinase domain. Allosteric
inhibitors like MK2206 are interposed between PH domains
and kinases by establishing interactions like hydrogen
bonding with both domains, as per the consequences of
SAR analysis, protein X-ray crystallography, and
mutagenesis experiments. These interactions keep the AKT
in a tight conformation where the ATP binding site is both
unaffordable and disarranged, blocking ATP and substrates
to bind [60,61]. Another way to reduce AKT activity is to
prevent PIP3 from activating it. Sulfonamides [62], API-1

[5], DPIEL [63], perifosine [64], and PIA23 [65] have been
demonstrated to bind precisely with exalted affinity to
AKT at the PH domain, simulating PIP3 with no
change in AKT conformation from locked to unlocked.
However, all such inhibitors have limited solubility, a high
propensity for accumulation, and poor pharmacokinetics.
Bisarylcyclohexanone, i.e., SC66, is another allosteric type
AKT inhibitor that has been observed to block the
activation and cell membrane translocation of AKT through
PIP3 [66]. However, AKT is groomed with SC66 for
ubiquitin-dependent post-translational reformation in the
pericentrosomal region, followed by proteasomal
destruction. Hence, demonstrating that ubiquitination of
Lys63 might not help activate AKT in several instances of
colon and breast cancer, the binding course of SC66 is
unclear at present [18,67].

ABL
The Tyr specific Abelson murine leukemia (Abl) viral
oncogene analogue is another well-studied protein kinase
named p150, JTK, c-Abl, Abl1. Dysregulation of Abl has
been linked to apoptosis in cancer. ABL owns 1 cap with an
N-terminal, 2 Src (SH2/3) homology domains, an actin-
binding domain, and a DNA binding domain in addition to
the kinase domain. Myristoylation of the N-terminal cap
controls the autoinhibition of Abl by phosphorylation.
GNF-2 binding caused Abl autoinhibition due to bending
vibration of the α-I helix and the resulting configurationally
stabilization of the kinase active site via the Sh2 and Sh3
domains [68–70]. Furthermore, GNF-2 enhances the
effectiveness of the ATP-competitive antagonists, implying
the possible contact of ATP pocket with the myristate. A
larger and heavier ligand in the myristate groove, on the
other hand, was found to provide an impact on the
potential of Abl [68].

AKT
Phosphoinositide-dependent kinase 1, an AGC lineage
constituent, is a leading kinase and a stimulator for several
AGC kinases involved in insulin and growth factor
signaling, including SGK, AKT, PKC, and S6K. Unlike other
kinases, PDK1 lacks a C-terminal hydrophobic motif for
intramolecular binding to the hydrophobic channel. The
hydrophobic pocket of PDK1 performs like an identification
spot in favor of the hydrophobic motif of its substrate
kinases [71]. Balendran et al. revealed that the hydrophobic
groove of PDK1 exhibited interaction with the C-terminal
present in PKC-allied protein kinase 2 (PRK2) and named
as PDK1-interacting fragment (PIK). Consequently, the
hydrophobic groove was quickly labeled as a PIF binding
pocket [72].

JNK1
The JNKs are c-Jun N-terminal kinases comprising
three isoforms, JNK 1/2/3, which are the subdivision of
MAP kinases termed “anxiety/stress-triggered kinase”.
Accordingly, these have been linked to checking
inflammatory responses by triggering cytokine expressions
like eotaxin, GM-CSF, and IL-1 employing downstream
targets such as p53, AP-1, ATF2, and BAD. Like a few other

FIGURE 2. Describing the targets for kinase inhibitors for designing
drug candidates.
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MAP kinases, JNKs are regulated by phosphorylation of the
A-loop through higher kinases like MKK4/ MKK7. Stebbins
et al. examined 30000 compounds using DELFIA, i.e.
Dissociation Enhanced Lanthanide Fluoro-Immuno Assay,
and determined a series of tiny compounds that interfere
with JNK1-pepJIP1 binding [73]. Whereas several of these
drugs compete successfully via pepJIP1 binding, and BI-
78D3 like compounds were capable of subsiding JNK1
phosphorylation pursuit with IC50 value, both in the
micromolar and nanomolar range [74].

CHK1
CHK1 is a Ser/Thr type kinase known as checkpoint kinase 1
and is a key transducer that plays a role in the cell division
cycle through the control of the DNA impairment response
during mitosis. Academics, as well as the pharmaceutical
sector, have created many conventional ATP-competitive
CHK1 antagonists, but they have limited cellular efficacy.
Following drug development and co-crystal structure,
studies with CHK1 verified the inhibitors’ allosteric binding
location, which included H-bonds alongside hydrophobic
contacts to the exterior of the protein next to the αD-helix
extant on the C-lobe. Unlike additional kinases, αD-helix of
CHK1 comprises a PDIG array having N-terminal Pro that
prompts a tight turn, causing the development of a
superficial, vastly surface- uncovered groove that these
inhibitors can target [75,76].

IGF-1R
IGF-1R is an insulin growth factor receptor having two α-
subunits (extracellular ligand-binding domains) and two β-
subunits (cytoplasmic domain). Kinase and transmembrane
domains make up the β-subunits. The tetramer of IGF-1R
goes through conformational alterations in response to
ligand binding, which causes auto-phosphorylation of its
kinase activation loop, triggering an increase in the activity
of IGF-1R for phosphorylation and MAPK activation along
with signaling of PI-3K [77,78]. Sequences of indole-butyl
amines having antagonistic activity towards IGF-1R at
concentrations ranging from low to sub-micromolar have
been developed by Heinrich et al. using high-throughput
screening operations. MSC1609119A-1 also expands into the
superficial groove at C-lobe, where it forms contacts with
the activation loop, αC-helix, and various C-lobe remainders
through a wide-ranging network of H-bonds facilitated by
water. Such a novel binding approach opens the door to the
growth of imminent allosteric inhibitors [79].

CDK2
Cyclin-dependent kinases (CDKs) are specifically Ser/Thr
type kinases, and CDK2 is the fundamental unit in the
transition phase of the cell cycle from G1 to S-phase.
Misregulation of CDKs can result in various diseases, like
inflammation and cancer. Although, some kinases may
adopt unique A-loop configurations like DFG-in/ out that
are usually markers of their activity level, others, like CDK2,
exhibit difficulty in adopting the DFG-out conformation
[80,81]. Betzi et al. discovered ANS, i.e., 8-anilino-1-
naphthalene sulfonate as a unique allosteric CDK2
antagonist in addition to a distinct mechanism of binding.

The antagonistic efficacy of ANS was comparable to that of
CDK2 activator cyclin A but not to that of ATP or Type I
CDK2 inhibitors like JWS648. ANS in bimolecular form
bind near to DFG motif present in a void produced through
C-helix and the filaments of N-lobe like β3, β4, β5, which is
still in DFG-in conformation. Major reconstitutions of the
ATP binding pocket were needed to fit the two inhibitor
molecules [82].

mTOR
Phosphatidylinositol-3-kinase-related kinases, also known as
Ser/Thr kinase mammalian target of rapamycin (mTOR) are
a module of the PI3K/AKT/mTOR signaling cascade. The
mTOR complex 1, comprising mLST8, PRAS40, & raptor;
mTOR complex 2, comprising mSIN1, mLST8, & rictor, all
possessing separate biologic functions, can build 2 separate
complexes using various protein combinations [83].
Rapamycin, a natural substrate derived from Streptomyces
hygroscopicus, acts as an allosteric inhibitor of mTORC1. It
binds to the C-terminus of mTOR, also termed the
FKBP12-rapamycin binding domain, via hydrophobic
interactions with the 12-kDa FK506- binding protein,
culminating in a complex that can limit mTORC1 function
[84]. Due to rapamycin’s limited solubility and
bioavailability, a variety of derivatives, also termed rapalogs,
have been designed and investigated in clinical trials [85].

The delivery system for kinase inhibitors
The major goal of nanomedicine is to ensure that the drug
reaches the target site at an acceptable strength with little
loss in activity or volume in the bloodstream. It can also
lower the risk of cellular toxicity to neighboring tissues and
prevent drug resistance. Extensive metallic nanomaterials,
polymeric nanomaterials, and liposomal formulations can be
used, with advantages and disadvantages based on costs,
loading capacity, drug release, bioavailability, and stability.
The biological effect and dispersion of nanoparticles can be
influenced by their size, shape, constitution, and surface
charge. NPs with sizes greater than 150 nm are typically
built up in the liver, spleen, and lungs; however, these are
not bioaccumulated and cleared by the kidneys. Small NPs
with sizes less than 5 mm exhibit the opposite effect. The
NPs of the middle range are less likely to become stuck in
the lungs than those in the spleen and the liver. Spherical
NPs are generally trapped in the liver, while rod-shaped
NPs reside in the spleen and liver [86,87]. The cellular
internalization of NPs is uncomplicated with small cellular
NP interaction points, hence, oval, as well as spherical NPs,
easily internalize as compared to lengthened NPs. The
positive surface charge of NPS facilitates their filtration
outside the bloodstream through the spleen, liver, and lungs,
making them unsuitable for long-term blood circulation.
However, the characteristics of NPs can be developed during
circulation, and active targeting with improved absorption,
using approaches such as a change in surface charge,
addition of functional groups, and coating with addition
[88–91].

Because of its great biodegradability and minimal
immunogenicity, serum albumin has recently been hailed as
an ideal nanocarrier. The proteinic atmosphere comprising
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the binding/adsorbent proteins surrounding the NPs
(nanoparticles), was thought to exhibit a crucial impact on
phagocytosis and retention throughout the blood
circulation. As an endogenous component, Albumin can
protect small molecule TKIs from undesirable interactions
and rapid in vivo elimination. The nanoformulations made
using albumin possessed superior anticancer activity,
reducing preliminary breast cancer and tumor cell
movement. Albumin nanoparticles had a greater cytotoxic
effect on cancer cells and reduced the unfavorable effects of
chemotherapeutic drugs in treatment, indicating better
therapeutic results [92,93]. Petrushev et al. described the
conjugation of medication-based tyrosine kinase inhibitors
onto spherical gold nanoparticles and their successful
transmembrane delivery inside acute myeloid leukemia cells.
These were also evaluated for their therapeutic efficiency
against cell lines like OCI-AML3 and THP1. They proposed
using rituximab in gold nanoparticles for managing severe
myeloid leukemia [94]. Acurin nanoparticles, developed for
the kinase inhibitor AZD2811, and observed accumulation
along with retention of the drug in tumors with no
influence on bone marrow pathology, which led to
decreased toxicity and enhanced efficacy at half dose
strength AZD1152, a hydrophilic prodrug of AZD2811 [95].
Kinase target inhibitors in liposomal formulations possess
the benefits of elevated drug loading through surface ligand
reformation that will provide optimal therapeutic
effectiveness in target therapy for NSCL cancer (non-small
cell lung cancer) [96]. PEGylation of carriers reduced the
serum protein adsorption on the nanoparticle surface,
leading to an increase in circulation time and anticancer
efficiency. Imatinib in PLGA nanoparticles with NRP-1
targeting inhibited Treg cells in the tumor
microenvironment, resulting in effective tumor
immunotherapy [97]. Correia et al. created nanocomposites
with undecylenic acid using thermally hydrocarbonized
permeable silicon NPs rich in the anticancer agent
sorafenib. The surface was conjoined with heptakis (6-
amino-6-deoxy)-β-cyclodextrin to illustrate the effect of
exterior polymeric functionalization on the physical and
biologic characteristics of NPs. These were found to exhibit
excellent cellular proliferation in breast cancer [98].

Conclusion

Kinases are a wide family of enzymes with various target
locations. Regardless of a significant asset in this targeting
area, only a portion of it has been realized. The target spaces
as well as limited opportunities have been used to their full
potential. Overall, while kinase inhibitors, like any other
type of cancer therapy, have inherent flaws, and clinical
trials with currently investigated kinase inhibitors are still a
long way off, there are enormous promise and opportunity
in TKI therapy for cancer and other disease treatments.
Cell-specific administration of kinase inhibitors has not
been attempted as extensively as that of other medications,
possibly because kinase inhibitors were first offered as
targeted therapies because they were considered to inhibit
only one specific target.
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