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The human sinoatrial node (SAN) is an elongated 3D fibrotic structure located intramurally 

along crista terminalis (CT)1. During sinus rhythm, electrical activation originates from 

the intramural SAN pacemakers and conducts through the sinoatrial conduction pathways, 

which may lead to widely distributed epicardial (Epi) and endocardial (Endo) early 

activation exit sites along CT2. Surgical and ablation treatments for SAN and atrial 

arrhythmias may either target or preserve the SAN1. However, in the clinical setting, 

defining the intramural SAN pacemaker (Figure A) is challenging since electrode mapping 

defines only Epi and/or Endo surface conduction exits from the SAN3, 4. We hypothesize 

that human SAN pacemakers have distinct structural signatures that are different from Epi 

and Endo exit sites.
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To resolve the transmural structural signatures of human SAN-pacemaker-conduction 

complex, we developed a computational 3D imaging approach based on integrated high-

resolution dual-sided near-infrared optical mapping (NIOM, 330–450μm2) and contrast-

enhanced magnetic resonance imaging (CE-MRI, 80–100μm3). The Institutional review 

board defined the study on samples from deceased donors as Not Human Subjects Research. 

The data and methods are available from the corresponding author upon request.

Simultaneous sub-Epi/sub-Endo NIOM was conducted on coronary-perfused SAN-atria 

preparations isolated from cardioplegically-arrested non-failing donor hearts without 

arrhythmia history (n=4, 47±16y.o.). SAN pacemakers were identified by slow upstroke 

of optical action potentials preceding fast atrial upstrokes (Figure C). SAN pathways were 

identified as the preferential conduction path between the SAN and the earliest exit sites2. 

Physiological challenges2 with adenosine (10μM) and/or 2Hz-3.3Hz atrial pacing were used 

to unmask additional Epi-Endo exits along with baseline exits for following structural 

analysis2, 5. Figure A shows the CE-MRI section across intramural SAN pacemaker with 

measurements of mapped SAN structures. Based on these measurements, we segmented 

3D CE-MRI of the mapped SAN-atrial regions into 24×24 grids (~1.3–1.5mm2, X-Y) 

and sub-Epi, intramural, and sub-Endo layers (25%, 50% and 25% of the wall thickness, 

respectively), for region-specific (SAN pacemakers vs exits) quantitative analysis of 3D 

myofiber orientation, fibrotic content, and wall thickness. Figure B shows 3D CE-MRI of 

SAN #1 superimposed with NIOM-defined SAN pacemakers and exits on wall thickness 

map.

All ex-vivo preparations had stable sinus rhythm (n=4, 74±12 bpm) at baseline with 

pacemakers in the SAN center. Figure C shows an example of slow conduction from the 

intramural SAN pacemaker through the lateral conduction pathway to earliest Epi exit 

followed by two Endo exits. Myofibers across the SAN (Figure D, Z-Y Section 1) were 

predominantly oriented parallel to Epi-Endo surfaces. In contrast, CT (Z-Y Section 2) 

had myofibers with transmural orientations (perpendicular to Epi-Endo surface) that might 

facilitate conduction emerging at Epi and Endo exit sites. Furthermore, intramural myofibers 

(Figure E, X-Y plane) of the conduction pathway had preferential orientation from the SAN 

pacemaker towards the earliest Epi exit, where they merged with CT myofibers. From Epi 

and Endo exit sites, preferential myofiber orientations supported faster conduction along CT 

through Endo vs Epi layers, leading to Epi-Endo activation delay variations from +11ms to 

−8ms along CT.

In total 20 recordings (~5/heart), SAN conduction exited primarily through lateral superior-

inferior conduction pathways, which led to majority of Epi or Endo earliest exits (85%) 

were distributed on the CT. NIOM detected unicentric earliest exits on the Epi (n=7) or 

Endo (n=13) with subsequent (after 4.6±3.1ms) unicentric (n=8) or multicentric (n=12) 

secondary exits on the other atrial surface. Epi-Endo activation delay measured at the earliest 

exit sites varied along the superior (16.8±9.8ms, n=4), middle (8.3±2.5ms, n=8), inferior 

CT (9.4 ±3.7ms, n=5) and septal regions (9.3±5.7ms, n=3). Quantitative analysis of 3D 

structural features showed that (1) local transmural myofiber angles were larger within 

SAN pacemaker regions than exit sites (37.6±11.9° vs 22.4±14.4°, p=0.001, Figure F); (2) 

intramural and sub-Endo fibrotic contents were significantly higher within SAN pacemakers 
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than exits (45.7±10.9% vs 27.7±16.3%, p<0.001, and 40.7±14.8% vs 28.0±16.0%, p=0.009, 

Figure G); (3) wall thickness was significantly less across the SAN pacemakers than 

exits(3.7±1.1mm vs 5.2±2.mm, p=0.02, Figure B, right). Two tailed Mann-Whitney test 

were used.

In summary, we report the new quantitative 3D imaging approach that revealed the SAN 

leading pacemaker sites have significantly different structural features compared to Epi and 

Endo exits. Fibrotic insulation and transversal uncoupling of intramural SAN myofibers 

from Epi and Endo layers, together with preferential myofiber orientation from intramural 

SAN toward CT, provide mechanistic rational for the distant (4–23 mm from SAN) Epi and 

Endo exits primarily along thick CT but not directly on the SAN Epi or Endo surface 

projections. The early atrial exit sites can be distinguished from SAN pacemakers by 

region-specific transmural myofiber orientation, intramural and sub-Endo fibrotic content, 

and wall thickness. Further studies are warranted to confirm our findings in larger cohorts, 

including hearts with structural fibrotic remodeling and arrhythmia history. The developed 

3D approach can help during clinical electrode mapping to guide patient-specific targeted 

ablation of the SAN and atrial arrhythmias.
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Epi epicardial

Endo endocardial

NIOM near-infrared optical mappi
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Figure. 
Three-dimensional functional-structural architecture of human sinoatrial node and Epi-

Endocardial atrial ehxit sites. A. SAN pacemaker tissue width, thickness and intramurality 

(distance to Epi and Endo) measurements (n=136 measurements from 4 hearts) shown 

on representative CE-MRI 2D section (resolution 100μm3, Siemens HealthCare, SAN #1). 

Atrial wall was segmented into Sub-Epi (blue), intramural (green) and Sub-Endo (red) layers 

for quantitative structural analysis. B, Left, 3D CE-MRI of SAN #1 (66 y.o. male) with 

superimposed SAN pacemakers and exits (summary of SAN exit patterns during baseline, 
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adenosine and post atrial pacing). Larger stars filled with grey color indicate early exit 

sites. Wall thickness showed in color scale. Right, comparison of wall thickness at SAN 

pacemakers vs atrial exit sites (n= pacemaker or exit sites for analysis, N=3 hearts). C, 

Left, optical action potentials from SAN #1 pacemaker and Sub-Epi vs Sub-Endo atria of 

earliest atrial exit site. Middle, NIOM activation maps of intramural SAN and simultaneous 

sub-Epi and sub-Endo atria (with near-infrared dye di-4-ANBDQBS; and CMOS camera, 

MiCAM Ultima-L, SciMedia) revealed intramural SAN activation conduction from the 

leading pacemaker through lateral middle preferential conduction pathway to an unicentric 

earliest exit on Epi (blue star) and multicentric exits (two red stars) on Endo during baseline 

sinus rhythm. Right, 3D Epi-Endo transmural activation delay map showed Epi delay in 

blue color and Endo delay in red color. The Epi-Endo delay at the earliest exit site (blue 

star) was 10ms. D, Transmural myofiber orientations (SAN #1, Z-Y plane) on sections 

across the SAN pacemaker (section 1) and CT early exit site (section 2). Z axis- transmural 

direction, perpendicular to Endo. Y axis- longitudinal superior-inferior direction, along CT. 

Blue color indicates myofiber perpendicular to Endo (Z direction). Red color indicates 

myofiber parallel to Endo (Y directions). E, Multilayer myofiber orientation (X-Y plane) 

at intramural SAN pacemaker layer, and atrial Sub-Epi and Sub-Endo exits layers. X axis 

-transversal lateral direction, perpendicular to CT; Y axis- longitudinal superior-inferior 

direction, alone CT. Blue and red color indicate myofiber perpendicular (X direction) or 

parallel to CT (Y-direction). The pink dot indicates SAN pacemaker. Stars indicate Epi 

and Endo exits. Line 1 &2 indicate locations of transmural sections. F, Myofiber angle 

on Z-Y sections. Smaller myofiber angle indicates transmural myofiber perpendicular to 

Epi-Endo surface (n= pacemaker or exit sites for analysis, N=3 hearts). G, Left, Grid plot 

of CE-MRI multilayer fibrosis content of SAN-CT region (SAN #1); Right, comparison 

of fibrosis content at SAN pacemaker location vs atrial exit sites (n= pacemaker or exit 

sites for analysis, N=3 hearts). All Data are presented as means ± SD. Statistical analyses 

were performed in GraphPad Prism 8.0. Normality was tested using Kolmogorov-Smirnov 

test. Comparisons of SAN vs exits structural features were done using 2-tailed Mann 

Whitney test, and p-values <0.05 were considered significant. Abbreviations: CE-MRI, 

contrast-enhanced magnetic resonance imaging; CT, crista terminalis; Epi-Endo, epicardial-

endocardial; Inf/Sup, inferior/superior; IVC/SVC, inferior/superior vena cava; NIOM, near-

infrared optical mapping; RAA, right atrial appendage; SACT, sinoatrial conduction time; 

SAN, sinoatrial node.
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