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Abstract: Infection with high-risk human papillomavirus (HPV), including HPV-16 and HPV-18, is the main cause of

malignancies, such as cervical cancer. Viral oncoproteins encoded by HPV are expressed in HPV-positive cancers and

associated with the early cancer stages and the transformation of normal cells. The signaling pathways involved in the

transformation of normal cells to cancerous form and the subsequently expressed programmed cell death-ligand 1

(PD-L1) on the surface of the transformed cells lead to a disruption in recognition of tumor cells by the immune cell

system, including T lymphocytes and dendritic cells which lead to the development of cervical cancer malignancy.

These cells also produce modest levels of cytokines during exhaustion, tumor-infiltrating T CD4+ cells with high

levels of PD-1 and CD39 release considerable quantities of cytokines. The Wnt/β-catenin signaling pathway, which

controls the expression of genes involved in the tumor cells’ markers, is demonstrated to be one of the most potent

cancer stimulants. It leads to the evasion of the tumor cells from immune cell detection and ultimately avoids being

recognized by dendritic cells or T-cells. PD-L1, as an inhibitory immune checkpoint, is essential for controlling

immune system activity by inhibiting T-cells’ inflammatory function. In the present review, we looked into how

Wnt/β-catenin affects the expression of PD-L1 and related genes like c-MYC in cancer cells and its role in the

development of HPV-induced malignancy. We hypothesized that blocking these pathways could be a potential

immunotherapy and cancer prevention method.

Abbreviation List

APCs Antigens presenting cells
APC Adenomatous polyposis coli
SATB1 AT-rich sequence binding protein-1
β-TrCP Beta-transducing repeat-containing protein
Brg-1 Brahma-related gene 1
CD Cluster of differentiation
c-MYC Cellular myelocytomatosis
CIN Cervical intraepithelial neoplasia
CREPT Cell cycle-related and expression elevated pro-

tein in tumor
CBP/p300 CREB-binding protein
CK1 Casein kinase 1

CTNNB1 Catenin Beta 1
DC Dendritic cells
Dlv Disheveled
ERK Extracellular signal-regulated kinase
EGFR Epidermal growth factor receptor
ENO1 Enolase 1
FHL2 Four-and-a-half-LIM-domain 2
GM-CSF Granulocyte-macrophage colony-stimulating

factor
GSK-3β Glycogen synthase kinase-3β
hTERT Human telomerase reverse transcriptase
NKX-2 Homeobox protein-2
ICI Immune checkpoint inhibitor
INF-γ Interferon-gamma
IRF-1 Interferon regulatory factor-1
ITIM Immune-receptor tyrosine-based inhibitory

motif
ITSM Immune-receptor tyrosine-based switch motif
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JAK2 Janus kinase 2
LEF Lymphoid enhancing factor
MMP-7 Metalloproteinase 7
MQ Macrophages
MAPK Mitogen-activated protein kinase
mTOR Mechanistic target of rapamycin
MZF1 Myeloid zinc finger 1
NK cells Natural killer cells
ORF Open reading frames
OVOL1 OVO homologue-like 1
PC3 Prostate cancer cell lines
PBMC Peripheral blood mononuclear cell
PRDM1 Positive regulatory domain I
PD-1 Programmed cell death protein 1
PTEN Phosphatase and tensin homolog
PCP Planer cell polarization
PP2A Protein phosphatase 2A
PKB/Akt Protein kinase B
RNAi RNA-Interference
RARC RAR-Related orphan receptor C
SHP2 Src homology region 2-containing protein tyr-

osine phosphatase 2
SOX6 SRY-box transcription factor 6
Ser Serine
TIL Tumor-infiltrating lymphocytes
TCF T-cell factor
TAZ Transcriptional co-activator with PDZ-binding

motif
Thr Threonine
TME Tumor microenvironment
TCGA The cancer genome atlas
WHO World Health Organization
YAP Yes-associated protein
VEGF Vascular endothelial growth factor

Introduction

Cells determine their function through signaling pathways
and communication with other cells and their
microenvironment. Due to ligands’ binding to their
receptors on the cell surface, protein cascades are activated
and consequently affect the level of gene transcription,
leading to the conversion of external stimuli into
biochemical signals. These signaling pathways control
biological effects such as proliferation, differentiation, and
death; thus, disrupting these pathways leads to malignancy
[1]. Also, they are owing to changes in some critical cell
proliferation and apoptosis-controlling pathways, including
phosphatidylinositol 3-kinase (PI3K)/phosphorylation of
protein kinase B (AKT), extracellular signal-regulated kinase
(ERK)/mitogen-activated protein kinase (MAPK), Notch,
Wnt/β-catenin, and epidermal growth factor receptor
(EGFR). In addition, a variety of inhibitory immune
checkpoint molecules, such as programmed cell death
protein 1 (PD-1, CD279) and its ligand PD-L1 (CD274),
have been playing a significant role in various types of
cancers and chronic viral infections [1–3]. For instance, it
was demonstrated in a report published on the PD-1/PD-L1
axis in acute viral infections affecting the lower respiratory
tract that this pathway impairs the activity of CD8+ T-cells
in the human respiratory system. In addition, dendritic cells
inhibit T-cell function in acute viral infections by highly
expressing PD-L1 on their surfaces [3]. PD-1, on the other
hand, is expressed in lymphocytes, specifically CD8+ and
CD4+ T-cells, and is an inducible negative regulator of T-
cell activity; as a result, PD-L1 is one of two PD-1 ligands
found on antigen-presenting cells (APCs), peripheral tissues,
and cancerous cells [4]. As a result, the interaction of PD-1/
PD-L1 leads to the activation of inhibitory signals in T-cells,
which eventually leads to the destruction of T-cells, anergy,
and reduced function [5,6]. PD-1 causes regulatory T-cells
to face less apoptosis while increasing the death of some T-

FIGURE 1. The role of Wnt/β-catenin and PD1/PD-L1 signaling in HPV infection.
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cells in lymph nodes. On the surface of CD8+ and CD4+ T-
cells, PD-1 is more apparent. The PD-1/PDL1 pathway
reduces the activity of T-cells; this inhibitory effect is done
by binding PD-1 to its ligands (PD-L1 and PD-L2), which
are produced on the surface of cancerous cells and
peripheral tissues. The expression of PD-L1 also regulates
IFN-γ-secreting T-cells [3]. Moreover, it has been illustrated
that the interaction of PD-1/PD-L1 can increase the
transcription of several genes involved in cancer induction.
Cancer cells express immune system regulators such as the
cluster of differentiation (CD)-47 and PD-L1 to induce
immune response resistance. Also, cellular myelocytomatosis
(c-MYC) activation is due to CD-47 and PD-L1 expression
[4]. Because c-MYC can directly bind to the CD-47 and PD-
L1 gene promoters, inhibiting c-MYC reduces the
expression of both genes (CD-47 and PD-L1) and thus
improves the anti-tumor immune response [7]. It is
hypothesized that T-cell apoptosis is associated with c-MYC
overexpression, a critical target gene of the Wnt/β-catenin
signaling pathway [8]. Additionally, Wnt/β-catenin signaling
has been implicated as one of the primary inducers of
cancer, accelerating the development of the disease through
controlling the tumor immune cycle in various cell types,
including dendritic cells, T-cells, and tumor cells [4]. Some
significant regulators of the anti-tumor function of T-cells,
especially effective T-cells, T helper cells (Th), and
regulatory T-cells (T-reg), are changed functionally by
abnormal Wnt/β-catenin signaling [4]. Besides, the
activation of the Wnt/β-catenin signaling pathway is
observed during various types of malignancies, such as
hepatocellular carcinoma, human immunodeficiency virus
(HIV), breast cancer, as well as in HPV-related cancers such
as oropharyngeal and cervical cancers, head and neck, anal
cancer, and vulvar cancer [1]. As mentioned above,
increased levels of PD-1 expression on the T-cells and APC
cells, and also hyper-activation of the Wnt pathway during
chronic HPV infection, are positively associated with tumor
cell metastasis and HPV-associated cancers such as cervical
cancer and cervical intraepithelial neoplasia (CIN) grade
[1,9]. Besides, inhibition of the Wnt signaling pathway in
cancer cells could disrupt the expression of CD-47 and PD-
L1, resulting in an increased immune defense against tumors
[8]. In other words, MYC signaling leads to increased
expression of CD47 and PD-L1 in tumor cells. Meanwhile,
due to CD47-SIRPα interaction, the phagocytosis activity of
tumor cells by macrophages and dendritic cells is disturbed.
As a result, the lack of activity of the innate immune system
may cause an increase in the recruitment of T-cells to the
tumor microenvironment. In contrast to PD-L1 expression,
it may disrupt in the function of T-cells in the tumor
microenvironment. In addition, the Wnt/β-catenin signaling
pathway may affect MYC activation [10].

The present study hypothesized that current research
concentrates on the Wnt/β-catenin and PD-1 signaling
pathways, crucial elements in cancers, particularly cancers
related to viruses. These findings may alter the manner that
individuals evaluate cancer patients and immunotherapy
(Fig. 1).

During infection, the PD-1/PD-L1 signaling axis and
Wnt play an essential role in developing and maligning

epithelial cells. Thus, after presenting the antigen to the
T-cells, the DC cells induce signaling pathways in T-cells,
resulting in the induction of TCR and the secretion of pro-
inflammatory cytokines. Then these cytokines lead to the
expression of PD-1 on the surface of T-cells. In this line,
Wnt binds to its receptors. The integrated HPV genome
regulates these pathways to increase escape and inhibit the
immune response against tumor cells by expressing E6 and
E7 oncoproteins. Also, these oncoproteins lead to the
induction of a series of cellular signaling pathways of Wnt; it
eventually conducts the expression of the c-MYC in the
target cell nucleus. The c-MYC gene leads to increased
expression of PD-L1 and CD47 at the surface of tumor cells.
By binding PD-L1 to PD-1 expressed at the surface of
T-cells, it leads to apoptosis, anergy, and ultimately
inhibition of the immune response vs. tumor cells. Also,
INF-γ secreted by T-cells leads to increased PD-L1
expression at the surface of tumor cells.

The Function of Wnt/β-Catenin Signaling Pathway in
Cancer

In 1991, the term Wnt was coined from the acronyms
homologous wingless (WG) and INT1, which refers to a
group of genes that encode secretory glycoproteins [11]. 11
receptors of the Frizzled (Fz) family in humans could
activate the Wnt signaling pathway, such as Fz1 to Fz10,
Smo, and two low-density lipoproteins receptor-related
protein (LRP) 5 and 6 [12]. Wnt ligands activate three
active signal transduction pathways, including the canonical
Wnt/β-catenin pathway and two non-canonical pathways
[13]. According to studies, the Wnt/β-catenin signaling
pathway is crucial for cell growth, proliferation,
differentiation, adhesion, and polarity [11,14–16], as well as
for carcinogenesis from the initial stages to the advanced
parts in a variety of neoplasms [17].

The β-catenin accumulation due to the Wnt pathway’s
abnormal function is observed in the cytoplasm [18].
Indeed, the binding of Wnt to Fz and low-density
lipoprotein receptor-related protein 5/6 (LPR5/6) receptors
results in the accumulation of β-catenin in the nucleus and
cytoplasm; after Fz dimerization by LRP5/6 co-receptor, the
intracellular motif of Fz leads to the absorption of
cytoplasmic protein Dishevelled (Dlv) [19]. Then, the LPR5/
6, phosphorylated by CK1 and AXIN, binds to the β-catenin
destruction complex that eventually prevents the β-catenin
destruction that these mechanisms use to promote nuclear
β-catenin transfer [18,20–22].

The β-catenin then enters the nucleus as a transcription
co-activator, resulting in activated transcription via the
complex of transcription factors such as T-cell factor
(TCF)/lymphoid enhancing factor (LEF) [17]. In the
nucleus, β-catenin binding to TCF/LEF conducts the
separation of co-receptors, including Groucho/TLE; as a
result, it interacts with co-activators such as cell cycle-
related and expression elevated protein in tumor (CREPT),
four-and-a-half-LIM-domain 2 (FHL2), and CREB-binding
protein (CBP/p300) and remodelers of chromatin such as
brahma-related gene 1 (Brg-1) [21,23–29].
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Some β-catenin in the cytoplasm are affected by
proteasome degradation. During this process, the AXIN
scaffold protein controls the process of β-catenin
degradation by utilizing important proteins such as glycogen
synthase kinase-3β (GSK-3β), casein kinase 1 (CK1),
adenomatous polyposis coli (APC), Yes-associated protein
(YAP)/Transcriptional co-activator with PDZ-binding motif
(TAZ), and beta-transducing repeat-containing protein (β-
TrCP) [30–33]. APC inhibits PP2A phosphatase-mediated
β-catenin dephosphorylation [34]. It has been demonstrated
that the recurrence of E3 β-TrCP ubiquitin ligase by the
YAP/TAZ complex and the detection of serine (Ser) or
threonine (Thr) phosphorylation by E3 β-TrCP ubiquitin
ligase cause the increase in ubiquitination of β-catenin and
its subsequent proteasomal destruction [33].

Furthermore, other factors that participate in tumor-
genesis, including c-MYC, metalloproteinase 7 (MMP-7),
and the vascular endothelial growth factor (VEGF), are
stimulated by the β-catenin/TCF-LEF complex [35].
Following the above interactions with catenin, various genes
such as c-JUN and Cyclin D1 are expressed, which leads to
the regulation of polarity, proliferation, and differentiation of
various cellular genes in the development of malignancy [29].

The Function of PD-1/PD-L1 Signaling Pathway in Cancer

PD-1, as an inhibitory co-stimulant receptor and a member of
the CD28 family, is expressed in innate and acquired immune
cells and regulates inflammation and self-reactivity [36]. Also,
as an inhibitory receptor in T-cells, PD-1 has been associated
with T-cells malfunctioning during infectious diseases and
malignancies [37]. This inhibitory molecule contains two
types of ligands from the B7 family on the cell surface,
including PD-L1 (B7-H1) and PD-L2 (B7-DC), which have
different expression patterns [38–41]. It is a kind of type 1
transmembrane receptor of the immunoglobulin super
family [38]. In many tissues, PD-L1 is expressed on the
surface of immune cells such as T-cells, B cells, dendritic
cells (DC), macrophages (MQ), and non-hematopoietic
parenchymal cells. PD-L2, however, is only expressed on the
antigen-presenting cells’ surface, including DCs, MQ, B
cells, and many tumors [42–46]. It has been speculated that
the regulation of primary T cell function in lymphatic
organs and the control of inflammation and autoimmunity
in peripheral tissues is achieved by binding B7 family
ligands to CD28 family receptors [37]. Moreover, gamma-
chain cytokines such as IL-2, IL-7, and IL-15 promote the
expression of PD-1 on the surface of monocytes,
macrophages, and T-cells [37]. Granulocyte-macrophage
colony-stimulating factor (GM-CSF), interferon-gamma
(INF-γ), and IL-4 also regulate the expression of PD-L1 and
PD-L2 on the surface of macrophages; among these; IL-4
and GM-CSF, have a significant role in the expression of
PD-L2 [47,48]. Meanwhile, interferon regulatory factor-1
(IRF-1) binding to the PD-L1 gene promoter is regulated by
downstream IFN-γ signaling [49]. It has been demonstrated
that mechanisms such as INF-γ production by lymphocytes
in the tumor environment, genomic alterations, and the
activation of carcinogenic signaling pathways increase
PD-L1 expression in tumor cells [50,51].

Furthermore, in a study conducted by Dong et al. [52], in
2018, it was reported that overexpression of miR-18a in
cervical cancer indicates an increase in PD-L1 levels by
preventing phosphatase and tensin homolog (PTEN) (a
PI3K-AKT pathway inhibitor), WNK2 (a MAPK inhibitor),
and SRY-box transcription factor 6 (SOX6) (a type of
Wnt/β-catenin inhibitor), activated PI3K/AKT, MAPK, and
Wnt/β-catenin pathways and promoted the induction of
PD-L1 [52]. Moreover, the evidence suggests that over-
stimulation of the EGFR pathway seen in EGFR-induced
cancers can lead to the expression of PD-L1 in human
cancer cells [37,53]. The IFN-γ and EGFR have used Janus
kinase 2 (JAK2) as standard signaling to transmit external
or internal signals to tumor cells, respectively [54]. For
example, in HPV infection individuals, PD-L1 expression is
induced by EGFR and JAK2/signal transducer and activator
of transcription 1 (STAT1)-dependent procedures; in
particular, inhibition of JAK2 prevents re-regulation of PD-
L1 in tumor cells, leading the increased immunologicity [54].

It has been denoted that in tumor cells, two main pathways
regulate the expression of PD-L1. The first one is an “external”
signaling pathway in which an anti-tumor cellular immune
response drives INF-γ production via natural killer (NK) cells
and CD8+ tumor-infiltrating lymphocytes (TIL). The
produced INF-γ contributed to the expression of PD-L1 in
tumor cells [54]. The second one is an “intrinsic” signaling
pathway in which tumor-induced pathways within the tumor
cells induce the over-expression of PD-L1 [55]. Given that the
INF-γ produced by NK cells and T-cells is a well-known
stimulus for PD-L1 expression, the complex signaling
pathways of PD-L1 regulation must be adequately
investigated. Regarding the PD-1 ligands that play a
significant role in maintaining immune suppressive tumors, a
set of PD-1 and PD-L1 expression and signaling control
mechanisms are emerging [37,56]. Besides, it demonstrated
that this molecule played a significant role in inducing and
maintaining central and peripheral tolerance [57]. By
presenting the viral antigen via DCs, a signaling pathway is
induced through PD-1 on CD8+ T-cells; as a result, it leads to
T-cells tolerance. In other words, PD-1 is called a “rheostat,”
the T cell response’s threshold, power, and duration [58–60].

The Impact of the Wnt Signaling Pathway and PD-1/PD-L1
Axis on T CD4+ and T CD8+ Function

The HPV-specific immune response, as well as the destruction
of HPV-infected cells in the cervical region, is initiated by T
helper cells (CD4+), cytotoxic T-cells (CD8+), and dendritic
cells (DC) [61]. As mentioned in the previous section, PD-
L1 molecules are overexpressed on the surface of T-cells
during viral infection, resulting in the induction of
tolerance, inhibition of activity, and cytokine production [5,6].

On the other hand, the Wnt/β-catenin signaling pathway
is critical for T-cells proliferation and differentiation; hence,
activation of the TCF and LEF genes and the Wnt/β-catenin
pathway in mature T-cells causes cytotoxic T cell
maturation to be impaired [62]. In addition, the Wnt
pathway activates Fra1, a target of the interleukin-17
(IL17RA) cytokine cascade [63,64]. IL-17A, produced by T
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helper 17 (Th17) cells in response to IL-23, stimulates of this
pathway [65].

The following will describe the effect of each of these
pathways on malignancy progression.

Wnt/β-catenin signaling’s impact on T CD4+ and T CD8+
function
T CD4+ and CD8+ lymphocytes tolerance is also increased by
β-catenin in DC cells in the tumor microenvironment [66].
Moreover, LRP5 and LRP6 co-receptors have a significant
deficiency in DC immune tolerance, diminishing tolerance
by suppressing the Wnt pathway’s interaction with the
LRP5/6 and Frizzled cortex [67]. According to research,
β-catenin/mTOR/IL-10 signaling impairs DCs’ ability to
cross-react with CD8+ T-cells [68]. Besides, the Wnt/β-catenin
pathway influenced T CD4+ cell differentiation [69]. Thus,
the induction of GATA-3 transcription factor expression by
unique AT-rich sequence binding protein-1 (SATB1), a
chromatin regulator that plays a vital role in T cell
proliferation, TCF-1 and β-catenin proteins induces Th2
differentiation [70,71].

On the other hand, another study reported that β-catenin
pathway activity in murine T CD4+ cells leads to increased
RAR-related orphan receptor C (RARC) regulation and
Th17 cell differentiation, thus resulting in the secretion
of tumor-induced pro-inflammatory cytokines [72].
Interestingly, the TCF-1 protein increases the Th2 and Tfh
cells differentiation; in contrast, it inhibits the T CD4+
differentiation into Th1 and Th17 cells [69]. It is worth
noting that β-catenin will increase the differentiation and
function of T-cells. As mentioned, the Wnt signaling
pathway leads to the induction of immune cell tolerance in
HPV infections. In this regard, β-catenin activity leads to
immune escape by reducing the penetration of dendritic
cells and T-cells’ dysfunction and resistance to anti-PD-1-
based therapies [73].

PD-1/PD-L1 axis’ impact on T-CD4+ and T-CD8+ function
One of the effective mechanisms in controlling and clearing
viral infections is the cytotoxicity exerted by lymphocytes,
especially cytotoxic T lymphocytes. Thus, activating these
cells depends on two mechanisms that involve recognizing
the desired antigen by the T cell receptor and the stimulator
molecules [74,75]. It has been shown that PD-L1 is one of
the inhibitory molecules of T lymphocytes that are
expressed on APC cells and exerts its effect by binding to its
PD-1 receptor on activated T-cells; as a result, it inhibits the
function of T-cells [76,77]. On the other hand, the
inhibitory mechanism of T-cells is triggered by PD-1
signaling in the inhibition of glycolysis and amino acid
metabolism and increased fatty acid oxidation, leading to
defects in these cells’ function [37,78]. Agata et al. [80] have
identified that the PD-1 (known as CD279) participates in
programmed cell death, in which the expression of this gene
is induced quickly after signaling by the T cell receptor
(TCR) and is modulated by cytokines [47,79–84].

Moreover, PD-1 also expresses on the surface of other
immune cells such as B cells, natural killer cells (NK), NKT-
cells, DC, and monocytes [85,86]. On this basis, after
binding PD-1 to its ligand at the APCs surface, it inhibits T

cell function by recruiting Src homology region 2-containing
protein tyrosine phosphatase 2 (SHP2) [59,87,88], and
accumulating on the T cell receptor (TCR) complex. This
mechanism is due to the phosphorylation of tyrosine
residues in the CD3 complex and CD28 [41]. Thus, PD-1
can inhibit the phosphorylation of the CD3z and ZAP70
chains, which is the initial stage after binding to TCR
[44,89,90]. In studies, along with direct signals of TCR,
CD28 activates actuation signals in T-cells by activating the
PI3K pathway, and PD-1 suppresses this pathway by
inhibiting the PI3K pathway [37,89]. This function is owing
to the phosphorylation of immune-receptor tyrosine-based
inhibitory motif (ITIM) and immune-receptor tyrosine-
based switch motif (ITSM) as the PD-1 intracellular
receptors [37]. The ITSM, as a crucial intracellular receptor,
is phosphorylated by SHP-2, which absorbs SHP-2 tyrosine
phosphatase and ultimately leads to the inactivation of PI3K
and downstream inhibition of the Akt pathway
[37,44,89,90]. This phosphorylation leads to dysfunction of
other signaling pathways such as protein kinase B
(PKB/Akt), mechanistic target of rapamycin (mTOR), RAS,
MAPK/MEK, ERK, etc. It leads to decreased cytokine
secretion, cell proliferation, T-cells differentiation, and
eventually, their immune function attenuation [91].
Moreover, PD-1 signaling was involved in reducing of
phospho-Akt regulation, mTOR, S6, ERK2, tensin homolog
(PTEN), and phosphatase over-regulation [6,37]. PTEN
depletion is also a common mutation in tumors that
increases PI3K/Akt; subsequently, this mutation gives rise to
the over-expression of PD-L1 [6].

On the other hand, T CD4+ cells infiltrate into the tumor
region and exert anti-cancer activity. Also, T CD4+ cells are
low exhausted than T CD8+ lymphocytes [92]. On this basis,
Balança et al. found that tumor-infiltrating T CD4+ cells
with high levels of PD-1 and CD39 release significant
amounts of cytokines, even though these cells generate low
levels of cytokines in an exhaustion situation [92]. In fact,
effective cell activities such as IL-2 secretion, proliferative
capacity, extracellular cytolytic activity, synthesis and
secretion of TNF-α and IFN-γ have decreased in T CD8+
cells at the onset of exhaustion [93,94]. Consequently, these
mechanisms, which include the overexpression of inhibitory
receptors such as PD-1, contribute to the overstimulation-
related destruction of these cells [95]. To put it another way,
PD-1 regulates glycolytic and mitochondrial alterations,
inhibiting the transcriptional coactivator PGC-1α. In
actuality, PGC-1α overexpression enhances the function and
metabolism of exhausted CD8 T-cells [96]. Besides,
decreased mTOR activation in PD-1+ CD8 T-cells also
increases the activity of the FoxO1 transcription factor,
which in turn increases the expression of PD-1 and the
survival of exhausted T CD8 cells [97]. On the other hand,
after releasing WNT ligands by cancer cells, they cause DC
cells to activate the conventional WNT signaling pathway,
increasing and decreasing IL-10 and IL-12 production,
respectively. In this regard, they promote T-reg cell
differentiation and suppress CTLs [69]. Furthermore, GSK3
inhibition in cancer cells increases the activity of β-catenin,
stabilizes PD-L1, and causes CTL exhaustion in interaction
with PD-1 [69].
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Moreover, tumor-specific antigens, transcription factor
TOX, and CXCL13 are also expressed by T CD4+
lymphocytes carrying CD39+ and PD-1+. Blocking PD-1
has been shown to promote T CD4+ cell activity and
CD154 expression, cytokine production, dendritic cell
maturation, and T CD8 cell proliferation and differentiation,
specific to the tumor’s surroundings [92].

The Impact of the Wnt Signaling Pathway and PD-1/PD-L1
Axis on Tumor Infiltration Lymphocytes (TILs)

The disease state of HPV is related to the level of PD-L1
expression in such a way that in inflammatory cells
infiltrating into the tumor, such as TILs, the level of PD-1/
PD-L1 expression was higher in cervical cancer than in
endometrial and ovarian adenocarcinoma [98]. As reported,
in the PD-L1+ tumor environment, a higher number of
tumor-infiltrating lymphocytes was associated with a better
prognosis [98].

Tumor infiltrating lymphocyte (TILs) are one of the
important components of the tumor immune
microenvironment, and the quantity and function of these
cells reflect the strength of the antitumor response [99–101].
Many quantitative studies have investigated the relationship
between PD-L1 expression and TILs in the tumor immune
microenvironment in cervical malignancy [102–104]. Feng
et al. showed that in 10.0% of people with cervical cancer,
the expression level of PD-L1 in TILs cells, and the
secretion of inflammatory cytokines increased [105]. The
evaluation of the quantity of TIL and its functional state can
complement the level of PD-L1 expression in tumors since
TIL can also predict the response to anti-PD-L1 therapy
[106]. In cervical cancer, Karim et al. demonstrated that
more than 50% of TIL expressed PD-1, and only 19% of
tumor cells were PD-L1 positive [107].

Furthermore, although PD-L1 expression had no effect
on patient survival directly, patients who had an
overabundance of infiltrating regulatory T-cells survived
longer with PD-L1-positive tumors [107]. D’Alessandris
et al. reported in 2020 that stromal TIL cells have the more
immunogenic potential for cervical cancer than
CD3+/CD4+ helper T-cells. Also, they showed that during
malignancies, 100% of immune cells and 92% of tumor cells
express PD-L1 [108]. On the other hand, the number of
cancer cells with PD-L1 was associated with an increase in
TIL and PD-L1 expression in immune cells [108]. So, the
expression of PD-L1 on the tumor cells’ surface, in addition
to immune escape of cells, leads to the weakening of the
anti-tumor immune response of TIL cells and, as a result,
tumor progression [104]. In contrast, high PD-L1 expression
in TILs is substantially associated with the existence of high
TILs. It has also been demonstrated that high PD-L1
expression has a negligible association with age, tumor size,
lymph node positivity, or histological grade. However,
clinical trials are required to examine the impact of PD-L1
expression in the immune stroma to predict optimal
treatment response [105].

Nevertheless, it was shown in the study by Goldsberry
et al. [109] that there is an inverse association between the

Wnt signaling pathway and TILs. This study examined the
effect of neoadjuvant chemotherapy and the relationship
between the Wnt signaling pathway and tumor-infiltrating
lymphocytes in HGSOC [109]. Additional investigation is
required to better understand the Wnt pathway’s role in
immune regulation.

The Role of Wnt Signaling and the PD-1/PD-L1 Axis in the
Progression of Cancer

In the neoplasm progression trend, activated T-cells and NK
cells in the tumor microenvironment (TME) released
significant levels of IFN-γ [110], which leads to increased
PD-L1 expression on the surface of cancer cells,
subsequently enabling them to evade the immune system’s
access [111,112]. Also, it has been shown that there is a
strong parallel between increased PD-L1 expression and
HPV infection [113]. The PD-L1 methylation pathway
participates in suppressing gene expression and other
cellular protein transcription in cervical cancer induced by
HPV [113], and the PD-1/PD-L1 expression on tumor-
infiltrating lymphocytes (TIL) in cervical cancer is more
significant than in other malignancies [114].

According to the findings, numerous transcription
factors, including c-MYC, STAT1, and STAT3, efficiently
promote PD-L1 gene expression and the c-MYC gene is
widely involved in various malignancies [7]. On the other
hand, elevating the activity of the Wnt signaling pathway
causes the expression of essential genes, including c-MYC (a
regulator gene and proto-oncogene), Nanog (a transcription
factor sustaining pluripotency of embryonic stem cells),
Oct4 (octamer-binding transcription factor 4), Sox2 (sex-
determining region Y-box 2), Snai1 (a zinc finger protein
regulating epithelial to mesenchymal transition), and Twist
(a primary helix-loop-helix transcription factor), to be
increased, resulting in tumor development [115]. It has also
been shown that during HPV infection, viral oncoproteins
such as E5, E6, and E7 cause post-translational
modifications in histones and influence the methylation
state of cellular targets by influencing other cellular genes
such as MYC, APOBEC3, and interacting with DNMT1 and
other epigenetic modulators [64]. As a result, owing to the
promotion of PD-L1 gene expression and Wnt signaling
pathway activation, the progression of malignancy and
tumor growth has been induced by HPV infection.

Human Papillomaviruses

Human papillomaviruses are the double-stranded DNA
viruses of the Papillomaviridae family. The capsid of these
viruses is icosahedral, without envelope, and their genome
has eight open reading frames (ORF) [116].
Papillomaviruses are epitheliotropic, dividing into mucosal
and skin contaminants and classified into low-risk and high-
risk varieties based on their ability to induce cancer and
malignancy [117,118]. HPV-6 and HPV-11 are among the
low-risk types that generate 90% of genital warts and rarely
lead to malignancy [119,120]; however, HPV-16 and HPV-
18 are high-risk types that cause 70% of cervical cancers [121].
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Moreover, the World Health Organization (WHO)
reported that cervical cancer is the fourth most common
cancer among women and accounts for 30% of worldwide
deaths [122]. Other malignancies associated with the virus
include penis neoplasm, vulva, anus, anal, oropharyngeal,
and head and neck cancer [123–126]. The papillomaviruses
initiate proliferation by entering the target cells through
damaged skin or mucosal squamous epithelium [127]. Thus,
leading to cell division and genome replication by exploiting
cellular DNA polymerase in basal cells, the infected cells are
transported to the upper layers [128].

Furthermore, HPVs have two types of amplification:
plasmid replication and vegetative replication [129,130]. It
has also been recommended that the HPV DNA encode six
early proteins (E1, E2, E4, E5, E6, and E7) and two late
proteins (L1 and L2) [127] that through E5, E6, and E7
oncoproteins conduct malignancy and cellular
transformation [4,65,131–133]. These oncoproteins, by
accumulation in the nucleus and cytoplasm of target cells
and interacting with cell pathways, lead to genomic
inconsistency and result in malignancy by disrupting cell
cycle controllers [134]. The stimulation of cellular signals
via HPV oncoproteins after primary infection leads to the
completion of viral replication and the constitution of
infectious particles [1]. Also, the high expression of
oncoproteins leads to the disruption of regular cell activity
and stimulation of uncontrolled transformation. Interactions
of E6 and E7 oncoproteins with different cellular pathways
regulate signaling pathways and other mechanisms
associated with HPV-caused cancers. These signaling
mechanisms and pathways that are involved in persistent
virus infection, such as, Hedgehog, Erk/MAPK, Notch, Wnt
signaling pathways, PI3K/Akt, EGFR, and immune
checkpoints, including PD-1 and CTLA-4, participate in
differentiation and survival proliferation, cell cycle
development [1,2,135–139]. However, the interaction of
HPV oncoproteins and the PD-1/PD-L1 pathways, the
regulation of the Wnt/β-catenin pathway by these
oncoproteins, and their synergistic effect on disease
progression, is still controversial [140].

Wnt/β-catenin signaling in cancers associated with HPV
Several mutations in different type of cancer could occur in
components of the Wnt pathway. Moreover, activating the
conventional Wnt pathway is one of the essential
mechanisms in epithelial cell malignancies caused by HPV
infection. The HPV oncoproteins have directly and
indirectly regulated these pathways [138,141]. Also, these
oncoproteins target the canonical Wnt pathway; in contrast,
they do not regulate the non-canonical Wnt pathway [1].
However, some components of the Wnt pathway, including
Wnt7A and Dvl, the target proteins of E6 oncoprotein, are
activating non-conventional Wnt pathways [1]. In HPV-
induced cancers, mutations in the Catenin Beta 1
(CTNNB1) and AXIN1 genes, components of the Wnt
pathway, are uncommon [142,143]. During cancer
progression, membranous β-catenin decreases and
accumulates in the nucleus and cytoplasm of cervical cancer
and oropharyngeal squamous carcinoma cell cancer biopsies
[138,144]. The progression and tumorigenesis of cervical

cancer cells occur through the activation of a G protein
receptor family member, called LGR5, gradually expressed
in cervical cancer cells, leading to Wnt pathway activation
[145]. In cervical cancer, the over-activity of the Wnt
signaling system is related to the dysfunction of the GSK-3
component through Ser phosphorylation and several
activities of the Wnt pathway’s components modified in the
post-transcription process, contributing to the negative
regulation of this pathway [146]. Moreover, cervical tumor
cells have an exaggerated expression of genes that maintain
and control the Wnt signaling pathway, including JUN, c-
MYC, FZD2, RAC1, GSK-3β, Dvl-1, and CTNNB1 [147–
149]. Also, the presence of HPV E6 and E7 oncoproteins
disrupts several cellular function proteins, such as human
telomerase reverse transcriptase (hTERT), p53, p300 CBP,
Dvl, and PP2A, that are related to the regulation of the Wnt
signaling pathway [1]. For example, in patients with oral
malignancy, it has been observed that due to the high
expression of β-catenin-binding FOXM1, non-recurrence is
higher than in those with lower FOXM1 levels, and it is
significantly promoted in the presence of the HPV genome
[150]. As a result, the regulatory elements of the Wnt
signaling pathway are leading to the progression of
malignancy and poor prognosis in HPV-induced cancers
[1]. Moreover, in oropharyngeal cancer cells, β-catenin is
significantly higher in the cytoplasm and nucleus, and in
contrast, in healthy cells, β-catenin is mainly found in cell
junctions [151]. In this way, Sominsky et al. showed that the
E6/AP complex is essential for the function of E6 in Wnt-
activated cells; thus, the level of E6 is reduced through the
mechanism of the proteasome, followed by the reformed
reinstated of E6/AP complex [152]. The E6/AP complex
induces its response independent of the catalytic function of
TCF. Furthermore, the E6 protein affects the expression of
myeloid zinc finger 1 (MZF1), thus activating transcription
of Homeobox protein (NKX)-2, and since the FOXM1
promoter has three regions for the NKX-2 gene, it also
indirectly leads to the increase of FOXM1 [153]. High levels
of FOXM1 in cells expressing the E6 gene promote β-
catenin transfer to the nucleus and cytoplasm. This function
leads to TCF transcription activation and expression of
Wnt/β-catenin target genes like c-MYC and Cyclin D1, as
well as stemness-related genes like Nanog and Oct4, all of
which are regulated by the MZF1/NKX2-1 transcription
factor axis [153,154]. In vitro studies have also shown that
Dvl2 cleaves the degradation complex of β-catenin and
increases TCF transcriptional activity by interacting with the
E6 gene [155]. On the other hand, the E7 oncogene, because
of its association with its catalytic subunit, can also inhibit
PP2A action by stabilizing β-catenin in the cytoplasm
[1,156]. Thus, it is worth noting that identifying the
mechanisms of viral oncogenes’ role in the Wnt/β-catenin
signaling pathway leads to the early detection of biomarkers
and targeted therapies in HPV malignancy.

PD-1/PDL-1 axis in cancers associated with HPV
As mentioned, papillomaviruses, via their oncoproteins,
stimulate cell proliferation and cell survival and modulate
keratinocyte differentiation, resulting in the onset and
progression of cancer [128]. Liu et al. [157] showed that in
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40 cervical cancer samples, the HPV E7 oncoprotein had
affected cancer cells’ escape from the immune system. They
observed that the overexpression of PD-L1 leads to the
inhibition of peripheral blood mononuclear cell (PBMC)
products and also suppresses of T cell activity, resulting from
the over-expression of oncoprotein E7 in the epithelial
carcinoma of human prostate cancer cell lines (PC3) [157].
However, this study found that despite the expression of PD-
L1 on the surface of cancerous cells, the non-cancerous
cervical epithelium rarely expressed PD-L1 [157]. Meanwhile,
in 2017 Feng et al. [158] studied 54 cervical patients infected
with HPV-16 and normal cervical cytology as two
experimental groups and determined the association between
PD-L1 and HPV-induced cancer [158]. During this study,
they found that precancerous lesions of the cervix had higher
levels of PD-L1 than normal cervical cells. The excessive
expression of PD-L1 leads to the persistence of HPV
infection in cervical precancerous lesions [158]. Moreover,
Mezache et al. found a positive association between PD-L1
expression and cervical intraepithelial neoplasia (CIN) grade
[127]. On this basis, tumor cell metastasis and the CIN grade
promote PD-L1 in cervical cancer [9]. Also, they observed
that primary inflammatory T CD8+ lymphocytes that
expressed PD-L1 were present in the vicinity of neoplastic
CIN cells [127]. According to experiments conducted by
Wong et al. in 2012 [8], they observed that, in 40 hr-HPV
samples with various grades of CIN, in the cervical area, T-
cells, DCs, INF-γ, IL-12, and IL-10 express high levels of PD-
1 and PD-L1. This expression diminishes with an increasing
grade of CIN via DC80 and CD86 signaling [127]. That
results in plummeted levels of Th1 cytokines such as INF-γ
and IL-12, also increased levels of Th2 cytokines such as IL-
10 [159]. On the other hand, Qin et al. in 2017 performed
research in this field and observed that HPV leads to
mutations in new antigens, which play a significant role in
the immune system’s inhibition. Significant changes are also
demonstrated in checkpoint genes, including PD-1, PD-L1,
and CTLA-4. Furthermore, PD-L1 is directly related to the
enolase 1 (ENO1) regulatory genes, including positive
regulatory domain I (PRDM1), OVO homologue-like 1
(OVOL1), and MNT regulators [160]. Also, in 2018,
according to a study by Choschzick et al. [161], they
examined 55 samples using immunohistochemistry and
found no association between PD-L1 and the grade of HPV-
induced cancer [161].

A study in 2020 conducted by Bucau et al. showed that in
HPV-induced anal cancer, in high-grade wounds, the
penetration of T CD8+ lymphocytes increases in both the
lamina propria and the epithelium. In addition, it is
suggested that HPV directly activates PD-1 pathways in the
epithelium, inhibiting the cytotoxic and anti-tumor
functions of lymphocytes [162]. Besides, PD-L1 and INF-γ
mRNA levels in HPV-related HNSCC disease significantly
promote tonsil plaques [127,163].

Moreover, the PD-1 ligands are selectively expressed in
various cancers, tumor environments, and various
malignancies such as tissue and blood cancers [164–166].
Due to the increase in PD-L1 levels during cervical HPV-
associated cancer, this protein can be introduced as a
biomarker [114,167].

Overall, the findings significantly suggest that HPV
oncoproteins have a role in both the immune checkpoint
and the canonical Wnt signaling pathway. However, some
E6 target proteins, such as WNT7A and Dvl, activate the
non-canonical Wnt signaling pathways, contributing to the
severity of HPV-related disorders.

Therapeutic Approaches Related to Wnt/β-Catenin
Signaling and PD-1/PDL-1 Axis

Given the impact of approximately 30% of chemotherapy
medicines on HPV carcinogenicity and recovery in
individuals with cervical cancer, therapeutic methods such
as HPV vaccination are essential to improve HPV16 and
other hr-HPV infections and related malignancies [168,169].
Due to the promotion of mitosis and PD-L1 expression with
increasing viral load, immunotherapy methods differ at
various phases of HPV infection [61]. Several HPV
therapies inhibiting the immune checkpoint have been
developed to improve the vaccine’s effect on the
carcinogenic process [170]. Nivolumab, pembrolizumab, and
atezolizumab are monoclonal antibodies that target the PD-
1/PD-L1 and CTLA-4 pathways as immunotherapy (fda.
gov) [169,171]. It’s worth noting that PD-1/PD-L1
immunotherapy antibodies are related to higher numbers of
tumor-infiltrating T CD8+ cells, reinvigorate anti-tumor
immunity, and improve patient outcomes [172,173]. Despite
this, Th17 cells and pro-inflammatory cytokine secretion
like IL-17 have shown resistance to PD-1-based treatments
[174–176]. In a study by Li et al. [175], in mice with lung
cancer, high levels of IL-17 secretion were associated with
resistance to PD-1-based therapies; additionally, it was
discovered that blocking PD-1 in mice after neutralization
of IL-17 as well as anti-PD-1 treatment reduced the size of
cancerous tumors and increased the activity of T CD8+ cells
[175]. Thus, following PD-1/PD-L1 inhibitors, glycolysis
levels in cancer cells decrease, resulting in increased glucose
in TME and T-cells activation [177]. Also, blocking PD-1
leads to improved CD4 TIL cell function, DC maturation,
CD86 expression, and IL-12 secretion [92].

In addition to the PD-1/PD-L1 axis, the Wnt pathway is
also associated with cancer metabolism and immunotherapy
[115]. On this basis, it has been documented that RNA-
interference (RNAi)-based therapies against the Wnt
pathway increase the penetration of cytotoxic T-cells and
consequently reduce tumor size [178]. It has also been
observed that, by inhibiting the Wnt signaling pathway,
resistance to PD-1 inhibitors and tumor cell growth is
reduced [115]. Following the use of CPI, the T CD4+ and
CD8+ cell lines’ functions increase due to PD-1 and PD-L1
expression and Wnt pathway activity in CD4+ and CD8+
TIL cells [115,179]. Also, the self-sufficiency of effector cells
to TME, correlated with the classical Wnt active signaling
pathway, contributes to cancer immunotherapy resistance
[180]. In the absence of Wnt ligands, GSK3β, as a
component of axin, causes the β-TrCP to degrade the PD-L1
phosphorylation-dependent proteasome and facilitate
interferon-secreting CTLs to penetrate the tumor
microenvironment [69]. On the other hand, the immune
checkpoint inhibitor (ICI) reduces the ability of PD-1 and
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CTLA-4 receptors, which diminishes the penetration of CTLs
and leads to a decrease in the therapeutic effect of ICI [69].
Moreover, the lack of CTLs has occurred in the active Wnt
pathway tumor cells. It has been shown that the anti-CTLA4
monoclonal antibodies, in combination with canonical Wnt
signaling inhibitors may prevent cancer progression in mice
samples [181]. In this regard, combination therapy following
the use of immune checkpoint inhibitors and anti-Wnt
signaling pathway, has been shown to be effective in
enhancing the therapeutic effect of malignancies [115].
Moreover, interference with GSK3 inhibitors has also been
found to cause T CD8+ and Th17 cells to differentiate into
anti-cancer stem cells [182,183]. Notwithstanding the effect
of anti-tumor activity of antibodies against immune
checkpoints, such as pembrolizumab, in HPV16+ individuals
with PD-L1+ tumor cells, they had more effectiveness in
combination with radiotherapy, chemotherapy or therapeutic
vaccines [113]. Despite the efficacy of anti-PD-1/PD-L1
treatments, adverse effects are observed in a limited
percentage of patients [184]. As a result, predictive
biomarkers determine whether patients are eligible for this
treatment and predict clinical outcomes [185]. For instance,
in cervical cancer, inhibiting PD-1 causes T-cell exhaustion
to be reversed. Despite inhibiting PD-1/PD-L1, several
checkpoint molecules, including TIGIT and Tim-3, have a
role in T and NK cell depletion [186,187]. Thus, the
expression of PD-1 on the surface of CTLs during cervical
cancer can be a crucial determinant in predicting the efficacy
of PD-1 blockade therapy [188]. This therapy technique has
significant adverse effects due to the immunological tolerance
process and the efficiency of inhibiting immune checkpoints
[184]. Immunogenicity and poor permeability of tumor
tissues are both disadvantages of antibody medicines, which
delay the response of PD-1/PD-L1 antibody therapies
[189,190]. As previously stated, immunosuppressive therapy
causes the reactivation of T-cells, resulting in tumor
mortality in the mouse model; also, peptide immunization
causes T-cells to reactivate and destroy tumors [184].

Generally, immunotherapy is often safer than other forms
of oncology treatment, such as radiation, chemotherapy, and
surgery, since it is non-invasive and relies on the ability of

autoimmune cells to resist neoplasia [191]. Besides, because
immune checkpoint inhibitors are particular to the target cell,
they have few adverse effects [192] (Table 1).

Wnt/β-catenin signaling pathway leads to ICI resistance
therapy
In recent years, treating various solid tumors, such as lung
cancer, kidney cancer, and cervical malignancy, through the
inhibition of immune checkpoints PD-1/PD-L1 has achieved
significant results [171,193]. However, it has been reported
that the response to anti-PD-1/PD-L1 monotherapy
depends on the extent of tumor-infiltrating lymphocytes
[194].

Furthermore, as mentioned in previous section, the
abnormal activity of the Wnt/β-catenin signaling pathway
leads to increased cell proliferation, invasion, and migration
and thus induces malignancy [195–197]. In this regard,
regulating the activity of dendritic cells (DC), B cells and
T-cells make immunotherapy effective [198]. For example,
specific inhibition of the canonical Wnt signaling pathway
LRP5/6 in DCs has effectively increased the effect of
immunotherapy in mouse studies [199]. It has been shown
that upregulation of Wnt pathway activity increases
resistance to immunotherapy through the initiation of the
non-T cell-inflamed tumor microenvironment (TME).
Besides, increasing the activity of β-catenin pathway, in
turn, inhibits the production of CCL4 and subsequently
reduces the recruitment of BATF3 DCs in the TME and, as
a result, reduces the activity of T-cells [200].

In other words, the Wnt/β-catenin signaling pathway,
following the creation of a TME, causes a decrease in
immune cells in the tumor microenvironment and
subsequently reduces the therapeutic effect of ICIs [201]. In
this regard, Spranger et al. [202], showed in a mouse study
that there is an inverse relationship between the activity of
the catenin signaling pathway and the infiltration of CD8+
T-cells. In other words, in mice with a high percentage of
CD8+ T-cells, the catenin signaling pathway had little
activity [202]. Furthermore, the number of CD103+
dendritic cells (DC) in tumor areas is directly related to the
number of T-cells infiltrated, and IFN-cytokine secretion

TABLE 1

Therapeutic approach related to PDL-1 and Wnt/β-catenin signaling

Therapy Target Out come References

Nivolumab
Pembrolizumab
Atezolizumab

PD-1
PDL-1
CTLA-4

Promotion of tumor infiltrating of T CD8+ cells
Reinvigorate anti-tumor immunity
Improve malignancy trend

[172,173]

Immunecheckpiont inhibitors PD-1
CTLA-4
Tim-3
TIGIT

Reduction of glycolysis levels in cancerous cells
Promotion of glucose in TME and T-cells activation
Reduce ability of PD-1 and CTLA-4 receptors
Depletion of T-cells and NK cells function

[177]
[69]
[187]

RNA-interference
(RNAi)

Wnt/β-catenin Increase penetration of cytotoxic T-cells
Reduce tumor size
Decrease PD-1 inhibitor resistance
Tumor cell growth reduction

[178]
[115]
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decreases significantly [201,203]. As a result, this mechanism
reduces of antibody presentation by DCs and, subsequently,
resistance to ICI treatment [201].

On the other hand, the Wnt/β-catenin signaling pathway
leads to the modulation of TAMs in the TME and,
subsequently, to the development of a protumoral
phenotype and resistance to ICI [204,205]. In this regard,
Kaler et al., in a study conducted on HCT116 and Hke-3
cancer cell lines, showed that TAMs present in the tumor
area increase the activity of the Wnt/β-catenin signaling
pathway, thereby inhibiting cancer cells’ apoptosis which is
caused by TRAIL [205]. In other words, this increase in
Wnt/β-catenin signaling pathway activity leads to an
increase in the Snail gene and the induction of a tumor
mesenchymal transition phenotype, which can in turn can
be a reason for ICI resistance [204–206].

In addition, it has been shown that resistance to ICI
can be caused by TME modulation through the interaction
of TAMs with Wnt/β-catenin signaling or lactic
acid production, leading to the creation of an
immunosuppressive environment for cytotoxic T cells in the
tumor environment [201]. In this regard, many efforts have
been made to inhibit the Wnt signaling pathway and find
effective therapeutic targets [207–210]. For example, in the
study conducted by Ganesh et al. [211], it was observed that
by inhibiting β-catenin by a β-catenin inhibitor (DCR-
BCAT) that selectively knocks down the gene that
transcribes β-catenin (CTNNB1) in tumor cells, it leads to a
significant decrease in the activity of the Wnt/β-catenin
signaling pathway, which subsequently induces T-cells and
strengthens the response of checkpoint immune inhibitors
[201,211].

In a phase I study, another type of WNT/β-catenin
pathway inhibitor leading to disruption of PORCN (an
enzyme that facilitates WNT secretion) was investigated
[201]. The results indicate that following the inhibition of
this WNT/β-catenin pathway along with the administration
of the PD-1 monoclonal antibody spartalizumab
(NCT01351103), significant results were obtained in 53% of
patients who were resistant to ICI [212].

In addition to the mentioned investigators, it has been
shown that natural compounds can also be used as a
combination therapy in addition to effective prevention and
treatment by affecting the Wnt/β-catenin signaling pathway,
leading to an increase in the effect of ICI [213]. In this
regard, in phase II clinical trial in patients with cervical
cancer and resistant to treatment, it was observed that
following the combination therapy of pembrolizumab as an
anti-PD-L1 drug along with vitamin D (as a concomitant
drug) and curcumin (drug complement), the anti-tumor
immune response is strengthened (trial number:
NCT03192059) [171,213].

Conclusion

The development of the tumor microenvironment enhances
dendritic cell signaling and type 1 interferon release. In
addition, chemokines cause T CD8+ cells to infiltrate and
exert authority in the TEM, followed by the production of
PD-L1, IDO, Treg cell infiltration, and anergy, all of which

suppress T CD8+ cells [214], and correlate to a decrease in
immunosuppressive pathways [215]. Also, the native
immune phenotype is inhibited by the reduced expression
of inflammatory T-cell genes in tumor cells compared to
normal tissue [216]. A recent study published in the cancer
genome atlas (TCGA) database found a negative correlation
between the expression of inflammatory genes in T-cells and
tumor cells, with one of the potential mechanisms being
stimulation of the Wnt/β-catenin pathway [216]. Moreover,
invasive features such as lymph node metastasis or
angiogenesis are associated with the up-expression of PD-1,
PD-L1, and CD8; their identification could be a diagnostic
marker in cervical cancer tissues [217]. As mentioned, the
PD-1/PD-L1 pathway leads to the dysfunction of cytotoxic
T CD8+ cells, which is a barrier to cancer treatment, and
this pathway leads to the escape of tumor cells from the
immune system [157]. Ultimately, given the role of the
mechanisms and pathways of Wnt/β-catenin and PD-1/PD-
L1 in carcinogenesis and tumor formation, both of these
pathways, by affecting the c-MYC gene and consequently
deactivating the functions of the T CD8+ cell, lead to tumor
cells escaping from the immune system and ultimately
resistant viral infection. This information can also provide a
new strategy for diagnosis and the development of effective
treatments.
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