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Abstract

Diffusion weighted magnetic resonance imaging (DW-MRI) captures tissue microarchitecture at 

millimeter scale. With recent advantages in data sharing, large-scale multi-site DW-MRI datasets 

are being made available for multi-site studies. However, DW-MRI suffers from measurement 

variability (e.g., inter- and intra-site variability, hardware performance, and sequence design), 

which consequently yields inferior performance on multi-site and/or longitudinal diffusion studies. 

In this study, we propose a novel, deep learning-based method to harmonize DW-MRI signals for 

a more reproducible and robust estimation of microstructure. Our method introduces a data-driven 

scanner-invariant regularization scheme to model a more robust fiber orientation distribution 

function (FODF) estimation. We study the Human Connectome Project (HCP) young adults 

test-retest group as well as the MASiVar dataset (with inter- and intra-site scan/rescan data). The 

8th order spherical harmonics coefficients are employed as data representation. The results show 

that the proposed harmonization approach maintains higher angular correlation coefficients (ACC) 

with the ground truth signals (0.954 versus 0.942), while achieves higher consistency of FODF 

signals for intra-scanner data (0.891 versus 0.826), as compared with the baseline supervised 

deep learning scheme. Furthermore, the proposed data-driven framework is flexible and potentially 

applicable to a wider range of data harmonization problems in neuroimaging.
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1. INTRODUCTION

Diffusion-weighted MRI (DW-MRI) provides a non-invasive approach to both the estimation 

of intra-voxel tissue microarchitectures as well as the reconstruction of in-vivo neural 

pathways for the human brain.1 Computing the main diffusion directions is essential for the 

downstream fiber tracking algorithms, which are used to evaluate the neuronal connectivity.2 

Progress in DW-MRI acquisition, from diffusion tensor imaging (DTI)3 to high angular 

resolution diffusion imaging (HARDI),4 allows for more insightful mathematical tools in 

DW-MRI analytics. A number of new algorithms and methods have been proposed to 

link underlying tissue microstructures and observed signals, such as constrained spherical 

deconvolution5,6 (CSD), Q-ball,7 persistent angular structure8 (PAS MRI) and data-driven 

perspectives.9 Several studies have shown that the outcome of these methods can be 

used to evaluate neurological diseases. However, such methods exhibit high computational 

complexity and often require a high number of acquisition points, which may not otherwise 

be available in clinical settings.10

The diffusion tensor imaging (DTI) model3 is commonly used to estimate the white matter 

fiber orientation in each voxel from the DW-MRI data.11,12 However, existing DTI-based 

tractography methods are limited by resolving a single fiber direction within each voxel. 

It has been shown that up to 90% of white matter voxels in the brain have more complex 

fiber populations, typically referred to as “crossing fibers”.13 In such regions, the single 

orientation scheme might cause both anatomically false positive and missing tracts. Both 

types of bias can have consequences in the context of pre-surgical planning.14 Meanwhile, 

the overestimation of white matter tracts can lead to the incomplete resection of tumor 

or the erroneous removal of tissue. To tackle the crossing fiber issue, several higher-order 

models have been developed.15 Constrained spherical deconvolution (CSD)16 is one of the 

most prevalent models that uses high angular resolution diffusion imaging (HARDI)4 data 

to generate estimates of a full continuous angular distribution of WM fiber orientations 

within each imaging voxel. CSD has shown its promising clinical value in neurosurgical 

procedures, offering a superior determination of WM tracts.12 However, CSD is plagued by 

limited reproducibility (Fig. 1), and several studies have highlighted the biases, inaccuracies, 

and limitations of HARDI methods in characterizing tissue microstructure.17

Recently, machine learning (ML) and deep learning (DL) techniques have demonstrated 

their remarkable abilities in neuroimaging.10,18 Such approaches have been applied to the 

task of microstructure estimation, aiming to directly learn the mapping between input DWI 

scans and output fiber tractography while maintaining the necessary characteristics and 

reproducibility for clinical translation. By not assuming a specific diffusion model, data-

driven algorithms can reduce the dependence on data acquisition schemes and additionally 

require less user intervention. A similar regression approach was presented by Nath et al.,19 

using a multi-layer perceptron (MLP) network for fiber orientation estimation. It presented 

a deep learning network for estimating discrete fiber orientation distribution functions 

(FODFs) from voxels of DW-MRI scans.

In this study, we propose a 3D-CNN architecture that utilizes 3 × 3 × 3 cubic patches as the 

input signals for a single-shell microstructure estimation. The 8th order spherical harmonics 
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coefficients are used as the voxel-level representation. The scan/rescan data are employed to 

facilitate our new loss function in reducing the intra-subject variability. Another contribution 

is that we add intra-subject data augmentation in order to alleviate the impacts of a smaller 

number of diffusion directions on both reproducibility and the precision of metrics derived 

from CSD. The method has been trained, validated, and tested on both the HCP young adults 

(HCP-ya) test-retest group20 and the MASiVar dataset.21

2. METHOD

2.1 Data Representation

Spherical Harmonics (SH) are functions defined on the sphere. A collection of SH can be 

used as a basis function to represent and reconstruct any function on the surface of a unit 

sphere.22 All diffusion signals are transformed to SH basis signal ODF as a unified input 

for deep learning models, using 8th order spherical harmonics with the ‘tournier07’ basis.23 

For the fiber ODF, we processed all the data with single shell single tissue CSD (ssst-CSD) 

using the DIPY library with its default setting.22 For the spherical harmonics coeifficients ck
m, 

k is the order, m is the degree. For a given value of k, there are 2m + 1 independent solutions 

of this form, one for each integer m with −k ≤ m ≤ k. In practice, a maximum order L is used 

to truncate the SH series. By only taking into account even order SH functions, the above 

bases can be used to reconstruct symmetric spherical functions, thus, by using order 8th, we 

have 45 coefficients for each voxel’s representation.

2.2 Deep Learning Networks

Inspired by Nath et al.,19,24 we employ a 3D CNN with a residual block and utilize 

3×3×3 cubic patches as inputs with the idea that, compared with using signals from single 

voxel, 3D patches might provide more complete spatial information for deep learning 

networks(Fig. 2). Briefly, the input size of the network is 3×3×3 in the spatial dimensions 

by 45 channels, while the outputs are 45 8th order spherical harmonics coefficients. In this 

network, three subsequent convolutional layers serve as the critical composition of the CNN 

with 3D convolution filters. One residual block is included to connect the input and the 

third convolutional layer. The convolutional filters are then flattened and is connected to 

two dense layers for predicting FODF at the center voxel locations. All layers are ‘relu’ 

activated.

2.3 Loss Function

We introduce a customized loss function, as shown in Eqs. (1) to (3). The first term is 

the MSE loss between the network’s FOD prediction and the ground truth with the hyper-

parameter ‘α’. N is the number of samples, m is the order of the spherical harmonic (SH) 

basis and ck
m is the SH coefficients. The second term is the MSE loss between the paired 

voxels u, v which is expected to be 0 and the hyper-parameter is ‘β’. To be specific, if no 

scan/rescan data participate during training, ‘β’ is set to 0.

loss1 = 1
N ∑

i = 1

N
∑

k = 0

L
∑

m = − k

k
ck

m
true, i − ck

m
pred, i

2
(1)
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loss2 = 1
N ∑

i = 1

N
∑

k = 0

L
∑

m = − k

k
ck

m
u, i − ck

m
v, i

2
(2)

Loss = α * loss1 + β * loss2 (3)

2.4 Intra-subject data augmentation

In order to provide a robust microstructure estimation, we introduce intra-subject data 

augmentation during our network training. In normal acquisition scheme, the b-values of 

a shell are not all identical, we use tolerance to adjust the accepted interval during shell 

extraction. Different tolerance of 0, 5, and 20 are applied during single shell extraction to the 

multi-shell diffusion signal. Thus, we have different numbers of diffusion directions from 

the same image. The CSD methods are sensitive to the number of diffusion directions. By 

applying this augmentation, the diffusion ODF generated from fewer diffusion directions 

(still well distributed on the sphere) is labeled with the CSD results with the full numbers of 

gradient directions.

2.5 Evaluation metric

To compare the predictions of the proposed deep learning methods we use angular 

correlation coefficient (ACC, Eq. 4) to evaluate the similarity of the prediction when 

compared with the ground truth estimate of CSD. ACC is a generalized measure for all fiber 

population scenarios. It assesses the correlation of all directions over a spherical harmonic 

expansion. In brief, it provides an estimate of how closely a pair of FODF’s are related 

on a scale of −1 to 1, where 1 is the best measure. Here ‘u’ and ‘v’ represent sets of SH 

coefficients.

ACC = ∑k = 1
L ∑m = − k

k ukm vkm
*

[∑k = 1
L ∑m = − k

k ukm
2]0.5 ⋅ [∑k = 1

L ∑m = − k
k vkm

2]0.5 (4)

3. EXPERIMENTS

The experiments can be summarized as with/without scan/rescan data, and with/without 

intra-subject augmentation on two deep learning models (voxel-wise MLP presented by 

Nath et al.19 and ours in Fig. 2). We assessed the models, as well as benchmarks, using 

the overall mean ACC on white matter voxels between the prediction and the ground truth. 

We also conducted an ablation study to examine the robustness of the model when we feed 

‘fewer gradient directions’ and compared the results with single shell single tissue CSD 

(ssst-CSD).

3.1 Data & Data process

For the HCP-ya dataset,20 45 subjects with the retest acquisition were used (a total of 

90 images). The acquisitions at b-value of 2000 s/mm2 with 90 gradient directions were 

extracted for the study. A T1 volume of the same subject was used for WM segmentation 
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using SLANT.25HCP was distortion corrected with topup and eddy.26,27 Different tolerance 

of 5, 10 and 20 are applied during single shell extraction as intra-subject augmentation. The 

mean number of diffusion directions is 90 with a tolerance of 20, 75 with a tolerance of 10 

and 60 with tolerance a of 5. 30 subjects are used as training data, while 10 are used for 

validation and 5 are used for testing.

For the MASiVar dataset,21 five subjects were acquired on three different sites referred to 

as ‘A’, ‘B’ and ‘C’, structural T1 were acquired for all subjects at all sites. All in-vivo 

acquisitions were pre-processed with the PreQual pipeline28 and then registered pairwise per 

subject. Two subjects on site ‘A’ and ‘B’ are used as paired training data. One subject is 

used for validation, while two subjects are used for testing. Acquisitions from site C are 

used for an ablation study of intra-subject data augmentation which has a mean number of 

diffusion directions of 72 with a tolerance of 10 and number of 96 with a tolerance of 20. 

Tolerance of 0 with 16 diffusion directions, as well as a tolerance of 5 with 36 diffusion 

directions will not be used given that it does not meet the basic requirements for 8th order 

CSD reconstruction.

3.2 Voxel-wise experiment

The deep neural network consists of four fully connected layers. The number of neurons per 

layer is 400, 45,200, and 45. The input is the 1 × 45 vector of the SH basis signal ODF and 

the output is the 1 × 45 vector of the SH basis Fiber ODF.

The model was trained using the Adam optimizer with a base learning rate of 1e-4. The 

optimizer learning rate followed (linear scaling29) lr×BatchSize/256. Each experiment was 

trained for 100 epochs, and the epoch with the lowest loss (equation Eqs. (1) to (3)) over the 

validation set was used for testing.

3.3 Patch-wise experiment

The architecture in Fig. 2 was used for the patch-wise experiment. The model was then 

trained using the Adam optimizer with a base learning rate of 2e-4. The optimizer learning 

rate followed (linear scaling29) lr×BatchSize/256. Each experiment was trained for 100 

epochs, and the epoch with the lowest validation loss was used for testing.

4. RESULTS

The results of the FODF estimation are presented in Table. 1. The implementation of the 

CNN network for 3D-patch inputs has lead to a superior spherical harmonics coefficients 

estimation by incorporating more information from neighboring voxels. Meanwhile, by 

introducing the identity loss with scan/rescan data, the performance achieved a higher 

consistency while maintaining higher angular correlation coefficients with CSD.

Ablation study

In the ablation study (Table. 2), we evaluate the intra-subject augmentation by comparing 

the intra-subject consistency on all white matter voxels with different number of diffusion 

directions. The deep learning model which has the best performance on the validation set is 
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chosen for comparison. In Fig. 3, the right side shows a qualitative result of the visualization 

of the estimated SH coefficients and the left side shows the comparison with full-direction 

CSD. By performing CSD, the test subjects with a mean of 72 diffusion directions can only 

maintain a mean ACC of 0.848 as compared with their same acquisition with 96 directions. 

By adding the intra-subject augmentation during the training process, both voxel wise and 

patch wise models have significant improvement, which shows that deep learning reveals 

untapped information during the ODF estimation. Fig. 4 shows the result of 1) estimation on 

a signal with fewer diffusion directions using a patch-wise DL model with scan/rescan data 

and intra-subject augmentation participated during training and 2) CSD.

5. CONCLUSION

In this paper, we propose a data-driven harmonization algorithms to (1) learn the mapping 

from SH basis DW-MRI signal to a fiber ODF, (2) improve consistency and alleviate the 

effects that occur between different scanners, and (3) increase model robustness in the 

‘fewer diffusion directions’ scenarios. Our study is a step towards the direct harmonization 

of the estimated microstructure (FOD) using deep learning and data-driven scheme, when 

scan-rescan data are available for training. The proposed method is potentially applicable to 

a wider range of data harmonization problems in neuroimaging.

ACKNOWLEDGMENTS

This work was supported by the National Institutes of Health under award numbers R01EB017230, T32EB001628, 
and 5T32GM007347, and in part by the National Center for Research Resources and Grant UL1 RR024975–01. 
This study was also supported by National Science Foundation (1452485, 1660816, and 1750213). The content is 
solely the responsibility of the authors and does not necessarily represent the official views of the NIH or NSF.

REFERENCES

[1]. Schaefer PW, Grant PE, and Gonzalez RG, “Diffusion-weighted mr imaging of the brain,” 
Radiology 217(2), 331–345 (2000). [PubMed: 11058626] 

[2]. Hagmann P, Thiran J-P, Jonasson L, Vandergheynst P, Clarke S, Maeder P, and Meuli R, 
“Dti mapping of human brain connectivity: statistical fibre tracking and virtual dissection,” 
Neuroimage 19(3), 545–554 (2003). [PubMed: 12880786] 

[3]. Le Bihan D, Mangin J-F, Poupon C, Clark CA, Pappata S, Molko N, and Chabriat H, “Diffusion 
tensor imaging: concepts and applications,” Journal of Magnetic Resonance Imaging: An Official 
Journal of the International Society for Magnetic Resonance in Medicine 13(4), 534–546 (2001).

[4]. Tuch DS, Reese TG, Wiegell MR, Makris N, Belliveau JW, and Wedeen VJ, “High angular 
resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity,” Magnetic 
Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance 
in Medicine 48(4), 577–582 (2002).

[5]. Tournier J-D, Yeh C-H, Calamante F, Cho K-H, Connelly A, and Lin C-P, “Resolving crossing 
fibres using constrained spherical deconvolution: validation using diffusion-weighted imaging 
phantom data,” Neuroimage 42(2), 617–625 (2008). [PubMed: 18583153] 

[6]. Jeurissen B, Tournier J-D, Dhollander T, Connelly A, and Sijbers J, “Multi-tissue constrained 
spherical deconvolution for improved analysis of multi-shell diffusion mri data,” NeuroImage 
103, 411–426 (2014). [PubMed: 25109526] 

[7]. Aganj I, Lenglet C, Sapiro G, Yacoub E, Ugurbil K, and Harel N, “Reconstruction of the 
orientation distribution function in single-and multiple-shell q-ball imaging within constant solid 
angle,” Magnetic resonance in medicine 64(2), 554–566 (2010). [PubMed: 20535807] 

Yao et al. Page 6

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2023 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[8]. Jansons KM and Alexander DC, “Persistent angular structure: new insights from diffusion 
magnetic resonance imaging data,” Inverse problems 19(5), 1031 (2003).

[9]. Poulin P, Côté M-A, Houde J-C, Petit L, Neher PF, Maier-Hein KH, Larochelle H, and Descoteaux 
M, “Learn to track: deep learning for tractography,” in [International Conference on Medical 
Image Computing and Computer-Assisted Intervention], 540–547, Springer (2017).

[10]. Benou I and Riklin Raviv T, “Deeptract: A probabilistic deep learning framework for white 
matter fiber tractography,” in [International conference on medical image computing and 
computer-assisted intervention], 626–635, Springer (2019).

[11]. Essayed WI, Zhang F, Unadkat P, Cosgrove GR, Golby AJ, and O’Donnell LJ, “White matter 
tractography for neurosurgical planning: A topography-based review of the current state of the 
art,” NeuroImage: Clinical 15, 659–672 (2017). [PubMed: 28664037] 

[12]. Farquharson S, Tournier J-D, Calamante F, Fabinyi G, Schneider-Kolsky M, Jackson GD, and 
Connelly A, “White matter fiber tractography: why we need to move beyond dti,” Journal of 
neurosurgery 118(6), 1367–1377 (2013). [PubMed: 23540269] 

[13]. Jeurissen B, Leemans A, Tournier J-D, Jones DK, and Sijbers J, “Investigating the prevalence of 
complex fiber configurations in white matter tissue with diffusion magnetic resonance imaging,” 
Human brain mapping 34(11), 2747–2766 (2013). [PubMed: 22611035] 

[14]. Dubey A, Kataria R, and Sinha VD, “Role of diffusion tensor imaging in brain tumor surgery,” 
Asian journal of neurosurgery 13(2), 302 (2018). [PubMed: 29682025] 

[15]. Tournier J-D, Mori S, and Leemans A, “Diffusion tensor imaging and beyond,” Magnetic 
resonance in medicine 65(6), 1532 (2011). [PubMed: 21469191] 

[16]. Tournier J-D, Calamante F, and Connelly A, “Robust determination of the fibre orientation 
distribution in diffusion mri: non-negativity constrained super-resolved spherical deconvolution,” 
Neuroimage 35(4), 1459–1472 (2007). [PubMed: 17379540] 

[17]. Schilling K, Janve V, Gao Y, Stepniewska I, Landman BA, and Anderson AW, “Comparison 
of 3d orientation distribution functions measured with confocal microscopy and diffusion mri,” 
Neuroimage 129, 185–197 (2016). [PubMed: 26804781] 

[18]. Poulin P, Jörgens D, Jodoin P-M, and Descoteaux M, “Tractography and machine learning: 
Current state and open challenges,” Magnetic resonance imaging 64, 37–48 (2019). [PubMed: 
31078615] 

[19]. Nath V, Parvathaneni P, Hansen CB, Hainline AE, Bermudez C, Remedios S, Blaber JA, 
Schilling KG, Lyu I, Janve V, et al., “Inter-scanner harmonization of high angular resolution dw-
mri using null space deep learning,” in [International Conference on Medical Image Computing 
and Computer-Assisted Intervention], 193–201, Springer (2019).

[20]. Van Essen DC, Smith SM, Barch DM, Behrens TE, Yacoub E, Ugurbil K, Consortium W-MH, 
et al. , “The wu-minn human connectome project: an overview,” Neuroimage 80, 62–79 (2013). 
[PubMed: 23684880] 

[21]. Cai LY, Yang Q, Kanakaraj P, Nath V, Newton AT, Edmonson HA, Luci J, Conrad BN, Price GR, 
Hansen CB, et al. , “Masivar: Multisite, multiscanner, and multisubject acquisitions for studying 
variability in diffusion weighted mri,” Magnetic resonance in medicine 86(6), 3304–3320 (2021). 
[PubMed: 34270123] 

[22]. Garyfallidis E, Brett M, Amirbekian B, Rokem A, Van Der Walt S, Descoteaux M, Nimmo-Smith 
I, and Contributors D, “Dipy, a library for the analysis of diffusion mri data,” Frontiers in 
neuroinformatics 8, 8 (2014). [PubMed: 24600385] 

[23]. Tournier J-D, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen 
B, Yeh C-H, and Connelly A, “Mrtrix3: A fast, flexible and open software framework for medical 
image processing and visualisation,” Neuroimage 202, 116137 (2019). [PubMed: 31473352] 

[24]. Nath V, Pathak SK, Schilling KG, Schneider W, and Landman BA, “Deep learning estimation of 
multi-tissue constrained spherical deconvolution with limited single shell dw-mri,” in [Medical 
Imaging 2020: Image Processing], 11313, 162–171, SPIE (2020).

[25]. Huo Y, Xu Z, Xiong Y, Aboud K, Parvathaneni P, Bao S, Bermudez C, Resnick SM, Cutting LE, 
and Landman BA, “3d whole brain segmentation using spatially localized atlas network tiles,” 
NeuroImage 194, 105–119 (2019). [PubMed: 30910724] 

Yao et al. Page 7

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2023 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[26]. Andersson JL, Skare S, and Ashburner J, “How to correct susceptibility distortions in spin-
echo echo-planar images: application to diffusion tensor imaging,” Neuroimage 20(2), 870–888 
(2003). [PubMed: 14568458] 

[27]. Andersson JL and Sotiropoulos SN, “An integrated approach to correction for off-resonance 
effects and subject movement in diffusion mr imaging,” Neuroimage 125, 1063–1078 (2016). 
[PubMed: 26481672] 

[28]. Cai LY, Yang Q, Hansen CB, Nath V, Ramadass K, Johnson GW, Conrad BN, Boyd 
BD, Begnoche JP, Beason-Held LL, et al. , “Prequal: An automated pipeline for integrated 
preprocessing and quality assurance of diffusion weighted mri images,” Magnetic resonance in 
medicine 86(1), 456–470 (2021). [PubMed: 33533094] 

[29]. Goyal P, Dollár P, Girshick R, Noordhuis P, Wesolowski L, Kyrola A, Tulloch A, Jia Y, and He K, 
“Accurate, large minibatch sgd: Training imagenet in 1 hour,” arXiv preprint arXiv:1706.02677 
(2017).

Yao et al. Page 8

Proc SPIE Int Soc Opt Eng. Author manuscript; available in PMC 2023 May 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
This figure shows that the DW-MRI signals are affected by measurement factors (e.g., 

hardware, reconstruction algorithms, acquisition parameters). The left panel shows the inter-

site variability, even for the data that are collected from the same brain. The right panel 

shows that the number of diffusion directions impacts the reproducibility of HARDI method 

(e.g., constrained spherical deconvolution), even in the same acquisition.
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Figure 2: 
This figure shows the proposed deep learning architecture. We develop a 3D patch-wise 

convolutional neural network to fit the fiber orientation distribution function (FODF) from 

the 8th order spherical harmonics (SH), using 3×3×3 cubic patches.
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Figure 3: 
This figure presents the qualitative results of using the proposed deep learning (DL) 

method, as well as the results from CSD modeling on the 2 testing subjects in MASiVar. 

Qualitatively, the selected patches show better reconstruction on crossing-fiber areas while 

the circled spheres indicate better fiber orientation estimation.
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Figure 4: 
This figure depicts the histogram of ACC between full diffusion directions’ reconstruction 

and fewer directions’ reconstruction while using the proposed deep learning (DL) method, 

as well as the results from CSD modeling on the 2 testing subjects in MASiVar. The ACC 

spatial maps are the comparison between 1) the FODFs of reconstruction from CSD with 

full diffusion directions and 2) fewer diffusion directions’ CSD and DL estimator on two 

testing subjects.
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Table 1:

Performance of FODF prediction

model & Method scan/rescan intra-subject augmentation mean ACC inter-scanner consistency

CSD N/A N/A N/A 0.826

0.942 0.830⋆

voxel-wise ✓ 0.938 0.878⋆

✓ ✓ 0.939 0.882⋆

0.949 0.834⋆

patch-wise ✓ 0.954 0.886⋆

✓ ✓ 0.953 0.891⋆

*
Mean ACC are calculated over white matter voxels.

Wilcoxon signed-rank test is applied as statistical assessment (denoted by ⋆). The deep learning performances are statistically significant as 
compared with baseline–CSD (0.05; p < 0.001). 
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Table 2:

Performance in fewer diffusion direction situation

model & method scan/rescan intra-subject augmentation intra-subject consistency

CSD N/A N/A 0.848 ± 0.189

0.838 ± 0.195⋆

voxel-wise ✓ 0.849 ± 0.175⋆

✓ ✓ 0.879 ± 0.138⋆

0.842 ± 0.185⋆

Patch-wise ✓ 0.856 ± 0.173⋆

✓ ✓ 0.902 ± 0.128⋆

Wilcoxon signed-rank test is applied as statistical assessment (denoted by ⋆). The deep learning performances are statistically significant as 
compared with baseline–CSD (0.05; p < 0.001).
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