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ABSTRACT
Tobacco, alcohol, and marijuana consumption is an important public health problem because of 
their high use worldwide and their association with the risk of mortality and many health 
conditions, such as hypertension, which is the commonest risk factor for death throughout the 
world. A likely pathway of action of substance consumption leading to persistent hypertension is 
DNA methylation. Here, we evaluated the effects of tobacco, alcohol, and marijuana on DNA 
methylation in the same cohort (N = 3,424). Three epigenome-wide association studies (EWAS) 
were assessed in whole blood using the InfiniumHumanMethylationEPIC BeadChip. We also 
evaluated the mediation of the top CpG sites in the association between substance consumption 
and hypertension. Our analyses showed 2,569 CpG sites differentially methylated by alcohol 
drinking and 528 by tobacco smoking. We did not find significant associations with marijuana 
consumption after correcting for multiple comparisons. We found 61 genes overlapping between 
alcohol and tobacco that were enriched in biological processes involved in the nervous and 
cardiovascular systems. In the mediation analysis, we found 66 CpG sites that significantly 
mediated the effect of alcohol consumption on hypertension. The top alcohol-related CpG site 
(cg06690548, P-value = 5.9·10−83) mapped to SLC7A11 strongly mediated 70.5% of the effect of 
alcohol consumption on hypertension (P-value = 0.006). Our findings suggest that DNA methyla
tion should be considered for new targets in hypertension prevention and management, parti
cularly concerning alcohol consumption. Our data also encourage further research into the use of 
methylation in blood to study the neurological and cardiovascular effects of substance 
consumption.

KEY POLICY HIGHLIGHTS
● The consumption of tobacco, alcohol, and marijuana is very high worldwide and is associated 

with common diseases, like cardiovascular and neurological disorders.
● This study found that tobacco and alcohol have large effects on genome wide DNA methyla

tion while marijuana consumption has nonsignificant effects.
● The genes differentially methylated were enriched in pathways related to neurodevelopment, 

suggesting the mediation between recreational drug consumption and neurological disorders.
● More remarkably, 66 alcohol related CpG sites significantly mediated the association between 

heavy drinking and hypertension.
● Our findings suggest that DNA methylation changes should be considered for new targets in 

disease prevention for recreational drug consumers.
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Introduction

Tobacco, alcohol, and marijuana are the most 
commonly used drugs of abuse in the United 
States [1]. While tobacco and alcohol consumption 
is legal, marijuana is the most commonly used 

illicit drug globally [2]. The consumption of these 
substances is increasing, mainly among adoles
cents, and the health and social problems asso
ciated with them are an important public health 
concern.
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Addiction is a major consequence of consuming 
tobacco, alcohol, and marijuana, which results in 
the strengthening of all the other health problems 
associated with them [3].

Cigarette smoking is the leading cause of pre
ventable death and disease in the US and is 
responsible for approximately 8 million worldwide 
deaths every year [4]. Most of these deaths arise 
from cancers (mainly lung cancer), respiratory 
disease, and cardiovascular disease [5]. Cigarette 
smoke contains more than 7000 chemical com
pounds. Among them, 1,3-butadiene is highly 
associated with cancer risk, acrolein, and acetalde
hyde are potential respiratory irritants, cyanide, 
arsenic, and cresols are the primary sources of 
cardiovascular risk, and nicotine is the additive 
component [6]. In addition, nicotine exposure 
causes well-characterized neurotoxic effects, 
which are highly important in early develop
ment [7].

Light to moderate alcohol intake is associated 
with reduced risks for total mortality, cardio
vascular disease, and diabetes. However, exces
sive alcohol is the third leading cause of 
premature death in the US [8]. Heavy alcohol 
use is associated with a higher risk of cardio
vascular disease, diabetes, cirrhosis of the liver, 
pancreatitis, and cancer [9]. One of the causes 
of these health consequences is the toxic effect 
of acetaldehyde, which comes from the metabo
lization of ethanol [10]. As an example, alcohol 
and acetaldehyde act as direct toxins to the 
cardiac myocytes, resulting in contractile dys
function [11]. Furthermore, excessive exposure 
to alcohol can lead to severe debilitating dis
eases of the central and peripheral nervous sys
tems [12].

Among marijuana health impacts, disturbances 
in the level of consciousness, cognition, percep
tion, affect or behaviour, and other psychophysio
logical functions and responses are known as 
short-term effects. Additionally, long-term mari
juana consumption can increase the risk of depen
dence, cognitive impairment, mental disorders 
(psychoses, depression, anxiety, and suicidal beha
viour), and adverse physical health effects such as 
cardiovascular disease, chronic obstructive pul
monary disease, and cancer [2]. The main compo
nents of the cannabis plant are delta- 

9-tetrahydrocannabinol (THC), which is psy
choactive, and cannabidiol (CBD), which is non- 
psychoactive. These compounds participate in the 
endocannabinoid system [13].

In summary, the consumption of tobacco, alco
hol, and marijuana can lead to similar adverse 
effects on health, with the neurological and cardi
ovascular systems being particularly affected. 
Recent research suggests that epigenetics is 
a potential mediator between the consumption of 
toxic substances and the increase in common dis
ease risk [14–17]. DNA methylation, the most 
studied epigenetic modulation, consists of the 
addition of a methyl group (−CH3) in the cytosine 
nucleotide without changing the DNA sequence. It 
occurs in the context of CpG sites, which are 
defined as adjacent cytosine and guanine nucleo
tides by a phosphate group. DNA methylation is 
dynamic and can be modified by genetic factors, 
disease, environmental exposures, and lifestyle 
[17–19]. Moreover, DNA methylation can change 
during the lifetime and across tissues and cell types 
[20,21].

Although genetic mechanisms have been the 
focus of understanding human diseases, the dis
ruption of the epigenetic balance can result in the 
modulation of gene expression. Consequently, epi
genetic disruption can cause several major pathol
ogies, including cancer and cardiovascular disease 
[14]. Tobacco smoking is one of the exposures 
with a higher impact on the DNA methylation of 
smokers [22–25]. Its effect has also been observed 
in the newborns’ cord blood of mothers who 
smoked during pregnancy [26–28]. Many studies 
also demonstrate that alcohol consumption pro
duces methylation changes at the CpG site level 
[29–34]. Conversely, only a few studies have 
demonstrated the effects of marijuana consump
tion on DNA methylation, all of which have 
shown small effects [35,36].

Hypertension, also known as high blood pres
sure, is a medical condition in which the blood 
pressure in the arteries is persistently elevated. It 
affects one billion people and is the most common 
risk factor for death worldwide [37]. There are 
many factors associated with a higher risk of 
hypertension, including body mass index, tobacco 
use, physical activity, and alcohol consumption, 
among others [38]. Light to moderate alcohol 
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consumption seems to protect against hyperten
sion because it decreases systolic and diastolic 
blood pressure. However, excessive intake 
accounts for about 16% of cases of hypertension 
worldwide [39,40]. Cigarette smoking enhances 
hypertension by inducing cardiovascular mito
chondrial oxidative stress [41,42]. On the other 
hand, some studies evaluating the effect of mari
juana consumption on blood pressure have 
revealed different results. For instance, Abuhasira 
et al. demonstrated the therapeutic effect of mar
ijuana in reducing blood pressure in hypertensive 
patients [43]. However, other studies revealed an 
increase in blood pressure after marijuana con
sumption [44,45]. In light of the above, we 
hypothesized that changes in DNA methylation 
produced by substance consumption may partially 
explain its relationship with hypertension.

To this end, in this study we aimed to: i) per
form a genome-wide association study of DNA 
methylation with tobacco, alcohol, and marijuana 
consumption; ii) identify the physiological path
ways whose methylation is affected by those 
recreational drugs; iii) evaluate the mediation 
between substance consumption and hypertension 
by methylation changes at the CpG site level.

Materials and methods

The study cohort

Our study sample included 3,590 individuals from the 
TruDiagnostic DNA biobank recruited between 
October 2020 and February 2022. Those individuals 
have taken the commercial TruDiagnostic TruAge test 
and methylation data was generated from them. This 
is an EEUU population-based cohort aged between 13 
and 97 years old. Among them, 58.7% are male. 
Demographic and substance use characteristics of 
the samples that met the QC requirements (N =  
3,424) are displayed in Table 1. As this testing is priced 
to the consumer at approximately $500, this study 
cohort is relatively more affluent than random sam
pling or traditional banked cohorts. Additionally, 
these individuals may experience a healthy donor 
effect whereby they seek preventative medicine and 
have fewer comorbidities than normal patient popula
tions, as is the case with blood donors [46,47]. The 
study involving human participants was reviewed and 

approved by the IRCM IRB. The patients/participants 
provided their written informed consent to participate 
in this study.

DNA methylation Assessment

Peripheral whole blood was collected by the lancet 
and capillary method into lysis buffer and DNA 
extract, and 500 ng of DNA of bisulphite were 
converted using the EZ DNA Methylation kit 
(Zymo Research) according to the manufacturer’s 
instructions. Bisulphite-converted DNA samples 
were randomly assigned to a chip well on the 
Infinium HumanMethylationEPIC BeadChip, 
amplified, hybridized onto the array, stained, 
washed, and imaged with the Illumina iScan SQ 
instrument to obtain raw image intensities.

Meffil R package [48] was used for the pre- 
processing of DNA methylation data. In the sample 
quality control, we removed the sex detection mis
matches and the sex detection outliers (based on the 
difference between median chromosome Y and chro
mosome X probe intensities). We also discarded those 
samples whose predicted median methylated signal 
was more than 3 standard deviations from the 
expected. We excluded the outliers based on devia
tions from mean values for control probes (dye bias, 
bisulphite 1, and bisulphite 2). Finally, we removed 
those samples with more than 5% of undetected 
probes (detection P-value larger than 0.01) or with 
a low number of beads (less than 3). This quality 
control resulted in 3,424 individuals, indicating that 
90,3% of the samples met our QC standards. In the 
feature quality control, we removed those probes 
undetected or with low bead numbers in more than 
5% of the samples. We used InfiniumAnnotation [49] 
to filter probes where the 30bp 3’-subsequence of the 
probe is non-unique, probes with INDELs, probes 
with extension base inconsistent with specified colour 
channel (type-I) or CpG (type-II) based on mapping, 
probes with a SNP in the extension base that causes 
a colour channel switch from the official annotation, 
and probes where 5bp 3’-subsequence overlap with 
any of the SNPs with global population frequency 
higher than 1%. The functional normalization method 
was further applied based on the first 10 principal 
components of the control probes. Consequently, the 
number of CpG probes kept was 745,150, which repre
sents 86% of the total EPIC array manifest. CpG sites 
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were annotated to genes using EPIC Illumina annota
tion ilm10b4.hg19. Blood cell type proportions were 
estimated using the blood gse35069 complete cell type 
methylation profile references from the meffil package. 
We then performed a surrogate variable analysis 
(SVA) to remove the batch effects using the 
SmartSVA package [50]. We estimated the number 
of surrogate variables (SVs) using the isva package 
[51]. Methylation levels were expressed as residual 
values after adjusting beta values for the first 60 SVs.

Exposure and clinical history assessment

During the recruitment of participants, they were 
asked to complete a survey that included questions 
about personal information, medical history, social 
history, lifestyle, and family history. Alcohol and mar
ijuana consumption was assessed on a 5-point scale 
(‘never’ to ‘regularly’). Participants also reported their 

level of smoking according to 7 possible answers 
(‘none’ to ‘more than 20 cigarettes per day’). 
Regarding the medical history, the survey covered 
information about the blood type, medications and 
supplements, and diagnosis of any type of disease 
(cardiovascular, respiratory, skin and hair, endocrine, 
gastrointestinal, genitourinary, musculoskeletal, neu
ropsychological, reproductive, immune, and cancer). 
The main clinical outcome of this study was hyperten
sion, assessed as a dichotomic variable (affected and 
unaffected.

Statistical analyses and reproducibility

Epigenome-wide association analysis
The epigenome-wide association study (EWAS) 
was performed using the MEAL Bioconductor 
package [52]. We performed a differential mean 
analysis on different substance consumption 
(tobacco, alcohol, and marijuana) using the 

Table 1. Characteristics of participants in the 
TruDiagnostic DNA Biobank.

N = 3424

Sex, male 2010 (58.7%)
Age in years, mean (range) 52.9 (13.3–97.8)
Ethnicity
European 2584 (75.5%)
African American or Black 70 (2.0%)
Asian 41 (1.2%)
Latino or Hispanic 276 (8.1%)
Middle Eastern or North African 76 (2.2%)
Native American or Alaska Native 26 (0.8%)
Pacific Islander or Oceanian 23 (0.7%)
Sub-Saharan African 7 (0.2%)
Other 321 (9.4%)
BMI (kg/m2), median (range) 25.4 (10.1–58.2)
Tobacco consumption
None 3275 (95.6%)
Less than 1 cigarette per week 48 (1.4%)
Less than 1 cigarette per day 25 (0.7%)
1–5 cigarettes per day 27 (0.8%)
6–10 cigarettes per day 21 (0.6%)
11–20 cigarettes per day 20 (0.6%)
More than 20 cigarettes per day 8 (0.2%)
Alcohol consumption
Never 634 (18.5%)
On special occasions 976 (28.5%)
Once per week 578 (16.9%)
3–5 times per week 794 (23.2%)
Regularly 442 (12.9%)
Marijuana consumption
Missing 149
Never 2908 (88.8%)
On special occasions 180 (5.5%)
Once per week 46 (1.4%)
3–5 times per week 73 (2.2%)
Regularly 68 (2.1%)

Note: All the continuous variables are shown as mean (range) 
and the categorical variables as n (%). 

BMI: body mass index. 
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function runPipeline that calls limma [53]. Based 
on previous analyses [32], we adjusted all the 
regression models by sex, age, ethnicity, body 
mass index (BMI), level of education, alcohol and 
tobacco consumption (except when they were the 
variable of interest), slide, cell type, and surrogate 
variables. For each substance, we fitted models

Ej¼αjþβjSþΣrγrCrþεj (1) 

where Ej denotes the methylation level vector 
across individuals at probe j (j = 1, . . . 745150), 
S is the individuals’ consumption (separated mod
els for alcohol, smoking, and marijuana where 
fitted) with its associated effect, βj, Cr is the 
r adjusting covariate and its effect γr, and εj is 
the noise that follows the distribution of methyla
tion levels with mean 0. Adjusted P-values were 
calculated using Bonferroni’s correction for con
sidering multiple comparisons. The inflation or 
deflation of P-values across the methylome was 
assessed with Q-Q plots and lambda values [54].

Enrichment analysis
We performed an enrichment in Kyoto 

Encyclopedia of Genes and Genomes (KEGG) 
and Gene Ontology (GO) pathways [55,56] using 
the enrichKEGG and enrichGO functions from the 
clusterProfiler Bioconductor package [57], respec
tively. Using the same package, we also evaluated 
the over-representation of diseases using the 
DisGeNET platform which contains 1,134,942 
gene-disease associations [58]. Associations were 
corrected for multiple comparisons using 
Bonferroni adjustment, as computed by 
clusterProfiler.

Comparison of the results with previous studies
For the validation of our results, we used pub

licly available data from the EWAS catalogue. This 
catalogue includes published epigenome-wide 
association studies from PubMed using the search 
terms ‘epigenome-wide’ OR ‘epigenome wide’ OR 
‘EWAS’ OR ‘genome-wide AND methylation’ OR 
‘genome wide AND methylation.’ Studies are 
selected according to the year of publication 
(>2010), the use of human samples, and the num
ber of genome-wide CpG sites (>100,000) and 
individuals (>100). Reported CpG sites have nom
inal P-values lower than 1·10−4. The data for the 
EWAS Catalogue is then manually curated. We 
obtained separate datasets for each drug of abuse 

containing information on the associations 
between DNA methylation and tobacco, alcohol, 
and marijuana consumption. The dataset for 
tobacco smoking included 30 publications, while 
the dataset for alcohol consumption had 6 publi
cations, and the dataset for marijuana consump
tion contained 2 publications. After excluding 
associations that lacked information on the beta 
value, we obtained 26 publications for smoking, no 
publications for alcohol consumption, and 1 pub
lication for marijuana consumption. For CpG sites 
that were reported in more than one study, we 
performed a metanalysis using the meta package 
[59]. However, due to the high heterogeneity 
between studies, we reported the proportion of 
studies that showed the same direction of effect 
as our study.

Estimation of epigenetic clocks

We further evaluated whether the three behaviours 
had an impact on epigenetic age. To calculate the 
principal component-based epigenetic clock for 
the Horvath multi-tissue clock, Hannum clock, 
PhenoAge clock, GrimAge clock, and telomere 
length we used the custom R script available via 
GitHub (https://github.com/MorganLevineLab/ 
PC-Clocks). Non-principal component-based 
(non-PC) Horvath and Hannum epigenetic esti
mates were calculated using the agep function 
available in the wateRmelon R package [60], and 
non-PC PhenoAge was calculated using the 
methyAge function in the ENMix R package [61]. 
Finally, the pace of ageing clock, DunedinPACE, 
was calculated using the PACEProjector package 
available via GitHub (https://github.com/dan 
belsky/DunedinPACE).

Mediation analysis between recreational drug 
use and hypertension

To investigate the relationship between tobacco, 
alcohol, and marijuana consumption and hyper
tension, we conducted logistic regression analyses. 
Next, we performed a mediation analysis to 
explore whether methylation played a role in the 
relationship between recreational drug use and 
hypertension. We first identified CpG sites that 
were significantly associated with those behaviours 
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and hypertension after correcting for multiple 
comparisons using Bonferroni. Then, we con
ducted a univariate mediation analysis for each 
significant CpG site using the mediate function 
from the mediation package [62]. This analysis 
allowed us to estimate the total effect, the effect 
of substance consumption on CpG methylation, 
and the effect of the mediator and substance con
sumption on hypertension. Finally, we performed 
a causal mediation analysis and estimated the aver
age causal mediation effects, average direct effects, 
total effect of the independent variable on the 
dependent variable, and the proportion of the 
effect of the independent variable on the depen
dent variable that goes through the mediator. We 
adjusted all models for the same covariates as in 
the EWAS.

Results

We analysed 3,424 individuals from the 
TruDiagnostic DNA Biobank recruited from 
the general population in EEUU. Table 1 pre
sents demographic and substance use character
istics. The mean age was 52.9 years (range: 
13.3–97.8) and 58.7% were male. The partici
pants were classified according to 7 ethnic 
groups and ‘other’ for those who had a mixed 
ethnicity. Most participants were Europeans 
(75.5%), and Latino American was the second 
most common ethnicity (8.1%). There were 149 
current tobacco smokers, classified into seven 
groups according to the number of cigarettes 
smoked, and 3,275 non-smokers. Regarding 
alcohol consumption, there were 2,790 drinkers 
grouped by consumption frequency and 634 
non-drinkers. Marijuana consumption was also 
classified according to consumption frequency. 
In total, 2,908 did not smoke marijuana, and 
367 smoke marijuana at least on special occa
sions. It is worth noting that out of the parti
cipants, 465 individuals reported consuming 
more than one drug, at least on special occa
sions. On the other hand, 584 participants 
reported not consuming any of the drugs 
included in this study. Among those who 
reported using recreational drugs, the largest 

overlap was observed between alcohol and mar
ijuana, with 299 individuals indicating con
sumption of both substances. Notably, 98 
participants reported consuming both tobacco 
and alcohol, highlighting the co-occurring use 
of different substances (Additional File 2: 
Fig. S1).

Genome-wide effect of tobacco smoking on 
DNA methylation

We tested the association between the level of 
smoking (codified as a 7-point scale from ‘none’ 
to ‘more than 20 cigarettes per day;’ see Table 1) 
with each CpG site using linear regression models 
run in the MEAL R package [52]. We found 528 
CpG sites associated with smoking levels after 
correcting for multiple comparisons and genomic 
inflation was not observed (λ = 1.031). Table 2 lists 
the top 15 CpG sites for tobacco smoking (see 
Additional File 1: Table S1 for all the significant 
CpG sites). Figure 1a shows how the CpG sites are 
distributed in the genome using a Manhattan plot. 
Among tobacco-related methylation sites, 68.2% 
were hypomethylated (that is, lower DNA methy
lation associated with higher tobacco consump
tion). From the 528 probes differentially 
methylated, 374 CpG sites were mapped to 344 
unique genes. AHRR, GFI1, PRSS23, and 
IMMP2L had 10, 6, 4, and 4 probes differentially 
methylated, respectively. Moreover, these 344 
genes were enriched in morphine addiction 
(P-value = 4.3 · 10−6), dopaminergic synapse 
(P-value = 1.1 · 10−4), and cholinergic synapse 
(P-value = 1.7 · 10−4) KEGG pathways 
(Additional File 2: Fig. S2). Consistent with pre
vious studies, cg05575921 was the top-ranked CpG 
with a P-value = 1.3·10−226. We further demon
strated that the effect of tobacco in this CpG site 
was proportional to the number of cigarettes 
smoked (Figure 2a). In addition, we cross- 
referenced our findings with those previously 
documented in the EWAS catalogue. Out of the 
528 CpG sites that displayed differential methyla
tion in our investigation, 183 had already been 
documented in the EWAS catalogue, with 181 
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showing the same direction of change and 2 
exhibiting an opposing direction. Among the 
345 not-reported, 6 of them were in the top 15 
CpG sites in our data, evidencing that tobacco 
may have important effects on them (Table 1).

Genome-wide effect of alcohol consumption 
on DNA methylation

We identified 2,569 CpG sites differentially methy
lated according to alcohol consumption frequency (5 
levels from ‘never’ to ‘regularly;’ see Table 1). Model 

Figure 1. Manhattan plots of the epigenome-wide association study (EWAS) of tobacco (a), alcohol (b), and marijuana (c) 
consumption. The Y-axis represents the -log10(p) values and the X-axis the position of the CpG sites within the chromosome. 
The blue line is the suggestive nominal p-value threshold (0.0001) and the red line is the p-value adjusted threshold lower than 0.05.
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fitting showed no indication of genomic inflation (λ  
= 1.044). The top 15 CpG sites are shown in Table 3 
and all the epigenome-wide significant CpG sites are 
listed in Additional File 1: Table S3 and represented 
as a Manhattan Plot in Figure 1b. Among them, 

36.9% were hypomethylated for regular consumers 
compared with non-consumers. However, the per
centage of hypomethylated probes was increased for 
the most significant probes. Among the 2,569 alco
hol-related methylation sites, 609 were intergenic 

Figure 2. Boxplots showing the association between CpG methylation and substance consumption. (a) Association between 
cg05575921 methylation (AHRR) and tobacco consumption. (b) Association between cg06690548 methylation (SLC7A11) and alcohol 
consumption. The Y-axis represents the residuals for beta values after adjusting by covariates. The X-axis represents the number of 
cigarettes smoked and the frequency of drinking, respectively. Methylation means for each tobacco consumption level are 
represented with their 95% confidence intervals.
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and 1,960 were annotated to 1,670 unique genes. 
Five genes had seven or more significant probes 
mapping to their locus, including RPTOR (11 
probes), JARID2 [8], and ABCG1 [8]. The enrich
ment revealed an over-representation of autistic dis
order (P-value = 4.2 · 10−7), acquired scoliosis and 
curvature of the spine (P-value = 2.7 · 10−4), small 
nose (P-value = 2.5 · 10−4), small midface (P-value =  
6.1 · 10−5), and self-injurious behaviour (P-value =  
1.5 · 10−4) (Additional File 2: Fig. S3A). These genes 
were also enriched in the PI3k-Akt signalling path
way (P-value = 4.0 · 10−4), which is involved in the 
cell cycle, cholinergic synapse (P-value = 2.7 · 10−5), 
and longevity regulating pathway (P-value = 6.7 · 
10−5) (Additional File 2: Fig. S3B). The GO enrich
ment revealed regulation of Wnt signalling pathway 
(P-value = 3.2 · 10−8) and heart growth (P-value = 2.6 
· 10−5) (Additional File 2: Fig. S3C). The top CpG site 
(cg06690548, P-value = 5.9·10−83) mapped to the 
SLC7A11 gene and its methylation was significantly 
reduced proportionally to the alcohol consumption 
(Figure 2b). Due to the absence of beta value 

information in the studies included in the EWAS 
catalogue, we compared our results with the largest 
single-cohort EWAS of alcohol consumption per
formed by Lohoff et al [31]. In this study, they 
found 2,504 CpG sites and 909 were overlapping 
with our study. All the CpG sites overlapping had 
the same direction of the effect.

Genome-wide effect of marijuana 
consumption on DNA methylation

In the EWAS for the frequency of marijuana use 
(codified as a 5-point scale from ‘never’ to ‘reg
ularly;’ see Table 1), we did not find any CpG 
site with a P-value adjusted lower than 0.05 
(Figure 1c). However, we used the P-value 
threshold from the EWAS catalogue (P-value <  
1·10−4) and we found 195 CpG sites at 
a suggestive significant level (Additional File 1: 
Table S3). From them, almost 50%were hypo
methylated for regular consumption compared 
to no consumption (Table 4). Gene symbols for 
the 195 CpG sites were tested for enrichment in 

Table 3. Top 15 differentially methylated CpG sites by alcohol consumption.

CpG chr position
Gene 

Symbol
Gene 
Group

On 
special 

occasions

Once 
per 

week

3–5 
times 

per 
week Regularly F P-Value

Adjusted 
P-Value

Lohof 
et al 

(direction)

cg06690548 chr4 139162808 SLC7A11 Body −0.003 −0.005 −0.015 −0.031 103.1 5.9E–83 4.4E–77 –
cg11376147 chr11 57261198 SLC43A1 Body −0.001 −0.002 −0.006 −0.010 49.3 2.4E–40 8.9E–35 –
cg26457483 chr1 120256112 PHGDH Body −0.001 −0.004 −0.017 −0.028 39.7 1.5E–32 3.8E–27 –
cg14476101 chr1 120255992 PHGDH Body −0.002 −0.005 −0.016 −0.031 36.2 1.1E–29 2.0E–24 –
cg18120259 chr6 43894639 LINC01512 Body −0.002 −0.004 −0.009 −0.019 35.0 1.1E–28 1.6E–23 –
cg06088069 chr14 75895604 JDP2 5‘UTR −0.002 −0.003 −0.007 −0.013 34.2 5.0E–28 6.1E–23 –
cg21998542 chr10 33605101 NRP1 Body −0.002 −0.005 −0.009 −0.019 29.0 9.2E–24 9.8E–19 –
cg15837522 chr8 117892654 −0.003 −0.011 −0.022 −0.031 28.7 1.7E–23 1.6E–18 –
cg06644515 chr1 173834831 SNORD47; 

GAS5; 
SNORD81; 
SNORD80; 
SNORD78; 
SNORD79

TSS1500; 
Body; 
TSS1500; 
TSS1500; 
TSS200; 
TSS1500

−0.001 −0.001 −0.007 −0.013 27.6 1.3E–22 1.1E–17 –

cg12116137 chr17 1576449 PRPF8 Body 0.001 0.001 0.008 0.018 25.5 7.5E–21 5.5E–16 ++
cg19693031 chr1 145441552 TXNIP 3‘UTR −0.004 −0.003 −0.011 −0.026 25.1 1.8E–20 1.2E–15 –
cg12825509 chr3 185648568 TRA2B Body 0.000 −0.004 −0.010 −0.016 24.6 4.5E–20 2.8E–15 –
cg14346162 chr21 44490229 CBS Body 0.001 0.004 0.009 0.014 23.5 3.1E–19 1.8E–14 Not 

reported
cg12973487 chr19 1623075 TCF3 Body 0.004 0.005 0.007 0.014 22.6 2.0E–18 1.0E–13 ++
cg05713943 chr13 97912352 MBNL2 5‘UTR 0.001 0.000 −0.005 −0.008 21.8 8.7E–18 4.2E–13 –

Note: The CpG sites are annotated based on the chromosome (chr), the position (pos), the gene symbol from HGNC, and the gene group (based on 
the position of the CpG regarding the nearest gene). Each CpG site has a beta value for each consumer group vs non-consumers, a F-statistic (F), 
a nominal p-value, and an adjusted p-value by Bonferroni. We also included one column with the direction of the effect in a previous study (Lohoff 
et al (31)) for those that were significant in their analysis. 
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KEGG pathways and Gene Ontology (GO) and 
we found an enrichment of myelin assembly 
(P-value = 8.0·10−6). We did not find CpG sites 
overlapping between our results and the ones 
reported in the EWAS catalogue. This may be 
in part due to the differences in the variable of 
interest and the study population, such as the 
evaluation of the effect of cannabis use on non- 
Hispanic white women and the risk of breast 
cancer [36].

Comparison between recreational drugs

We compared the differentially methylated CpG 
sites for the different drugs of abuse. Since no CpG 
sites were significant for marijuana consumption 
after correcting by multiple comparisons, we 
focused on comparing the results between tobacco 
and alcohol. We found that 12 CpG sites were 
overlapping between tobacco and alcohol, and 
nine of them had the same direction effect in 
both analyses (Figure 3a). Next, we extracted the 
genes where all the differentially methylated CpG 
sites were annotated and compared the alcohol 
and tobacco related genes. We observed a larger 
overlap and found that 61 genes were differentially 
methylated by both substances (Figure 3b). To 
determine whether these genes were involved in 
similar pathways, we performed an enrichment 
analysis, and the results revealed that these genes 

were implicated in various biological processes, 
including positive regulation of heart rate 
(P-value = 5.3·10−5), inositol lipid-mediated signal 
(P-value = 1.7·10−4), and positive regulation of 
blood circulation (P-value = 1.9·10−4), among 
others (Additional File 2: Fig. S4).

Then, we evaluated whether recreational drug 
consumption was associated with multiple epige
netic clocks. For tobacco smoking, we found 
a significant association with telomere length (β =  
−0.01, P-value = 1.2·10−3), Grim Age Principal 
Component (β = 0.72, P-value = 1.6·10−17), and 
DunedinPACE (β = 0.01, P-value = 9.4·10−5). 
Alcohol consumption was associated also with 
a lower telomere length (β = −0.004, P-value =  
7.5·10−3) and Grim Age Principal Component (β =  
0.13, P-value = 7.7·10−4). Finally, marijuana con
sumption was not associated with any epigenetic 
clock.

Mediation between substance consumption 
and hypertension by CpG methylation

We evaluated whether the changes at the CpG 
methylation level mediated the effect of recreational 
drugs on hypertension. We first tested the associa
tion between smoking and hypertension. We con
sidered that the group with the highest levels of 
smoking were those who smoked more than 11 
cigarettes per day, joining the categories 11–20 

Table 4. Top 15 differentially methylated CpG sites by marijuana consumption.

CpG chr position
Gene 

Symbol
Gene 

Group
On special 
occasions

Once per 
week

3–5 times 
per week Regularly F P-Value

Adjusted 
P-Value

cg05107281 chr11 47072710 CSTPP1 Body −0.004 −0.010 −0.014 0.001 9.4 1.6E–07 0.12
cg06499565 chr20 35374747 NDRG3 TSS1500 0.001 0.006 0.000 −0.001 8.7 5.7E–07 0.17
cg10054857 chr18 61816543 LINC00305 TSS1500 −0.004 −0.007 −0.002 −0.002 8.4 1.0E–06 0.17
cg24344693 chr10 133273964 −0.004 0.003 −0.001 −0.002 8.2 1.5E–06 0.17
cg20226924 chr5 133985272 SEC24A Body 0.001 0.003 0.003 0.001 8.2 1.5E–06 0.17
cg05575921 chr5 373378 AHRR Body −0.003 −0.011 −0.012 −0.020 8.1 1.7E–06 0.17
cg21161138 chr5 399360 AHRR Body −0.004 −0.011 −0.009 −0.012 8.1 1.7E–06 0.17
cg19730404 chr9 139361517 SEC16A; 

SEC16A
ExonBnd; 
Body

−0.003 −0.001 0.001 −0.004 7.8 2.8E–06 0.25

cg19308363 chr12 116290566 0.006 0.005 −0.005 −0.015 7.7 3.4E–06 0.25
cg08258765 chr5 24841586 LOC340107 TSS1500 0.005 0.002 0.004 −0.002 7.7 3.8E–06 0.25
cg03838168 chrX 48433876 RBM3 Body −0.003 −0.004 0.015 0.005 7.7 3.9E–06 0.25
cg16822035 chr13 113633379 MCF2L; 

MCF2L
Body; 
TSS1500

0.001 0.004 0.009 0.012 7.6 4.0E–06 0.25

cg11756734 chr12 9028945 A2ML1 3‘UTR −0.005 0.002 −0.007 0.003 7.5 4.8E–06 0.26
cg08415592 chr22 36648973 APOL1 TSS200 0.008 0.016 −0.004 0.007 7.4 5.8E–06 0.26
cg17325792 chr1 77042560 ST6GALNAC3; 

ST6GALNAC3
3‘UTR; 
Body

0.003 0.001 0.003 −0.011 7.4 6.6E–06 0.26

Note: The CpG sites are annotated based on the chromosome (chr), the position (pos), the gene symbol from HGNC, and the gene group (based on 
the position of the CpG regarding the nearest gene). Each CpG site has a beta value for each consumer group vs non-consumers, a F-statistic (F), 
a nominal p-value, and an adjusted p-value by Bonferroni. 
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and >20 cigarettes due to their low number of 
participants in each. We evaluated the association 
between smoking codified as numeric and high 
blood pressure as a binary variable and we did not 
detect a significant tendency (P-value = 0.26). The 
forest plot shows that the risk of hypertension 
increases with a higher number of cigarettes 
smoked except for the last group (more than 11 
cigarettes per day) (Additional File 2: Fig. S5). 
Although we expected this group to be the one at 
the highest risk, we also observed that those parti
cipants were also the youngest (average of 5.75  
years less, P-value = 0.005), suggesting 
a particularly strong healthy donor effect for this 
group. We tested the association after removing this 
group and we found a significant association 
between tobacco smoking and hypertension 
(P-value = 0.009, OR = 1.28). The forest plot in 
Figure 4a revealed a clear dose-response relation
ship where individuals who consume 6 to 10 cigar
ettes per day have 3.19 times of high blood pressure 
risk compared with non-smokers (P-value = 0.023). 
For the mediation analysis using CpG sites as med
iators, we selected those CpG sites that were sig
nificantly associated with hypertension and tobacco 
smoking. The analysis revealed 10 CpG sites that 
were potential mediators. However, the univariate 
mediation analyses showed that none of those CpG 
sites was significantly mediating the effect of 
tobacco on hypertension with a FDR lower than 
0.05 (Additional File 1: Table S4).

We also tested the association between mari
juana consumption and high blood pressure. We 
did not find any significant association when 

comparing the 4 levels of consumption (from ‘on 
special occasions’ to ‘regularly’) with non- 
consumers (Additional File 2: Fig. S6).

As for alcohol use, we found a significant asso
ciation between alcohol and higher blood pressure 
(P-value = 0.001, OR = 1.13). In addition, the forest 
plot in Figure 4b revealed a significant association 
between daily consumption with high blood pres
sure (P-value = 0.014, OR = 1.39) and a non- 
significant association between light to moderate 
consumption with the phenotype, as expected. 
Thus, we evaluated whether DNA methylation 
was mediating this association. We first performed 
logistic regression between the alcohol-related 
CpG sites and hypertension and found 76 signifi
cant CpG sites after correcting by multiple com
parisons. To see the effect of each CpG site, we 
performed a univariate mediation analysis for each 
of these probes. Among them, 66 CpG sites sig
nificantly mediated the association between alco
hol and hypertension with estimated proportions 
ranged between 3 and 71%. The most differentially 
methylated CpG site by alcohol consumption, 
cg06690548, was also the most significant media
tor between alcohol consumption and high blood 
pressure after adjusting by covariates. This CpG 
site mediated 71% of the total effect of alcohol on 
the phenotype (FDR = 0.019). Furthermore, we 
observed that 12.8% of the hypertension variance 
was explained by alcohol consumption after 
adjusting by covariates. The variance explained 
was increased to 13.6% after including the 
cg06690548 methylation in the model, and to 
20.5% after including the 66 significant CpG 

Figure 3. Venn diagrams comparing CpG sites and genes differentially methylated for tobacco and alcohol use. (a) Comparison 
between differentially methylated CpG sites with a P-value adjusted lower than 0.05. (b) Comparison between genes where the CpG 
sites differentially methylated are annotated.
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sites. In these models, the association between 
hypertension and alcohol was no longer signifi
cant, further suggesting that methylation has an 
important mediation role in hypertension risk.

Discussion

The current study evaluated the effect of tobacco, 
alcohol, and marijuana consumption on genome- 
wide DNA methylation in 3,424 individuals from 
an EEUU population-based cohort. We identified 
528 CpG sites differentially methylated according 

to tobacco smoking, 2,569 according to alcohol 
consumption, and no significant associations for 
marijuana consumption. Second, we detected 
a large overlapping between the differentially 
methylated genes by alcohol and tobacco con
sumption. Third, we found a significant media
tion between alcohol consumption and 
hypertension by many alcohol-related methyla
tion sites.

A considerable amount of literature has been 
published on DNA methylation changes due to 
smoking. The first studies evaluating these 

Figure 4. Forest plot of the association between tobacco (a) and alcohol (b) consumption with hypertension. OR: Odds Ratio.
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changes were carried out in single genes or small 
panels of genes [63–65]. It was not until 2012 that 
the first epigenome-wide association study on 
tobacco was reported by Wan et al. [66]. Since 
that time, several studies have demonstrated the 
huge impact of tobacco on DNA methylation 
across the human genome, even in newborns 
when the tobacco exposure was during pregnancy 
[22,23,25–27,67,68]. Our findings were in line 
with previous research, demonstrating a large 
number of CpG sites differentially methylated 
along the genome. We were able to compare our 
results with the EWAS catalogue, and this 
revealed a high overlap in the CpG sites differen
tially methylated. Moreover, 98.9% of these CpG 
sites had the same direction of the effect. Among 
the probes that were not previously reported in 
the EWAS catalogue, it is remarkable the CpG site 
at PHACTR2 gene, because it is involved in actin 
cytoskeleton organization and implicated in 
Parkinson’s disease [69], and the CpG site at 
GPX5 gene, since it protects cells and enzymes 
from oxidative damage. Additionally, our results 
confirm previous observations where the 
cg05575921 mapped to AHRR (P-value =  
9.7·10−221) and the cg21566642 in the 2q37.1 
region (P-value = 5.9·10−65) were the most signifi
cantly associated CpG sites to tobacco consump
tion [26–28]. Besides, the enrichment of the CpG 
sites differentially methylated revealed remarkable 
findings. Dopaminergic and cholinergic synapses 
are two systems that are affected by nicotine, the 
psychoactive substance found in tobacco. On one 
hand, nicotine activates the release of dopamine, 
inducing feelings of pleasure and reward [70]. 
This activation is one of the main reasons for 
which nicotine is so addictive. On the other 
hand, nicotine binds to receptors in the choliner
gic synapse, enhancing the release of acetylcholine 
[71]. This neurotransmitter can improve cogni
tion, attention, and memory. However, chronic 
exposure to nicotine can lead to a decrease of 
the numbers of receptors, which can produce 
cognitive impairment and other negative effects 
in the brain. Thus, the CpG sites differentially 
methylated by tobacco may be used as biomarkers 
to monitor addiction and neurotoxic effects on 
tobacco smokers.

Alcohol is known to affect DNA methylation. 
To date, several EWAS have detected CpG sites 
associated with alcohol consumption [29,31– 
33,72,73]. Here, we identified 2569 probes asso
ciated with drinking. As we found, many studies 
detected cg06690548 mapped at the SLC7A11 pro
moter as the most alcohol-related methylation site 
[29,31,32]. Furthermore, Lohoff et al. demon
strated that various liver biomarkers were robustly 
associated with SLC7A11 methylation status [31], 
suggesting an implication of this gene in the dis
turbance of the gastrointestinal system when con
suming alcohol. In addition, we compared our 
results with those reported in study where they 
also performed an EWAS for alcohol consumption 
in 8,161 individuals. We found that 909 probes 
overlapped, all showing the same direction of 
effect. We observed that certain probes did not 
overlap, which could be attributed to differences 
in study design. Specifically, Lohoff et al used 
information on alcohol consumption during the 
previous week, while our study assessed general 
alcohol consumption habits. As a result, these dis
crepancies suggest that the timing and specificity 
of the alcohol consumption measure used in dif
ferent studies can influence epigenetic changes. 
Besides, the genes differentially methylated in our 
study were highly enriched in autistic disorder, 
acquired scoliosis, curvature of the spine, small 
nose, and small midface. Engagingly, all these fea
tures are symptoms of the foetal alcohol spectrum 
disorder (FASD), which encompasses the range of 
adverse effects associated with alcohol exposure 
during pregnancy [74–77]. In addition, previous 
studies have already investigated the epigenetic 
mechanism linking autism and FASD [78]. Our 
results suggest that DNA methylation changes are 
important contributors to the relationship between 
alcohol consumption and FASD. Future studies 
should examine whether pregnant women with 
alcohol disorders could be monitored using epige
netic changes to prevent disorders in children.

The studies that have investigated DNA methyla
tion modifications after marijuana consumption are 
limited. In 2015, Watson et al. evaluated in rats the 
effect of cannabis parental exposure on the epigen
ome of the nucleus accumbens [79] and they identi
fied 1027 differentially methylated regions. Five 
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years later, Osborne et al. carried out the first EWAS 
on heavy cannabis consumption with and without 
tobacco comparing 48 consumers with 48 controls 
[35]. They found five differentially methylated sites 
in cannabis and tobacco users that replicated pre
vious studies on the effects of tobacco. However, 
cannabis-only users had no evidence of significant 
differential methylation in any gene. Markunas et al. 
performed another EWAS with a larger sample size 
(1,247 ever users) consisting of women at risk of 
developing breast cancer [36]. They identified 
a unique significant CpG mapped to CEMIP 5’ 
region. However, they designed a biomarker for life
time cannabis use based on the top 50 EWAS CpG 
sites. In our study, 367 individuals smoked mari
juana from occasionally to daily. The EWAS did 
not reveal significant CpG sites at the Bonferroni 
adjustment. Nonetheless, the genes where the 195 
CpG sites with a P-value lower than 1·10−4 were 
annotated were enriched in myelin assembly, essen
tial for the proper functioning of the nervous system, 
as it enables the rapid and efficient transmission of 
nerve impulses between neurons. This suggests 
a possible implication of DNA methylation changes 
on the effects of THC, the active substance in mar
ijuana, in cognitive and behavioural impairments. In 
addition, we detected cg05575921 (AHRR), the most 
significant tobacco-associated CpG site, differen
tially methylated according to marijuana use with 
a nominal P-value equal to 1.7·10−6. Allen et al. 
already found that the link between marijuana use 
and epigenetic age acceleration was statistically 
mediated via hypomethylation at site cg05575921 
[80]. This is consistent with the association of the 
AHRR gene with exposure to tobacco and fine parti
culate matter (PM2.5) which suggests that marijuana 
inhalation can produce similar effects [80,81].

In the current study, we aimed to investigate 
whether the adverse health effects commonly 
associated with the use of multiple substances, 
such as cardiovascular disease, could be attribu
ted to epigenetic alterations. Our findings 
revealed a significant overlap of 12 CpG sites 
that displayed differential methylation levels in 
response to both tobacco and alcohol. Moreover, 
61 genes overlapped between these two sub
stances and were enriched in biological processes 
involved in the proper functioning of the nervous 
and cardiovascular systems. Therefore, similar 

epigenetic changes may explain the shared con
sequences of drug abuse. Targeting these specific 
pathways could be a strategy for preventing 
addiction, as well as neurological and cardiovas
cular disorders. In line with this, we found that 
tobacco and alcohol consumption were associated 
with shorter telomere lengths, as reported pre
viously [82–84].

In our data, hypertension was partially asso
ciated with tobacco and highly associated with 
alcohol consumption, as demonstrated previously 
[39–42]. Marijuana was not associated with hyper
tension, in line with previous studies that have 
revealed ambiguous results [43–45]. In the case 
of tobacco exposure, we found unexpected results 
because the individuals who smoked the most 
were the ones who had less risk to develop hyper
tension. These results may be explained due to the 
lower age of the individuals in that group and also 
by the healthy donor effect of the data. This means 
that participants are volunteers who have paid for 
the TruAge test and may have healthy habits that 
protect them against hypertension although they 
are heavy smokers.

Our data replicated prior studies where light to 
moderate drinking was not associated with high 
blood pressure and heavy drinking increased the 
risk of the disease [8,40]. Another important find
ing was that 66 CpG sites significantly mediated 
the effect of alcohol consumption on hypertension. 
Importantly, the methylation levels of these probes 
increased the variance explained in hypertension 
by alcohol from 13.6% to 20.5%. More interest
ingly, lower methylation levels of cg06690548 at 
SLC7A11, cg18120259 at LINC01512, and 
cg19693031 at TXNIP have been seen previously 
associated with higher systolic and diastolic blood 
pressure [85–87]. Additionally, hypomethylation 
of cg06690548 was associated with higher expres
sion of SLC7A11 [87]. SLC7A11 enhances antiox
idant defence and protects against endothelial 
dysfunction and vascular inflammation. This 
increases vascular tone and rigidity, and conse
quently blood pressure. Also, Richard et al. evi
denced triangular associations between 
methylation, gene expression, and blood pressure 
[86]. The univariate mediation based on 
cg06690548 methylation revealed that 70.5% of 
the effect of alcohol on high blood pressure was 
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mediated by the CpG methylation level (P-value =  
0.006). In essence, we have demonstrated that the 
effect of heavy drinking on high blood pressure is 
partially mediated by the methylation of CpG sites 
that are significantly associated with the disease. 
This finding provides new insights on targets to 
prevent and manage hypertension in individuals 
with regular alcohol consumption.

The generalizability of these results is subject 
to certain limitations. First, DNA methylation 
was obtained from blood samples, thus, further 
research is required to understand the implication 
of the identified markers in each tissue. Second, 
genetics has an important role in substance use 
predisposition. In our analysis, we were not able 
to remove the genetic factor because of the lack of 
data. Some of the differentially methylated probes 
may be a consequence of the genetic differences 
and not the exposure itself. Notwithstanding this 
limitation, we filtered all the probes with a SNP in 
the extension base and all probes where 5bp 3’- 
subsequence overlapped with any of the SNPs 
with a global population frequency higher than 
1%. Third, the consumption assessment was self- 
reported and not specific for a time period, limit
ing credibility and enhancing misclassification. In 
addition, we did not have information on 
whether marijuana was smoked mixed or not 
with tobacco. This information could benefit 
future studies on removing the tobacco effect. 
Fourth, we have compared our results with the 
EWAS catalogue for smoking and with a unique 
paper for alcohol consumption. It would be useful 
to compare our results with other published 
papers.

Our study also had notable strengths, including 
a large number of drinkers and a high variability 
in drinking frequency. This allowed us to test the 
mediation analysis between alcohol consumption 
and hypertension. Moreover, most studies are 
focused on evaluating the effects of one substance 
in drug-specific cohorts. Our data provided infor
mation on tobacco, alcohol, and marijuana con
sumption in the same individuals, along with 
clinical data. While marijuana consumption may 
be reported or suffer from healthy donor effect, we 
observed that fewer individuals smoked tobacco 
compared with marijuana, yet the effect of tobacco 
and alcohol on DNA methylation was strong. This 

suggests that marijuana may have a lower effect on 
blood DNA methylation compared to other sub
stances. However, further studies with better con
sumption assessment are needed to confirm this 
observation.

Conclusions

To the best of our knowledge, this is the first 
study to assess simultaneously the effect of 
tobacco, alcohol, and marijuana on DNA methy
lation. We have shown that tobacco and alcohol 
have large effects on genome-wide DNA methyla
tion, while marijuana consumption has small 
effects. Most importantly, many genes differen
tially methylated by smoking are also affected by 
alcohol consumption, suggesting a similar epige
netic impact after the consumption of recreational 
drugs. The results of this research also have sig
nificant implications for the understanding of 
how alcohol consumption increases hypertension. 
We demonstrated that 66 CpG sites were partially 
mediating the association between heavy drinking 
and hypertension and the most alcohol-related 
CpG site mediated 70.5% of this association. 
Finally, the current data highlight the importance 
of using blood methylation biomarkers in clinical 
practice to detect and monitor the adverse effects, 
such as addiction, derived from substance 
consumption.
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