Performance of the ANI-2X neural network in Deep-HP in terms of molecular dynamics simulation production (ns per day) for selected water boxes of increasing sizes using Nvidia V100 and A100 GPU cardsa.
Systems (number of atoms)/number of GPU devices | 1 | 4 | 8 | 16 | 28 | 44 | 68 | 84 | 100 | 124 |
---|---|---|---|---|---|---|---|---|---|---|
GPU V100 | ||||||||||
Puddle (96 000) | 0.11 | 0.27 | 0.44 | 0.67 | 0.70 | 0.78 | 0.91 | 1.05 | 1.05 | 1.05 |
Pond (288 000) | n/a | 0.11 | 0.19 | 0.31 | 0.46 | 0.57 | 0.66 | 0.67 | 0.71 | 0.71 |
Lake (864 000) | n/a | n/a | 0.07 | 0.10 | 0.19 | 0.26 | 0.33 | 0.40 | 0.48 | 0.40 |
Bay (2 592 000) | n/a | — | n/a | 0.04 | 0.06 | 0.09 | 0.14 | n/a | n/a | n/a |
Sea (7 776 000) | n/a | — | — | n/a | 0.04 | 0.05 | 0.06 | 0.06 | ||
GPU A100 | ||||||||||
Puddle (96 000) | 0.16 | 0.41 | 0.63 | n/a | — | n/a | ||||
Pond (288 000) | n/a | 0.16 | 0.26 | n/a | — | n/a | ||||
Lake (864 000) | n/a | n/a | 0.11 | n/a | — | n/a | ||||
Theoretical performance (V100) | ||||||||||
Puddle (96 000) | 0.11 | 0.27 | 0.46 | 0.75 | 0.79 | 0.90 | 1.14 | 1.39 | 1.40 | 1.40 |
Pond (288 000) | 0.03 | 0.11 | 0.20 | 0.33 | 0.49 | 0.65 | 0.77 | 0.89 | 0.88 | 0.89 |
Lake (864 000) | 0.01 | 0.02 | 0.07 | 0.14 | 0.21 | 0.30 | 0.38 | 0.49 | 0.59 | 0.49 |
Bay (2 592 000) | 0.004 | 0.007 | 0.02 | 0.06 | 0.08 | 0.12 | 0.16 | n/a | n/a | n/a |
Sea (7 776 000) | 0.001 | 0.003 | 0.005 | 0.009 | 0.02 | 0.03 | 0.06 | 0.08 | 0.10 | 0.10 |
n/a: not available.