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Evaluation of cell segmentation methods without 
reference segmentations

ABSTRACT Cell segmentation is a cornerstone of many bioimage informatics studies, and 
inaccurate segmentation introduces error in downstream analysis. Evaluating segmentation 
results is thus a necessary step for developing segmentation methods as well as for choosing 
the most appropriate method for a particular type of sample. The evaluation process has 
typically involved comparison of segmentations with those generated by humans, which can 
be expensive and subject to unknown bias. We present here an approach to evaluating cell 
segmentation methods without relying upon comparison to results from humans. For this, we 
defined a number of segmentation quality metrics that can be applied to multichannel fluo-
rescence images. We calculated these metrics for 14 previously described segmentation 
methods applied to datasets from four multiplexed microscope modalities covering five tis-
sues. Using principal component analysis to combine the metrics, we defined an overall cell 
segmentation quality score and ranked the segmentation methods. We found that two deep 
learning–based methods performed the best overall, but that results for all methods could be 
significantly improved by postprocessing to ensure proper matching of cell and nuclear 
masks. Our evaluation tool is available as open source and all code and data are available in 
a Reproducible Research Archive.

INTRODUCTION
Cell segmentation is the task of defining cell boundaries in images. 
It is a fundamental step for many image-based cellular studies, in-
cluding analysis and modeling of subcellular patterns (Boland and 
Murphy, 2001), analysis of changes upon various perturbations 
(Carpenter et al., 2006), cell tracking for investigating cell migration 
and proliferation (Garay et al., 2013), and cell morphology analysis 
for discovering cell physiological states (Rittscher, 2010). Inaccurate 
cell segmentation introduces potential systematic error in all these 
downstream analyses. Because different methods may perform dif-
ferently for different imaging modalities or tissues, it is important to 
evaluate potential cell segmentation methods to choose the most 
suitable for a specific application.

Existing segmentation methods can be divided into two catego-
ries, geometry-based segmentation techniques (i.e., traditional 
computer vision techniques) and deep learning–based approaches. 
The former include but are not limited to threshold-based segmen-
tation (Shen et al., 2018), region-based segmentation (Panagiotakis 
and Argyros, 2018), the watershed algorithm and its variants (Ji 
et al., 2015), active contours (Wu et al., 2015), Chan–Vese segmen-
tation (Fan et al., 2013; Braiki et al., 2020), and graph-cut based seg-
mentation (Oyebode and Tapamo, 2016). In the deep learning cat-
egory, conventional deep convolutional neural networks (CNNs) 
were initially applied to various cell segmentation tasks (Jung et al., 
2019; Sadanandan et al., 2017). CNN models learn the feature map-
ping of an image and convert the feature map into a vector for pixel-
wise classification (i.e. segmentation). Since its publication, the U-
Net model and its variants have become a widely used alternative 
(Ronneberger et al., 2015; Al-Kofahi et al., 2018; Falk et al., 2019; 
Long, 2020). Instance-segmentation methods such as Mask R-CNN, 
in addition, are prominently utilized for cell and nucleus segmenta-
tion (Johnson, 2018; Lv et al., 2019; Fujita and Han, 2020). Ensem-
ble methods with multiple deep learning frameworks were also de-
veloped specifically for nuclei segmentation (Vuola et al., 2019; 
Kablan et al., 2020).

The typical approach to evaluating cell segmentation methods 
is to compare the segmentation results with human-created 
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segmentation masks. For example, early work (Bamford, 2003) 
evaluated geometry-based algorithms on 20,000 cellular images 
annotated by three independent nonexpert observers. The au-
thor argued that evaluating cell segmentation does not neces-
sarily require expert annotation. Caicedo et al. (2019) evaluated 
multiple deep learning strategies for cell/nuclei segmentation 
by calculating the accuracy and types of errors in contrast to the 
expert annotations. The authors created a prototype annotation 
tool to facilitate the annotation process. At the model develop-
ment level, deep learning–based segmentation methods design 
loss functions to evaluate the similarity between the current seg-
mentation mask and the human-created mask (Al-Kofahi et al., 
2018; Kromp et al., 2020), which makes the model mimic the 
logic of human segmentation. Unfortunately, comparison with 
human-created segmentations assumes that people are good 
at this task; however, human segmentation can suffer from ex-
tensive intra- and interobserver variability (Wiesmann et al., 
2017; Vicar et al., 2019). In addition, human segmentation can 
require extensive labor and cost. For example, the development 
of the latest DeepCell version (Greenwald et al., 2022) required 
a very large number of human evaluations (and would have re-
quired far more if an active machine learning approach had not 
been used).

An alternative approach is creating simulated cell images 
(Wiesmann et al., 2017) to assess segmentation performance. The 
simulated images, along with their segmentation results, are gener-
ated based on various information obtained from real fluorescent 
images including cell shape, cell texture, and cell arrangement. Be-
cause the image is simulated, the correct segmentation is known. 
Even though this method is efficient and reproducible, it reaches its 
limits while encountering images with high cell shape and texture 
variability.

For this study, we sought to define an objective evaluation ap-
proach that does not require a reference segmentation. We were 
motivated in large part by the desire to optimize the pipeline 
used for analysis of multichannel tissue images as part of the 
Human BioMolecular Atlas Program (HuBMAP; HuBMAPConsor-
tium, 2019). We first defined a series of metrics based upon as-
sumptions about the desired characteristics of good cell segmen-
tation methods. We then identified currently available cell 
segmentation methods that had pretrained models and evalu-
ated their performance on many images from multichannel imag-
ing modalities. A principal component analysis (PCA) model was 
then trained using the metrics computed from the segmentation 
results of 14 methods on 637 multichannel tissue images across 
four imaging modalities and used to generate overall 
segmentation quality scores (Figure 1). We also evaluated the 
robustness of each method to various image degradations, such 
as adding noise. We found that as distributed, the Cellpose 
model (Stringer et al., 2021) gave the best results, but that after 
postprocessing to ensure proper matching of cell and nuclear 
masks, two different DeepCell models (Bannon et al., 2021) per-
formed the best. We also found that our evaluation metrics are 
sensitive to undersegmentation error, which is very common in 
practice. Last, we found that our quality scores, which are ob-
tained without the help of any human reference, not only capture 
the interobserver variance between two human experts, but also 
have a high correlation with three cell segmentation benchmarks 
using expert annotations.

To enable use by other investigators, we provide open source 
software that is able to evaluate the performance of any cell seg-
mentation method on multichannel image inputs.

RESULTS
Generating masks and calculating metrics
We began by running all methods on images from four imaging 
modalities: CODEX, Cell DIVE, MIBI, and IMC (see Methods and 
Supplemental Table 1). There were 637 multichannel images in to-
tal. Each method generated whole-cell masks, and some methods 
also generated nuclear masks. For those methods that did not gen-
erate a nuclear mask, we provided a simple mask based on Otsu 
thresholding of the nuclear channel. For each method, an additional 
pair of masks was created with our “repair” procedure to eliminate 
unmatched nuclear and cell masks and remove nuclear regions out-
side the corresponding cell mask (see Mask Processing in Methods). 
This was done because unmatched cells and nuclei would be penal-
ized by our evaluation metrics; the combination of the original 
method and the repair procedure was treated as a separate method 
to allow evaluation of each method either as originally provided or 
as most suitable for cell quantitation.

We then ran the evaluation pipeline to calculate the evaluation 
metrics (see Table 2 and the Supplemental Methods) for each 
method for each image. This process yielded two matrices of 637 
images × 14 methods × 14 metrics, one for the original methods 
and one for the methods with repair.

To examine how the individual metrics varied across methods, 
we performed z-score standardization on each metric and averaged 
the metrics over all images for each method (Figure 2). We ob-
served that the 14 methods have heterogeneous performance on 
the different metrics with both nonrepair and repair approaches. 
Methods after repair tend to have a significant increase in the aver-
age metric values (Figure 2A vs. Figure 2B), and the improvement 
of the FMCN metric directly reflects significantly better cell-nuclei 
matching after repair. We noticed that methods before repair have 
slightly higher cell uniformity (reflected by higher 1/[ACVC+1], 
FPCC, and AS metrics) due to a smaller number of cells with match-
ing cell and nuclear masks. In both nonrepair and repair figures, the 
patterns of curves for all methods except the Voronoi are similar, 
with curves of deep learning–based methods similar to each other. 
We also noticed that different methods sometimes trade off a de-
crease in one or more metrics for an increase in others. For instance, 
DeepCell 0.6.0 and DeepCell 0.9.0 have opposite behavior on the 
NC and FFC metrics in Figure 2B. This comes from the fact that 
despite similar deep learning algorithms being applied, DeepCell 
0.6.0 tends to segment fewer but larger cells than DeepCell 0.9.0. 
Our metrics accurately reflect this phenomenon (relatively lower 
NC but higher FFC). Our metrics also capture the improvement of 
DeepCell 0.12.3, which has a much larger training dataset than two 
previous versions, with both relatively high NC and FFC. We also 
observed that different metrics show different ranges of variance for 
the 14 methods. For instance, there is large variation among 
methods with respect to the NC metric (number of cells per 100 
squared micrometers) and the FFC metric (fraction of image fore-
ground occupied by cells) but less variation in 1/(ACVC_NUC+1) 
values (average of weighted average CV of cell type intensities over 
1–10 clusters on nuclei).

Evaluating sensitivity of methods to added noise or 
downsampling
To test the robustness of the methods, we created perturbed im-
ages with various amounts of added zero-mean Gaussian noise or 
various extents of downsampling (see Methods) and evaluated 
the quality of the resulting segmentations. The Gaussian pertur-
bations were done only to the images provided to the segmenta-
tion method, and not to the multichannel images used to calculate 
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the metrics. The downsampling was also done on the multichannel 
images, matching the same size as segmentation masks to calcu-
late the metrics. This allowed us to assess method robustness: 
how sensitive the results for a given segmentation method were 
to the quality of the image. It also provided a parallel check of 
how well our metrics were performing based on the assumption 
that a perturbed image should yield a worse segmentation.

Segmentation quality score
One of our primary goals was to provide an overall segmentation 
quality score for each method on each image. To do this we cre-
ated a principal component analysis (PCA) model using the metrics 
for all methods for all images with and without perturbation. The 
metrics were z-scored before PCA. The top two principal compo-
nents (PCs) for each method across all modalities and images are 
shown in Figure 3 (and Supplemental Figure 3) with and without 
various amounts of perturbation. Because the number of datasets 
available for each modality varied, we averaged the top 2 PCs 
across all images within each modality and then averaged across 

FIGURE 1: Our pipeline for cell segmentation evaluation. (A) Input channels for cell membrane 
(red), cytoplasm (green), and nucleus (blue) are available for each segmentation method, but 
methods only used one or two channels. (B) Methods generate segmentation masks: cell mask, 
cell outside nucleus mask, and nuclear mask (shown in the top three panels, respectively). For 
segmentation methods that do not output the nuclear mask, we used an Otsu-thresholded 
nuclear mask (bottom panel) as a substitute. We removed the pixels in the nuclear mask that 
were outside the cell membrane in the cell mask, as well as the cells and nuclei that did not have 
the corresponding nuclei and cells. (C) For each set of segmentation masks, we calculated 14 
metrics to evaluate the quality of segmentation objectively under various assumptions. We then 
applied principal component analysis to the matrix of all metrics for all methods and all images. 
(D) The scatterplot shows a point for each segmentation for each image. Different colors 
represent different segmentation methods. Finally, a variance-weighted sum of PC1 and PC2 
was used to generate an overall quality score for each combination of method and image.

the modalities to balance the contributions 
from all modalities to the final model. With 
random Gaussian perturbation (Figure 3A 
and Supplemental Figure 3A), we observed 
that PC1 values for all methods tend to 
decrease as perturbation increases, con-
firming that the metrics perform as antici-
pated. We also observed that most of 
methods show decreased PC1 with 
increased downsampling (Figure 3B and 
Supplemental Figure 3B), with some excep-
tions. The exceptions occur because the 
downsampling process also removed noise 
in the images, causing some methods to 
get a slightly better PC1 score after downs-
ampling. Thus, PC1 alone is not sufficient 
as an overall quality score.

The loadings of PC1 (Supplementary 
Figure 4A) are all positive, showing that all 
metrics have a synergistic effect on PC1 val-
ues. On the other hand, PC2 loadings (Sup-
plemental Figure 4B) show that it is primarily 
an indicator of the overall coverage of a 
mask with high NC and FFC loadings. We 
therefore adopted the sum of PC1 and PC2 
weighted by their explained variance as our 
final overall quality score. Rankings based 
on the quality score for all methods (with 
and without repair) averaged across all mo-
dalities and (unperturbed) images are shown 
in Figure 4, with Voronoi segmentation as a 
reference baseline. As expected, repair gen-
erally improves the overall metric for most 
methods. We observed that DeepCell 
methods have the highest overall perfor-
mance with repair, and that they are also 
robust to both random Gaussian noise and 
downsampling (Figure 3). Cellpose methods 
perform the best among methods without 
repair. CellProfiler scores the best among 
methods with non–deep learning algo-
rithms. Methods that are primarily used for 
cultured cell segmentation rather than tis-

sue segmentation (e.g., CellX, AICS classic) tend to perform worse 
than the Voronoi baseline.

Model selection for particular tissue and data modality
One of the major potential uses of our evaluation pipeline is to se-
lect the most appropriate method for a specific imaging modality or 
tissue. Images from different modalities have a large variation in 
signal-to-noise and spatial resolution that may influence the perfor-
mance of segmentation methods. We therefore separately evalu-
ated images from different modalities (Supplemental Figures 5–8). 
While it performed the best across different modalities, the version 
of DeepCell that was optimal varied. Perhaps because they had the 
lowest resolution among the four modalities (1 micrometer pixel 
size), the relative ranking of the methods was quite different for IMC 
images than for other modalities. We also observed that CellProfiler 
ranked in the middle of DeepCell methods for CellDIVE and IMC 
modalities.

Segmentation method performance may also be expected to 
vary for different tissues due to potential differences in the shapes 
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and spatial arrangement of cells. We therefore separately analyzed 
performance on five tissues: small intestine, large intestine, spleen, 
thymus, and lymph node (images for the first two tissues are solely 
from CODEX, and the latter three are available for both CODEX and 
IMC; Supplemental Figures 9-13). We observed that while DeepCell 

FIGURE 2: Heterogeneity of methods performance. Each metric was z-scored. For each 
segmentation method, each metric was averaged across all images. Panel (A) shows results from 
methods evaluated without mask repair (see text). Panel (B) shows the results from methods 
after the repair.

FIGURE 3: Top two principal components of each method on images from all modalities. 
(A) Results from images with Gaussian noise perturbation. (B) Result from images with 
downsampling. Each method is represented by a unique color. The points with a unique marker 
shape represent unperturbed images. The trajectories represent low, medium, and high 
Gaussian noise perturbation, A, or small, medium, and large degree of downsampling, B. Only 
the results from the latest DeepCell and Cellpose are shown, for better visualization. 
Supplemental Figure 3 shows results from the earlier versions.

models still performed the best among all 
methods (with the latest version being opti-
mal), the rankings and overall quality scores 
of methods on different tissues vary. Inter-
estingly, strong similar performance was ob-
served for both DeepCell and Cellpose on 
large intestine.

Evaluating expert annotated 
segmentation
Because previous cell segmentation studies 
have focused on comparison with human 
experts, we used two lymph node CODEX 
multichannel images (tiles R001_X003_Y004 
and R001_X004_Y003 in dataset HBM279.
TQRS.775) and accompanying cell segmen-
tation masks annotated by two experts 
(Dayao et al., 2022) to compare perfor-
mance of various segmentation methods. 
We processed those images using all seg-
mentation methods listed in Table 1 and 
evaluated the segmentation outputs along 
with expert-annotated masks. Because the 
expert annotations did not include nuclear 
masks, we slightly modified our evaluation 
metrics to calculate the cell uniformity met-
rics (i.e., 1/[ACVC +1], FPCC, and AS, in 
Table 2) only on the cell masks and removed 

the FMCN metric. Accordingly, we retrained the PCA model (using 
all datasets) with the reduced number of metrics (10 instead of 14) 
for use only in this comparison with expert annotations.

The quality score ranking and top 2 PCs plot in Figure 5A reflect 
relatively high-accuracy expert annotation and also reveal the in-

terobserver variability we describe in the In-
troduction. While Expert1 is among the best 
in the ranking, Expert2 has an overall score 
below the baseline. This emphasizes that 
while the cell segmentation annotated by 
experts may be helpful in many ways, it 
should be used with caution for the cell seg-
mentation task.

We next sought to provide confidence 
that our quality scores obtained without a 
human expert would produce reliable results 
comparable to those for measures requiring 
human expert segmentation. To do this, we 
directly compared our quality scores with 
three benchmarks of cell segmentation 
quality (see Methods). These benchmarks 
were designed to be symmetric, meaning 
that the results are the same when either hu-
man annotation or computer segmentation 
is treated as the reference. The benchmarks 
were calculated for each method compared 
with each expert annotation in each image 
(Figure 6). We observed average Pearson 
correlation coefficients across the two im-
ages of 0.83, 0.81, and 0.72 between our 
quality score and the F1, Avg F1, and SEG’ 
scores, respectively. Thus our quality scores 
are highly predictive of the benchmark 
scores that would have been obtained by 
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comparison to expert annotations. Specifically, the deep learning–
based methods in the upper right corner of three benchmarks show 
higher similarity to both expert annotations in either image. The 
non–deep learning based methods, however, show lower agree-
ment between quality score and either benchmark. This is because, 
while these benchmarks mainly measure the similarity between an-
notation and segmentation from a single perspective (i.e., overlap-
ping), our quality score measures bad segmentation performance in 
various ways (e.g., missing cells, cells too small, unmatched cell, and 
nuclear masks). We also observed F1 scores around 0.7, Avg F1 
scores around 0.37, and SEG’ scores around 0.35 when the two ex-
pert annotations were compared, which are all lower than most deep 

learning–based methods compared with ei-
ther expert annotation. This interobserver 
variance in terms of segmentation quality 
again echoes the conclusion from Figure 5 
and supports the value of our quality scores 
as a measure of cell segmentation accuracy.

Evaluating undersegmentation error
As shown in Figure 3, our quality scores ap-
propriately reflect the degradation of cell 
segmentation quality that occurs after an 
input image is perturbed. As a final test of 
the sensitivity of our quality scores, we di-
rectly degraded cell segmentations by two 
approaches. The first was to simulate un-
dersegmentation, in which adjacent or 
overlapping objects that should be distinct 
are merged. This often occurs in cell and 
nucleus segmentation, especially in dense 
tissues (Kromp et al., 2021). We simulated 
an undersegmentation scenario by merg-
ing cells in contact with each other. For this 
test, we started from masks generated by 
DeepCell 0.12.3, which is the best per-

former among all methods, on tiles from each of the CODEX data-
sets across all five tissue types, taking DAPI and E-cadherin as nu-
clear and cell membrane inputs (we selected one tile with enough 
cells to merge for each dataset). We sequentially merged pairs of 
contacting cells until the number of cells reached a target percent-
age (either 90% or 60%) of the original cell number (note that cells 
that were merged were not allowed to merge again with other 
cells, to better reflect typical undersegmentation performance, 
and that merging to 90% of the original cell number indicates that 
20% of cells in the original mask have been merged). For each pair 
of nuclei belonging to the merged cells, we applied morphologi-
cal opening on the inverted mask to connect the gap between the 

FIGURE 4: Overall quality score rankings of all modalities. All methods with and without repair 
are ranked by their quality scores. The methods that have a higher score than Voronoi are 
considered acceptable.

Method Inputs Output

Cytoplasm Cell membrane Nucleus Requires parametersa Nuclear mask

DeepCell 0.12.3 X X Yes Yes

DeepCell 0.12.3 X X Yes Yes

DeepCell 0.9.0 X X No Yes

DeepCell 0.9.0 X X No Yes

DeepCell 0.6.0 X X No Yes

DeepCell 0.6.0 X X No Yes

Cellpose 2.1.0 X X No Yes

Cellpose 0.6.1 X X No Yes

Cellpose 0.0.3.1 X X No Yes

CellSegm X X Yes No

CellX X Yes No

CellProfiler X X Yes Yes

AICS (classic) X X Yes No

Voronoi X No Yes
aThe required parameters define the range of acceptable cell sizes.

TABLE 1: Segmentation methods evaluated.
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nuclei to also simulate undersegmented nuclei (see Supplemental 
Figure 14).

As a second approach to degrading segmentation masks, we 
shifted the masks produced by DeepCell 0.12.3 relative to the origi-
nal image. We shifted them by 0.1%, 1%, and 50% of the average of 
the two dimensions of the image (for a 1000 × 1000–pixel image, 
shifting 0.1% is 1 pixel right and 1 pixel down). Presumably, results 
for 0.1% shift should be lower than but similar to the original perfor-
mance, while the scores of the ones shifted 50% should be among 
the lowest.

We then ran our evaluation pipeline using DeepCell 0.12.3 on 
these degraded masks and compared the results with quality scores 
of all methods on the original images. The results in Figure 7 show 
that the quality scores reflect the degree of degradation produced. 
The breakdown of metrics in Supplemental Figure 15 illustrates that 
our evaluation method is sensitive to undersegmentation, but the 
degree of sensitivity expected depends upon the extent of variation 

FIGURE 5: Quality score ranking and top 2 PCs of two expert-annotated segmentations 
comparing with results from all segmentation methods in Table 1. The accuracy of annotations 
from the Expert1 was reflected by our PCA model showing both high PC1 (good overall quality) 
and high PC2 (good tissue coverage) to the upper right corner among the group of deep 
learning–based models. The discrepancy between two experts was also captured, showing 
interobserver variability in the cell segmentation task.

Name Metric Mask(s) to calculate the metrics on

Number of cells per 100 squared micrometers NC Matched cell mask

Fraction of image foreground occupied by cells FFC Matched cell mask

Fraction of image background occupied by cells 1-FBC Matched cell mask

Fraction of cell mask in foreground FCF Matched cell mask

Fraction of match between cells and nuclei FMCN Cell and nuclear masks prior to mask processing

Average CV of foreground pixels outside the cells 1/(ACVF+1) Matched cell mask

Fraction of first PC of foreground pixels outside the cells FPCF Matched cell mask

Average of weighted average CV of cell type intensities over 
1–10 clusters

1/(ACVC+1) Matched nuclear mask (NUC) and cell excluding 
nucleus mask (CEN)

Average of weighted average fraction of the first PC of cell type 
intensities over 1–10 clusters

FPCC Matched nuclear mask (NUC) and cell excluding 
nucleus mask (CEN)

Average of Silhouette score of clustering over 2–10 clusters AS Matched nuclear mask (NUC) and cell excluding 
nucleus mask (CEN)

Standard deviation of cell size 1/(ln(CSSD)+1) Matched cell mask

TABLE 2: Summary of segmentation metrics.

in channel intensities among different cells (see Discussion). Nota-
bly, our evaluation method captured the degradation from merely 
shifting 0.1% with a slightly lower quality score than the original.

Evaluating similarity between results for different 
segmentation methods
Besides scoring each segmentation method separately, we also di-
rectly compared the segmentations produced by each pair of 
methods. We used two approaches: calculating a normalized dis-
tance between the single-method metric vectors of two methods, 
and calculating a set of metrics from direct comparison of the seg-
mentation masks from two methods (see Supplemental Methods). 
In each approach, we concatenated the metric matrices across all 
images from multiple data modalities for all pairs of methods and 
applied PCA to obtain PC1 values as a difference score. These 
scores were normalized by subtracting the PC1 value of a method 
compared with itself (i.e., the lowest possible difference metric 

value). Figure 8 shows heat maps of the dif-
ference between the methods for the two 
sets of metrics. Higher values indicate more 
difference (lower similarity) between pairs of 
methods. Using the single-method metrics 
(Figure 8A), all the deep learning–based 
models (DeepCell and Cellpose) are rela-
tively close to each other, consistent with 
the results shown above. The results for 
DeepCell with the membrane and cyto-
plasm markers are also close. However, pair-
wise comparisons (Figure 8B) of the masks 
show larger differences in the results for 
DeepCell and Cellpose (including between 
the three versions of DeepCell) and some-
what larger differences between the results 
for membrane and cytoplasm markers.

DISCUSSION
Many cell segmentation methods have been 
described, but approaches to evaluating 
them have been limited. We have described 
here our design of a set of reference-free 
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metrics to comprehensively measure the performance of segmenta-
tion methods. The metrics were developed based on a series of as-
sumptions about the desirable characteristics of cell segmentation, 
especially for multichannel images. We also trained a PCA model 
using these metrics to compare all pretrained segmentation models 
that we were able to identify. The results demonstrate the power of 
deep learning–based methods, with DeepCell and Cellpose per-
forming the best. We also show that our metrics reflect the poorer 
performance expected for various image degradations, such as re-
ducing pixel resolution, adding noise, and artificially increasing un-
dersegmentation. Our evaluation approach also can be used to 
measure differences in the quality of different expert annotations. 
Our segmentation quality score highly correlates with three quality 
benchmarks that use expert annotations. Our open source tool has 
been incorporated into the image analysis pipeline for the HuBMAP 
project (HuBMAPConsortium, 2019).

The metrics are applicable across a range of image resolutions; 
the pixel size in the images we have used for evaluation range from 
0.325 to 1 µm. Of course, the metrics (and the cell segmentation 
methods themselves) require an image resolution sufficient to ade-
quately resolve single cells.

An important consideration to note is that our metrics are based 
in large part on the assumption that tissue images used for evalua-
tion contain different cell types that vary in their expression of differ-
ent markers. If a tissue image is largely uniform, then our measures 
of segmented cell homogeneity will yield similar results regardless 
of the accuracy of cell segmentation masks. The greater the number 
of channels measured and the larger the differences between cell 

FIGURE 6: Comparing quality score with three benchmarks: F1 score (A), Avg F1 score (B) and 
SEG’ score (C). Each marker represents a segmentation or an expert annotation. Each color 
represents the benchmark that was calculated with the marker’s segmentation/annotation 
against an expert annotation in a CODEX image (tile). Pearson correlations between our quality 
score and three benchmarks are 0.83, 0.81, and 0.72, respectively.

types, the more discriminating our metrics 
will be. The metrics also do not make any 
assumptions about allowable cell shapes. 
Measuring cell shape is an inherent problem 
for 2D tissue images where 3D cells are only 
seen in a thin layer in the z-axis. Cells be-
longing to the same cell type might be cap-
tured at different angles or heights and 
therefore display different shapes. Although 
our metrics of homogeneity at the cell level 
solve this issue indirectly (since cells from 
the same cell type but at different views 
should have similar channel compositions), 
segmentation methods that produce cells 
and nuclei with unexpected shapes are not 
directly penalized. Therefore, we plan in fu-
ture work to incorporate metrics using 
spherical harmonic transform-based shape 
descriptors that have been shown to pro-
vide the best representation of cell and nu-
clear shapes (Ruan and Murphy, 2019).

We also note that while this study was 
inspired by the multichannel tissue images 
of the HuBMAP project, our metrics are 
also applicable to evaluate segmentation 
methods on cultured cells. However, as with 
tissue images, the sensitivity of the metrics 
depends on the number of channels and the 
diversity among individual cells.

To make our approach widely available, 
we provide an open source pipeline for cal-
culating the segmentation metrics for a 
given set of images and a given segmenta-
tion method. Our evaluation pipeline pro-

vides a platform for users to choose segmentation methods for an 
individual image, tissue, and/or imaging modalities. While prior al-
gorithmic approaches may have claimed the highest accuracy 
against different manually annotated training datasets, our method 
directly benchmarks them under the same set of measures.

The use of three-dimensional multichannel tissue imaging is 
gradually growing. Some of the segmentation methods we have 
evaluated are capable of both 2D and 3D segmentation (see 
Methods), whereas algorithms such as the deep learning version of 
the Allen cell structure segmenter (Chen et al., 2020) and nnUNet 
(Isensee et al., 2021) only focus on segmenting 3D cell images. We 
are in the process of extending our evaluation work to 3D 
segmentation.

We note that in the future our quality scores could be included in 
the loss functions for training cell segmentation models in order to 
further improve model performance. They also provide a useful 
measure of image quality, since, within a given tissue and modality, 
better-quality images can be expected to provide better segmenta-
tion results. This could potentially allow tissue images to be screened 
before acceptance by large projects such as HuBMAP.

METHODS
Images
We obtained image data from the HuBMAP project for four multi-
plexed modalities. For each modality, the nuclear, cytoplasmic, and 
cell membrane channels chosen for segmentation (Supplemental 
Table 1) were either those recommended by the Tissue Mapping 
Center (TMC) that produced the datasets, or selected based on 
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peer-reviewed literature and subcellular localization of antibody tar-
geted protein annotated by UniProt or Gene Ontology. Details 
about input markers are summarized in Supplemental Table 2.

CODEX
CO-Detection by indEXing (CODEX) is an imaging technique gen-
erating highly multiplexed images of fluorescently tagged antigens 
(Goltsev et al., 2018). The HuBMAP portal (https://portal.hubmap-
consortium.org/) contains 26 CODEX datasets on five tissues (large 
intestine, small intestine, thymus, spleen, and lymph node) pro-
duced by two TMCs: Stanford University and the University of Flor-
ida. The datasets from the Stanford TMC all contain 47 channels. 
Each dataset consists of four tissue regions, which are individually 
split into a grid of tiles with size ∼1440 × 1920. The University of 

FIGURE 7: Quality score ranking of simulated masks with a range of undersegmentation error 
and shifting. Undersegmented masks (red) and shifted masks (green) were created from masks 
produced by DeepCell 0.12.3 using a cell membrane marker as described in the Methods.

FIGURE 8: Heat maps of difference scores between segmentation methods. A score of zero represents no difference 
(i.e., identical segmentations). Larger (lighter) values indicate greater differences between methods. (A) Heat map 
generated by the difference between metrics of two single methods. (B) Heat map generated by the pairwise metrics 
that directly compare two methods’ segmentations. The methods are ordered by clustering.

Florida TMC generated 11-channel CODEX 
datasets. Each dataset has only one region, 
which is divided into a grid in the same man-
ner. To ensure both tissue coverage and 
evaluation efficiency, we created evaluation 
datasets with a subset of the tiles chosen to 
be nonneighboring (to avoid evaluating 
cells in the overlap region twice) and tiles 
that were not on the edge of the grid (to 
prevent large fractions of the image consist-
ing of background on the edge of tissue). 
Three hundred ninety-three tiles were se-
lected in total. The pixel size of CODEX im-
ages is 0.37745 µm.

The different antigens used by the two 
TMCs required us to select different chan-
nels as segmentation input. For Stanford 
TMC datasets, we used the Hoechst, Cyto-
keratin, and CD45 channels as nuclear, cyto-
plasmic, and cell membrane channels, re-
spectively. For the University of Florida TMC 
datasets, we used DAPI, CD107a, and E-
cadherin. To ensure consistency of evalua-
tion results from CODEX data, only the five 
channels that are common between the da-

tasets of the two TMCs were used to calculate channel homogeneity 
metrics (see the Supplemental Methods).

Cell DIVE
Cell DIVE is another antibody-based multiplexing technique 
(Gerdes et al., 2013). We had access to 12 regions of Cell DIVE 
data. Each region contains 26 images with 19 channels. Cell DIVE 
datasets are much larger than those from CODEX, consisting of 
∼10,000 × ∼15,000 pixels. To boost the efficiency of the pipeline 
while ensuring the coverage of datasets, we took the first image of 
each region and split it into a grid of tiles similar to those of CODEX 
datasets. Each tile has roughly 1000 × 1000 pixels, which is effi-
ciently applicable to all segmentation methods. To exclude tiles 
with few cells, we calculated three metrics on each channel of each 
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tile and applied K-means clustering to identify a cluster consisting 
of images with dense cells (see Supplemental Figure 1). We se-
lected DAPI, cytokeratin, and P-cadherin as nuclear, cytoplasmic, 
and cell membrane inputs for segmentation. The pixel size of Cell 
DIVE images is 0.325 µm.

MIBI
MIBI (Multiplexed Ion Beam Imaging) uses a secondary-ion mass 
spectrometer (SIMS) to image antibodies tagged with monoisotopic 
metallic reporters (Angelo et al., 2014). We obtained ten 29-channel 
MIBI datasets. Each image consists of 1024 × 1024 pixels. HH3, Pan-
Keratin, and E-cadherin were utilized as the nuclear, cytoplasmic, 
and cell membrane channels for segmentation. The spot size (equiv-
alent to pixel size) of MIBI images is 0.391 µm.

IMC
As an expansion of mass cytometry, imaging mass cytometry (IMC) 
uses laser ablation to generate plumes of particles that are carried 
to the mass cytometer by a stream of inert gas (Chang et al., 2017). 
Thirteen out of a total of 2D 39-channel IMC datasets of spleen, 
thymus, and lymph node were available from the University of Flor-
ida TMC. In this modality, lr191, SMA, and HLA-ABC were chosen as 
input channels for segmentation. For images without lr191 channel, 
Histone channel was substituted as nuclear input. The pixel size of 
IMC images is 1 µm.

SEGMENTATION METHODS
We created a python wrapper for each method to adapt all methods 
to a common pipeline. The input channels required by each method 
are shown in Supplemental Table 1. All methods generate a seg-
mentation mask for cell boundaries in an indexed image format with 
some methods also generating nuclear boundaries.

DeepCell. DeepCell is designed for robustly segmenting mamma-
lian cells (Van Valen et al., 2016; Moen et al., 2019; Bannon et al., 
2021; Greenwald et al., 2022). A feature pyramid network (Lin et al., 
2017) with PanopticNets architecture trained by more than 1 million 
paired whole-cell and nuclear annotations is embedded in the latest 
deepcell-tf package on the Python TensorFlow platform. We tested 
three versions of DeepCell software with different trained deep 
learning models. For each model, a nuclear intensity channel is a 
mandatory input and we chose cytoplasm or cell membrane as the 
secondary input image to generate two different whole-cell seg-
mentation masks (these were treated as different methods). The lat-
est version of DeepCell (v0.12.3) requires specification of pixel size 
in micrometers.

Cellpose. Cellpose is a generalist, U-Net-based algorithm that seg-
ments cells in various image modalities (Stringer et al., 2021). The 
key idea of Cellpose is to track the gradient flow in the labels to 
predict cell boundaries. A PyTorch model “cyto” was trained with 
multiple datasets mainly with cytoplasmic and nuclear markers. We 
applied three versions of Cellpose with different pretrained models 
to segment whole cells on 2D cytoplasmic and nuclear intensity im-
ages. Unlike DeepCell, which uses the same model to generate 
whole-cell and nuclear masks, Cellpose contains a separate U-Net 
“nuclei” model for the segmentation of nuclear channels.

CellProfiler. CellProfiler 4.0 (Carpenter et al., 2006; Kamentsky 
et al., 2011) contains a module for cell segmentation that applies 
traditional thresholding and propagation algorithms to segment nu-
clei and then cells. Required parameters that define the range of 

acceptable nuclear sizes and cytoplasmic thickness were chosen for 
each imaging dataset. To facilitate batch computation and avoid 
CellProfiler’s eight-bit cell index limitation in saving output images, 
we modified the CellProfiler module to store the indexed segmen-
tation masks directly as NumPy arrays.

CellX. CellX is a MATLAB package that using traditional image pro-
cessing operations and requires only a membrane marker image as 
input (Mayer et al., 2013; Dimopoulos et al., 2014). Required param-
eters that define the range of acceptable cell radii and maximum 
cell length (since cells are not perfect circles) were chosen for each 
dataset. Because the algorithm does not generate a nuclear mask, 
we paired the cell mask with a default Otsu-thresholded nuclear 
mask (see below under Voronoi Segmentation).

Cellsegm. Cellsegm is a MATLAB-based toolbox providing auto-
mated whole-cell segmentation (Hodneland et al., 2013). Required 
parameters that define the range of acceptable cell sizes were cho-
sen for each dataset. Because the algorithm does not generate a 
nuclear mask, we paired the cell mask with a default Otsu-thresh-
olded nuclear mask.

The Allen Cell Structure Segmenter. There are two branches of 
the Allen Cell Structure Segmenter (AICS): a deep learning version 
and a classic image processing version (Chen et al., 2020). The deep 
learning version of AICS only provides nuclear segmentation, so it 
was not evaluated. The classic version consists of thresholding and 
filtering operations and requires estimated minimum cell areas 
(which were chosen for each dataset based on pixel size). Because 
the algorithm does not generate a nuclear mask, we paired the cell 
mask with a default Otsu-thresholded nuclear mask.

Voronoi segmentation. To provide a baseline method, we used a 
simple method based on the Voronoi diagram. Otsu thresholding 
was applied on the nucleus channel as a first step to obtaining a 
nuclear mask. Then a Voronoi diagram was created to partition the 
image along lines equidistant from the centroid of each nucleus.

Degrading images for robustness analysis. To evaluate the ro-
bustness of each method, each image was degraded in two ways. In 
the first, zero-mean Gaussian noise was added to each pixel. The SD 
was set to various levels based on the typical channel intensity of a 
given modality: 500, 1000, and 1500 for CODEX and Cell DIVE im-
ages, and 5, 10, and 15 for MIBI and IMC data. For the second 
perturbation, we downsampled the images to 70%, 50%, and 30%, 
respectively, on both dimensions. Note that the Gaussian noise was 
only added to the images used for segmentation; the evaluation of 
the resulting masks was done using the original images.

Mask processing. For some segmentation methods, finding cell 
boundaries is done independent of finding nuclear boundaries. This 
may mean that the final segmentation masks include nuclei that do 
not have a corresponding cell boundary and vice versa. We as-
sumed that a good segmentation method would minimize this and 
therefore defined a metric to capture this aspect of a segmentation 
method. To calculate it, each cell was matched to any nuclei con-
tained within it. All cells that did not have corresponding nuclei were 
counted as mismatched, and vice versa. For cells that had multiple 
corresponding nuclei, the one with the smallest fraction of mis-
matched pixels was kept. All mismatched cells and nuclei were re-
moved from the calculation of other metrics (see Supplemental 
Figure 2).
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Segmentation methods may also generate misshaped nuclei 
that have pixels outside their corresponding cells—that is, nuclei 
that protrude through the cell membrane. Across all methods in all 
images, this occurred for an average of 60.6% of segmented nuclei. 
To solve this issue, we applied two posterior approaches. The first 
approach considered all misshaped nuclei and their corresponding 
cells to be mismatched even if they had a one-to-one relationship. 
Alternatively, we developed a “repair” pipeline that trimmed the 
mask of misshaped nuclei. The combination of a segmentation 
method followed by repair was evaluated as a distinct segmentation 
method.

To evaluate the segmentation performance using the different 
channel intensities, we expected that nuclear protein composition 
would be considerably different from the cytoplasm and the cell 
membrane. We therefore calculated our metrics using two masks: 
the (repaired) nuclear mask and a “Cell Excluding Nucleus” mask 
calculated by removing the nuclear mask from the cell mask.

After this mask processing step, each cell has a one-on-
one matching relationship among its cell, nucleus, and cell exclud-
ing nucleus masks.

Evaluation metrics not requiring reference segmentation. We 
defined 14 metrics to evaluate the performance of a single segmen-
tation method without requiring a reference segmentation. These 
are of two types: metrics that assess the coverage of a segmentation 
mask on the image, and metrics that measure various types of 
uniformity at the pixel and cell levels on multiplexed images. Each 
metric is derived under an assumption based on general concepts 
from cell biology. They are described in the Supplemental Methods 
and summarized in Table 2.

We also defined 10 metrics for comparing two segmentation 
methods (or one method with a human-generated segmentation). 
These are also described in the Supplemental Methods.

Benchmarks for comparing segmentation with annotations. We 
adapted three benchmarks to quantify the segmentation quality 
comparison with expert annotations. The F1 score has been widely 
used for benchmarking cell segmentation performance (Caicedo 
et al., 2019; Greenwald et al., 2022). The first step in calculating the 
F1 score is to determine matched pairs of cells from two masks. For 
each cell on the reference mask (which could be either mask), we 
calculated the Jaccard index (as the equation below) with overlap-
ping cells in the other mask:

( ) =
∩
∪

JI R S
R S

R S
,

We set JI = 0.3 as the threshold that two cells must satisfy to be 
considered matched. If multiple cells have JI above the threshold, 
the one with the highest JI is selected. Based on this, we counted 
the number of true positive cells (TP, if two cells have JI above thresh-
old) as well as the false positive and false negative cells (FP and FN, 
if two cells have JI below threshold). We calculated the F1 score by 
the following equations. Note that the F1 score remains the same 
regardless of which mask is the reference (swapping FP and FN will 
not change F1 score). Therefore, it is a symmetric measurement:

=
+

F 2 *
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One issue with the F1 score is that it demands manual selection 
of the JI threshold. Different threshold choices may lead to different 
conclusions. To improve this, we averaged F1 scores with JI thresh-
olds from 0 to 1 with 0.01 step sizes as our second benchmark (Avg 
F1 score).

The third benchmark, the SEG score, is widely applied for cell 
tracking (Maska et al., 2014). The original SEG score scans each cell 
in the reference mask and finds the best matched cell in the query 
mask by the following condition:

∩ > R| R S | 0.5* | |

where R is a reference cell and S is the segmented cell from a seg-
mentation method. If the intersection (overlap) is greater than half 
the area of the reference cell, the two cells are considered matched. 
(Note that the constant 0.5 is analogous but not identical to setting 
a JI threshold.) If there are multiple segmented cells satisfying this 
condition, the one with the greatest overlap with R remains. For 
each reference cell, JI is used to qualitify the similarity with its 
matched cell. For the ones with no matched cell, JI = 0. The final 
SEG score is the average of JI over all reference cells.

One major issue with the original SEG score definition comes 
from its asymmetry. If the query mask contains many extra cells that 
do not match any cell in the reference mask, the SEG score will be 
the same as if the query mask did not have any extra cells. However, 
segmenting extra unmatched cells is clearly worse. To solve this is-
sue, we calculated two SEG scores, one using the human-labeled 
mask as reference and another using the computer-generated mask 
as reference, and averaged them as the final benchmark. We refer 
to this as the SEG’ (SEG prime) score which is symmetric and ac-
counts properly for unequal numbers of cells between the masks 
(and does not require an assumption of which mask is correct).

Availability. All code needed to calculate the evaluation metrics, as 
well as scripts to download test images, is available at https://
github.com/murphygroup/CellSegmentationEvaluator. A reproduc-
ible research archive containing all code and intermediate results 
(which enable recreation of all figures and tables) is available at 
https://github.com/murphygroup/ChenMurphy2DSegEvalRRA.
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