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Clinical and animal studies have shown that gut microbiome disturbances can affect neural function and behaviors via the
microbiota–gut–brain axis, and may be implicated in the pathogenesis of several brain diseases. However, exactly how the gut
microbiome modulates nervous system activity remains obscure. Here, using a single-cell nucleus sequencing approach, we sought
to characterize the cell type–specific transcriptomic changes in the prefrontal cortex and hippocampus derived from germ-free
(GF), specific pathogen free, and colonized-GF mice. We found that the absence of gut microbiota resulted in cell-specific
transcriptomic changes. Furthermore, microglia transcriptomes were preferentially influenced, which could be effectively reversed
by microbial colonization. Significantly, the gut microbiome modulated the mutual transformation of microglial subpopulations in
the two regions. Cross-species analysis showed that the transcriptome changes of these microglial subpopulations were mainly
associated with Alzheimer’s disease (AD) and major depressive disorder (MDD), which were further supported by animal behavioral
tests. Our findings demonstrate that gut microbiota mainly modulate the mutual transformation of microglial subtypes, which may
lead to new insights into the pathogenesis of AD and MDD.
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INTRODUCTION
Substantial basic research has demonstrated that the gut
microbiome can modulate neurochemistry and various behaviors
through the microbiota–gut–brain (MGB) axis [1–3]. Clinical
studies have found that major neuropsychiatric diseases such as
Alzheimer’s disease (AD) [4], Parkinson’s disease [5], autism [6],
and major depressive disorder (MDD) [7, 8] were accompanied by
disturbances of the gut microbiome. Significantly, investigations
further showed that certain microbial species were associated
with the pathogenesis of representative neuropsychiatric diseases
[9–13]. However, exactly how gut microbiota modulate molecular
changes in the brain remains largely unknown. Uncovering this
information is critical to understanding whether the gut micro-
biome might contribute directly to the pathology or treatment of
brain diseases.
Germ-free (GF) mice, which are entirely devoid of gut

microbiota, are an important model for studying the roles of the
gut microbiome and the MGB axis [6, 10, 14–16]. Previously,
several studies showed that gut microbiome absence altered
hippocampus, prefrontal lobe, and amygdala transcriptomes,
which were related to anxiety, depression, and cognitive
impairment [17–20]. However, given the heterogeneity of neural
cell types and their roles, bulk-tissue-level investigations may

mask the complexity of changes across cells, and cannot
interrogate the complex interplay between different cells [21]. In
addition, previous studies highlighted that specific neural cell
subpopulations were preferentially linked with the pathogenesis
of neuropsychiatric diseases [22–25]. For example, Keren-Shaul
et al. identified the disease-associated microglia (DAM) subtype,
which was linked with AD [22]. Single-cell nucleus sequencing
(snRNA-seq) approaches enable the characterization of cell
type–specific transcriptome changes for tens of thousands of
individual cells [26, 27]. The snRNA-seq studies have identified
new potential pathophysiological mechanisms and intervention
targets for neuropsychiatric diseases [28, 29], which highlight new
avenues of investigation for how the gut microbiome affects the
brain through the MGB axis.
To gain insight into cell type–specific transcriptomic changes,

we performed unbiased snRNA-seq of the prefrontal lobe cortex
(PFC) and hippocampus (Hip) derived from GF, specific pathogen
free (SPF), and colonized-GF (CGF) mice. CGF mice were generated
by co-housing juvenile (4-week-old) GF and SPF mice in flexible
film gnotobiotic isolators for four weeks. We chose to investigate
the PFC and Hip brain regions because: (i) the PFC and Hip are
known principal targets of gut microbiome action on the brain via
the MGB axis [15, 29, 30], and (ii) the PFC and Hip are closely
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linked with the development of neuropsychiatric disorders
[31–33]. We found that the transcriptomes of microglia and their
subpopulations were substantially modulated by the gut micro-
biome, which may have implications for the pathogenesis and
treatment of AD and MDD.

METHOD
Ethics statement
The Ethical Committee of Chongqing Medical University (Chongqing,
China; 2017013) reviewed the animal protocols and experiments. Kun Ming
mice were used in all experiments. GF mice were obtained by sterile
treatment on SPF mice in the NHC Key Laboratory of Diagnosis and
Treatment on Brain Functional Diseases. The sterilization verification on GF
mice was tested by sterile experiment on feces and skin, in accordance
with Chinese Laboratory Animal-Microbiological Standards and Monitoring
(GB 14922.2-2011). We followed the “Reduce, Reuse, Recycle” waste
hierarchy, using the minimum sample size of 3 samples/group (n= 3/GF,
n= 3/SPF, n= 3/CGF). This sample size is also commonly used in the
single-cell analysis of murine brain tissues in previous studies
[22, 28, 29, 34–37].

Co-housing method
SPF mice were raised in different situations with GF and CGF. GF mice were
labeled in 4 weeks after birth with an ear tag, then randomly allocated to
GF or CGF by random number table. CGF mice were 4-week-old GF mice
reared with SPF mice for 4 weeks in one GF isolator (4 CGF with 1 SPF/
cage), see Supplementary Fig. 1a. GF and CGF mice were kept in flexible
film gnotobiotic isolators until experiment and behavioral tests. All mice
were housed on a 12-h light/dark cycle and had food and water ad libitum,
with controlled temperature (22–24 °C) and (50–60%) humidity conditions.
All mice were harvested at 8 weeks old.

Extraction of single-cell nuclei
The PFC and Hip were dissected, snap frozen in liquid nitrogen, then
homogenized in 250mM Sucrose, 10 mM Tris-HCl, 3 mM MgAc2, 0.1%
Triton X-100 (Sigma-Aldrich, USA), 0.1 mM EDTA, 0.2U/μl RNase Inhibitor
(Takara, Japan) (Fig. 1a), as previously described [38]. Nuclei were purified
by sucrose gradient, and used at about 1000 nuclei/μl for snRNA-Seq.

10x library construction
The 10X Genomics Chromium Controller Instrument and Chromium Single
Cell 3’V3.1 Reagent Kits (10X Genomics, Pleasanton, USA) were used to
establish the 10x library. Nuclear suspensions (1000 nuclei/μl) were added
to each channel to generate single-cell gel bead-in-emulsions (GEMs). This
procedure breaks up GEMs, and purifies and amplifies barcoded-cDNA,
after reverse transcription. The cDNA was then cut to make it fragmented,
the A-end was loaded at the tail, the adapters joined, then index PCR
amplification was performed. The final library was quantified using High
Sensitivity DNA chip on a Bioanalyzer 2200 (Agilent, USA), and sequenced
using a Novaseq 6000 (Illumina, USA) on a 150 bp paired-end run.

Single-cell nucleus RNA statistical analysis
After applying the default filtering parameters (to exclude the adapted
sequences and low-quality sequences) by using Fastp (v0.18.0), clean and
high-quality sequence data were obtained. CellRanger v3.1.0 was used to
get feature-barcode matrices through match reads to the mouse genome
(mm10_Ensembl_Ensembl92). The aggregated matrix was obtained by
downsample analysis of mapped barcoded reads per cell of each sample.
Cells expressing fewer than 200 genes and cells with a mitochondrial UMI
(Unique molecular identifiers) rate higher than 10% were excluded. Based
on the above expression matrix, the Seurat package (version: 3.1.4)
achieved the scaled data after cell normalization and regression [39, 40].
According to the scaled data, the top 2000 high-variable genes and top 10
principals were used to construct a principal component analysis (PCA) for
uniform manifold approximation and projection for dimension reduction
(UMAP). The unsupervised cell cluster was obtained based on the above
PCA analysis and graph-based cluster method, and marker genes were
calculated by FindAllMarkers (Wilcoxon) with default criteria, in line with
single-cell approaches. Simultaneously, we used re-UMAP analysis, graph-
based clustering, and marker analysis in the same cell type to find new cell
subtypes.

Differentially expressed genes burden analysis on
downsampling data
Firstly, we identified differentially expressed genes (DEGs) among samples,
and the function FindMarkers (Wilcoxon) was used under default criteria.
Next, we used a weighting algorithm that balanced the difference in the

number of DEGs caused by unequal cell counts to explore preferentially
influenced cell types in GF mice, as previously described [41]. We then
calculated the number of DEGs by randomly sampling 1992 cells ten times
(Student’s t-test, two-tailed).

Gene ontology and canonical pathway analyses
Gene ontology analysis and canonical pathways analysis were conducted
by GO (geneontology.org) and Ingenuity Pathway Analysis software
(Qiagen, Shanghai, China), cutoff as |–logFDR| > 1.31 and |–logP| > 1.31.

Pseudotime analysis
After selecting marker genes by the Seurat clustering result, Monocle2 was
used to analyze Single-Cell Trajectories using DDR-tree with default
parameters [42]. Finally, branch expression analysis modeling (BEAM
analysis) was applied for branch fate-determined gene analysis.

QuSAGE analysis (gene enrichment analysis)
A customized 41-signature gene set including immune-, cytokine-, and
neurobiology-related terms was collected from the CellphoneDB database
[43, 44], the neurotransmitters receptor gene of Genebank (https://
www.ncbi.nlm.nih.gov/genbank/), and the immune scoring gene set as
previously described [45]. QuSAGE analysis was used to quantify the
relative activation of a given gene set, using QuSAGE (version 2.16.1). Full
probability density function was used to show gene set differential
expression levels, and significant enrichment pathway (P value < 0.05)
analysis was used to visualize data.

Cell communication analysis
The CellPhoneDB database [44] (cellphonedb V1.10 R package) analyzed
cell-to-cell molecular communications in the Hip and PFC. Membrane,
secreted, and peripheral proteins of the cluster of different time points
were annotated. The mean counts of cell communication and its
significance (P value < 0.05) were calculated based on the interactions.

Behavioral tests
Prior to all behavioral tests, the experimental 8-week-old GF and CGF were
removed from the sterile chamber and placed in a quiet test room for at
least 1 h before test initiation, as previously described [7]. Tests were
conducted during 9:00 am to 17:00 pm, under the same conditions as the
typical breeding environment. All tests were video recorded and Noldus
and ANY-maze software were used for data analyses. Behavioral videos
were recorded and analyzed by an observer blinded to the experimental
groups. Mice were tested in the open field test (OFT), forced swim test
(FST) and Y-maze test.
OFT [46]: mice were individually placed in an uncovered cube of 45 cm

length × 45 cm width and 45 cm height, with a black background. The
mouse was placed in a corner of the box. After 5 min of adaptation, 5-min
video was collected for analysis. The total distance traveled was used to
evaluate the mouse’s locomotor activity.
FST [47]: cylinder tanks of 30 cm height and 15 cm diameter, containing

15 cm of water level at 24 °C were used. Mice were placed vertically,
wetting all the hair, then the video was collected for 6 min. Duration of
immobility during the middle 5min of the total 6 min was used to evaluate
the behavior of despair.
Y-maze test [48]: The Y-maze test instrument was composed of three

open arms each 45 cm long, 10 cm wide and 29 cm height in a black
background. Each mouse was placed in the same starting arm at the
beginning of the experiment. The free exploration trajectory of the mouse
was recorded for 8 min, and the order and times of entering the three
open arms were used to calculate the spontaneous alternation rate (%)
using the following equation= (the number of triads in turn) / (the total
number of arm entries – 2) × 100%.

Statistical methods and reproducibility
One-way ANOVA measured the proportion of cell types and numeric data
of behavioral tests. Significance between the two groups was calculated by
post hoc analysis with the least significant difference test (LSD) or
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Tamhane T2 test (when it was uneven variance). Detailed information on
statistical procedure including variance and mean square is listed in
Supplementary Table S5.

RESULTS
Single-cell nucleus RNA-seq profiling of Hip and PFC
A schematic of nuclei isolation and the snRNA-seq workflow from
the Hip and PFC is shown in Fig. 1a. Using the droplet-based
single-nucleus method, we captured 72,226, and 67,698 nuclei
from the Hip and PFC, respectively, in the 9 mice (3 per group). We
obtained an average of 45,455 reads per nuclei in the Hip and
50,245 reads in PFC after stringent quality control (Supplementary
Table S1).
After dimensionality reduction and graph-based clustering

(UMAP), we identified 36 distinct clusters in the Hip (Supplemen-
tary Fig. 1b) and 29 clusters in PFC (Supplementary Fig. 1c). Then
we annotated major cell types in the two regions based on the
expression of well-established marker genes [49]. Here, excitatory
neurons (n= 43,956 and 41,837 in the Hip and PFC, respectively;
marked by Grin2a, Syt1, Grin1), interneurons (n= 6036, 7702; Gad1,
Gad2), oligodendrocyte (n= 6021, 2984; Plp1, Mog, Mbp), OPC
(Oligodendrocyte precursor cells; n= 2089, 1994; Pdgfra, Vcan),
microglia (n= 2343, 2353; Csf1r, Ctss, C1qa), and astrocytes
(n= 6803, 5862; Aqp4, Gja1) were clearly identified (Supplemen-
tary Fig. 1d, e and Fig. 1b, c).

The absence of gut microbiota changed glial cells proportion
in the Hip and PFC
Initially, we calculated the proportion of major cell types in two
brain regions. In Hip, we found that the microglial proportion was
significantly lower in GF compared to SPF (P= 0.013), and
microbial colonization failed to rescue this change (GF vs. CGF,
P= 0.662; Fig. 1d). Meanwhile, hippocampal astrocyte, oligoden-
drocyte and OPC proportion were downregulated in the GF group
relative to the SPF group (GF vs. SPF, P= 0.005 for astrocyte,
0.0394 for oligodendrocyte and 0.015 for OPC), astrocyte and OPC
were reversed by microbial colonization in the CGF group (GF vs.
CGF, P= 0.0003, 0.034), excluded oligodendrocyte. Furthermore,
in contrast to glial cells, excitatory neuron increased in GF (GF vs.
SPF, P= 0.0444), microbial colonization reversed this trend in CGF
(GF vs. CGF, P= 0.0342). In PFC, the proportion of microglia in the
GF group relative to the SPF group trended upward (P= 0.062),
which could be reversed by microbial colonization (Fig. 1e). We
did not find any difference in the composition ratio of the
remaining cell types between the three groups. These observa-
tions demonstrate that the presence or absence of the gut
microbiome primarily impacted the relative composition of glia in
the Hip and PFC.

The absence of gut microbiota resulted in cell-specific
transcriptomic changes
Next, we performed a DEGs analysis between GF and SPF
(Supplementary Fig. 2a, b). We identified 4999 and 6122 DEGs
across the major six cell types in the Hip and PFC, respectively,
based on the total captured gene in each type (Supplementary
Table S6 and Supplementary Fig. 2c). In these two brain regions,
glial cells had more DEGs than neurons (Supplementary Fig. 2d, e).
The top DEGs in the two regions were mainly involved in
mitochondrial dysfunction and the RNA translation process even
across cell types (Supplementary Fig. 2f, g).
To further uncover the cell-specific transcriptomic changes

modulated by gut microbiota, we identified 846 and 1333 cell-
specific DEGs across the six major cell types in the Hip and PFC
(Fig. 2a, b), respectively. This observation highlights that the
single-cell-level resolution is vital to uncover how the gut
microbiome modulates transcriptional changes in the brain. The
function enrichment pathways of these cell-specific genes were

also significantly different. For example, the altered microglial cell-
specific DEGs were enriched for neuroinflammatory and comple-
ment system signaling pathways in the Hip (Supplementary
Fig. 3a), such as alterations of chemokine receptor-Cx3cr1,
interferon gamma receptor-Ifngr1, interleukin receptor-Il6ra, and
complement family-C1qa, C1qb, and C1qc, respectively. In contrast,
in the PFC, microglial cell-specific DEGs were enriched for RhoGDI
and IL-8 signaling pathways (Supplementary Fig. 3b), for example,
Map2k1, Nfatc3, and Rhot1. Together, our DEGs analysis showed
that the absence of gut microbiota resulted in cell-specific
transcriptomic changes.

Microglial transcriptomes were preferentially influenced
Here we explored which cell types were preferentially modulated
by the gut microbiome. Disregarding different cellular counts,
oligodendrocytes, astrocytes, and microglia mainly contributed to
DEGs detected in the Hip (Supplementary Fig. 2d), while the
majority of DEGs in PFC were derived from excitatory neurons,
interneurons, and microglia (Supplementary Fig. 2e). To rule out
the inherent confounding effects of unequal captured cell ratios
(neuron: glia ratio = 2.89:1 in PFC and 3.2:1 in Hip), the DEGs
burden analysis [41] was carried out by comparing the same
number of nuclei across all cell types for ten times by down-
sampling the data. Accordingly, we found that microglia had the
largest number of DEGs in both the Hip and PFC (Fig. 2c, d),
suggesting that microglia were preferentially impacted among the
six major cell types in the two regions. These findings aligned with
the disparate microglial ratios also found in the two brain regions.
We determined whether microglial DEGs were brain-specific.

Venn diagram analysis showed that there were 370 genes shared
in two regions, while 563 genes only changed in the Hip, and 694
in PFC (Supplementary Fig. 4a). Functionally, we found that the GF
mice were enriched for mitochondrial dysfunction, oxidative
phosphorylation, inflammasome pathway, and NRF2-mediated
oxidative stress response, and depleted for synaptogenesis,
synaptic long-term potentiation, and synaptic long-term depres-
sion signaling in the Hip. In the PFC, some pathways such as NRF2-
mediated oxidative stress response were consistently enriched in
GF relative to SPF mice. However, synaptic-related pathways such
as the synaptogenesis signaling and long-term synaptic potentia-
tion showed opposite changes in the PFC relative to Hip
(Supplementary Fig. 4b). Our results suggest that microglial
transcriptional changes caused by the gut microbiome vary in a
brain region-specific manner.

The gut microbiome mainly modulated microglia-astrocyte
communication
We conducted CellPhoneDB database [44] (cellphonedb V1.10 R
package) analysis to uncover potential ligand-receptor pairs
between cells to understand how gut microbiome absence
influenced communication between microglia and other major
cell types. Detailed data are shown in Supplementary Table S2.
Microglia communicated mostly with astrocytes, followed by
oligodendrocytes, in the Hip of the SPF group. Similar cell-to-cell
communications were also found in the GF group, but the lack
of a gut microbiome in that group resulted in decreased
interaction intensities. Microbial colonization slightly increased
the microglia-astrocyte communication (Supplementary Fig. 5a).
For example, we found diminished communication between
microglial Entpd1 to astrocytic Adora1 in the GF group, which
was restored in the CGF group. The CD39 (Entpd1) and Adora1
pair can regulate neuronal activity via its participation in
adenosine metabolism [50]. In the SPF group, cellular commu-
nication between microglia and other cells was weaker in the
PFC than in Hip. Interestingly, lack of a gut microbiome led to
significantly increased microglia-astrocyte communication, rank-
ing first in the communication between microglia and other
cells. Furthermore, microbial colonization failed to modulate the
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communication between microglia and other cells (Supplemen-
tary Fig. 5a). In summary, the gut microbiome mainly influenced
microglia-astrocyte communication in the Hip and PFC of GF
and CGF mice.

Microbial colonization rescued microglial gene alterations
Here, we identified 933 and 1064 microglial DEGs by comparing
the GF and SPF groups. Interestingly, we found that most of DEGs
from these two groups (74.91% and 78.76%) could be rescued by

Fig. 1 Gut microbiota absence changed microglial proportion in the Hip and PFC. a Schematic graph shows the workflow of acquiring
hippocampus (Hip) and prefrontal lobe cortex (PFC) samples, nuclei isolation and droplet-based capture (10X Genomics) to produce cell
type–specific transcriptomic signatures. b, c UMAP graph-based clustering and visualization of all captured nuclei for the Hip (b) and PFC (c).
CNS resident cell types included excitatory neuron, interneuron, microglia, astrocyte, oligodendrocyte, OPC, ependymal cell, endothelial cell,
smooth muscular cell, and fibroblast (Endo&SMC&Fibro). d In the Hip, GF mice had significantly decreased microglial proportion than SPF
mice, and microbial colonization failed to rescue this change. The downregulated hippocampal astrocyte and OPC proportion in GF group
relative to the SPF group were reversed by microbial colonization in the CGF group (SPF, n= 3; GF, n= 3; CGF, n= 3; data are mean ± SEM; GF
vs. SPF, microglia, *P= 0.013, Excitatory neuron, *P= 0.0444, astrocyte, **P= 0.005, oligodendrocyte, *P= 0.0394, OPC, *P= 0.015; GF vs. CGF,
microglia, P= 0.662, astrocyte, ***P= 0.0003, Excitatory neuron, *P= 0.0342, OPC, *P= 0.034; P values are from ANOVA post hoc analysis-LSD
test). e In the PFC, there was an increased trend of proportion of microglia in GF group relative to SPF groups, which could be reversed by
microbial colonization (SPF, n= 3; GF, n= 3; CGF, n= 3; data are mean ± SEM; GF vs. CGF, microglia, *P= 0.021; P values are from ANOVA post
hoc analysis-LSD test).
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microbial colonization. These rescued genes were associated with
chemical synaptic transmission, and cell-cell adhesion in the Hip
(Supplementary Table S3 and Supplementary Fig. 5b). For
example, we observed six rescued cadherin family genes (e.g.,
Cdh8, Cdh9, Cdh11 and Cdh12), mainly involving in cell adhesion,
and seven rescued gamma-aminobutyric acid (GABA) receptor
genes (e.g., Gabarap, Gabarapl2, Gabra2, Gabrb1). In addition,
genes enriched in fundamental molecular processes like protein
binding and transport, were rescued in the PFC by microbial
colonization, such as 6 reversed genes (e.g., Eif1, Eif1b, Eif2s3y,
Eif4e, Eif4h, and Eif5a) belonging to eukaryotic initiation factor
(Supplementary Fig. 5c). Our findings suggest that microbial
colonization effectively reversed microglial transcriptomic
changes in the Hip and PFC.

Gut microbiota modulated mutual transformation of
microglial subpopulations
Having demonstrated that gut microbiome absence mainly affects
microglia, we wanted to further clarify if or how microglial

subpopulations changed. Therefore, we performed a microglial re-
clustering analysis, which yielded 10 and 6 subpopulations in the
Hip and PFC, respectively. In the Hip, two microglial subpopula-
tions (Hip_M1, M4), with a composition ratio of 83.98%, were
significantly enriched in GF compared to SPF (0.53%), and
microbial colonization could effectively reverse these changes in
the CGF group (0.44%; P= 5.2523E–8, one-way ANOVA; Fig. 3a, b).
For Hip_M0, a contrasting pattern was observed between the
three groups (0.27% in GF, 34.99% in SPF, 45.18% in CGF;
P= 0.014, one-way ANOVA; Fig. 3a, b). QuSAGE was used to
identify functional gene sets of each subpopulation. This analysis
showed that the anti-inflammatory and regulatory T cells (Treg)
gene sets were most activated in Hip_M1 and Hip_M4 (Supple-
mentary Fig. 6a–c), such as enrichment of Entpd1, Mif and Tgfb1
(Supplementary Fig. 7a–d), which were inhibited in Hip_M0
(Supplementary Fig. 6, d).
In the PFC, the composition ratio of PFC_M2 (37.36%) was

enriched in GF relative to SPF (10.23%), and could be effectively
rescued in the CGF group (11.53%; P= 0.011 between the three
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across six major cell types in the Hip (a) and PFC (b). c DEGs (GF vs. SPF) downsampling analysis showed greater microglial gene
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groups, one-way ANOVA; Fig. 3d, e). Meanwhile, the composition
ratio of PFC_M0 was significantly reduced in GF (13.10%)
compared to SPF (46.85%) and CGF (51.19%), and enriched in
SPF and CGF (46.85% in SPF, 51.19% in CGF; P= 0.015, one-way
ANOVA; Fig. 3d, e). QuSAGE analysis showed that the anti-
inflammatory and Treg gene sets, such as Entpd1, Mif, Vegfa and
Tgfb1 (Supplementary Fig. 7e, f), were most activated in PFC_M2
(Supplementary Fig. 6e, g), and inhibited in PFC_M0 (Supplemen-
tary Fig. 6e, f). Next, Pseudotime analysis was conducted to further
explore these mutual transformational relationships. Hip_M1 and
Hip_M4 were more located at the start of developmental
trajectories; however, Hip_M0 was more located on the middle
and end (Supplementary Fig. 8a, b). In PFC, PFC_M0 and
PFC_M2 showed the same trend (Supplementary Fig. 8c, d). It
suggested that gut microbiota modulate transformational control
between different microglial subpopulations, displaying the shift
from Hip_M1&4 to Hip_M0, and PFC_M2 to PFC_M0 (Fig. 3c, f).
Together, these findings demonstrated that the gut microbiome
modulated the mutual transformation of microglial subpopula-
tions in the two regions.
To ensure these findings, we further carried out an independent

snRNA-seq analysis of Hip among GF, SPF and CGF (n= 3/group),
named batch 2 (B2). Generally, two batches of single-cell
transcriptome data were highly consistent in the number of
capturing cells (Supplementary Fig. 9a) and identification of the
cell types (Supplementary Fig. 9b). In the analysis of microglia
subtypes, we found that the three hippocampal microglial
subpopulations observed in batch 2 were also highly similar to
B1_Hip_M0, M1 and M4 (Supplementary Fig. 9c; Fisher’s exact test;
Supplementary Table S7). Odd ratio of B2_Hip_M2 and M3 versus
Hip_M0 were 133.6 (FDR= 3.00E–04) and 91.4 (FDR= 2.34E–05),
B2_Hip_M0 versus Hip_M1 and M4 were 99.2 (FDR= 3.14E–89)
and 27.7 (FDR= 3.90E–29). Furthermore, proportion of these
subpopulations showed mutual transformation among groups
(Supplementary Fig. 9d, e), B2_Hip_M2 and M3 increased in SPF
and CGF, decreased in GF like B1_Hip_M0, moreover,
B2_Hip_M0 showed opposite trend like B1_Hip_M1 and M4.

The microglial genes rescued by microbial colonization are
linked with AD and MDD
To explore potential associations between the rescued genes and
representative neuropsychiatric disorders, the DisGeNET database
[51] was used for Disease Enrichment analysis. In both the Hip and
PFC, the microglial genes rescued by microbial colonization were
linked to neuropsychiatric diseases such as AD (n= 173 in Hip and
174 in PFC), MDD (n= 98 and 61), and autism (n= 116 and 52;
Fig. 4a, b).
Single-cell studies of AD and MDD were selected to further

confirm these findings. AD had the highest numbers of rescued
microglial genes in the Hip and PFC, and we had a long-term
interest in MDD. We found that, although the cell types associated
with distinctive diseases were different, a large number of disease
risk genes aligned with the microglial genes rescued by microbial
colonization (Fig. 4a). In particular, for AD, 19 microglial genes
overlapped between PIGs [52] (plague-induced genes), DAM [22],
and reversed genes, including Apoe, Fcer1g, C1qa, Frcls, C1qb,
Itm2b, C1qc, Man2b1, Cd9, Olfml3, Cst3, Trem2, Ctsl, Ctsb, Ctss, Gusb,
Ctsz, Hexa, and Cx3cr1 (Fig. 4d). As for MDD, we used our single-
cell analysis of dorsolateral PFC from a non-human primate
depression model (unpublished data, not shown), and matched
them against MDD risk genes in the DisGeNet database. We found
10 overlapped genes, including FKBP5, AUTS2, ERBB4, NEGR1,
NRG3, RABGAP1L, SLC1A3, ANK3, CTTNBP2, and ITGB5 (Fig. 4e).
These findings demonstrated that microglial genes reversed by
microbial colonization were mainly linked with AD and MDD,
suggesting that microbial modulation of these key microglial
genes via the gut-brain axis may be a potential therapeutic
strategy for AD and MDD.

Cross-species analysis showed that microglia subpopulations
regulated by gut microbiota were associated with AD and
MDD
Next, we further verified whether the transcriptomic changes of
these 5 microglial subpopulations were linked with AD and MDD.
We performed cross-species analysis of the association between
these 5 microglial subpopulations and these two disorders by
using animal and human sc/snRNA-seq data from five publications
[22–24, 53], and snRNA-seq analysis from our non-human primate
depression model (unpublished data, not shown). The marker
genes of 5 microglia subpopulations were compared with the
microglial marker genes or enriched DEGs associated with these
diseases. We found that transcriptomic changes of these
microglial subpopulations were highly associated with AD and
MDD across human, mouse, and macaque (Fig. 5a). Furthermore,
the noted DAM was highly similar to Hip_M1 (Fisher’s exact test,
FDR= 3.52E–30, odd ratio= 7.379; Supplementary Table S4) and
Hip_M4 (Fisher’s exact test, FDR= 3.32E–08, odd ratio= 3.896). In
addition, we found that only PFC_M2 was significant relative to
MDD-associated microglia in Macaca (Fisher’s exact test, FDR=
0.001, odd ratio= 2.605). This cross-species analysis provided
evidence that microglia subpopulations’ transcriptomic changes
modulated by gut microbiota were highly linked with AD and
MDD.

Behavioral tests support the association between gut
microbiota, AD, and MDD
We used an animal behavioral test panel related to AD and MDD
including OFT, Y-maze and FST to confirm the above findings.
There was no difference in locomotion activity between the three
groups (P= 0.109; Fig. 5b). However, the percent immobility time
was significantly decreased in the FST of GF compared to SPF mice
(P= 6.9879E–11), suggesting impacts on behavior despair. Micro-
bial colonization increased the percent immobility time in CGF
mice, although it was not completely restored to the same level as
in SPF mice (Fig. 5c). In the Y-maze test, the spontaneous
alternation rate was significantly decreased in GF relative to SPF
(P= 0.023), and this change could be completely reversed by
microbial colonization (CGF) (P= 0.013; Fig. 5d). This behavioral
test suggested a close association between the gut microbiome
and short-term memory changes. Together, our behavioral studies
support the single-cell observations that transcriptomic changes
of microglial subpopulations were highly linked with AD and MDD.

DISCUSSION
Our study showed that the absence of a gut microbiome
significantly affected transcriptional changes at the single-cell
level, especially in microglia and their subtypes. Microbial
colonization could effectively reverse these transcriptional
changes. Significantly, we found that the gut microbiome
modulated mutual transformation of microglial subtypes. Cross-
species analysis showed that transcriptomic changes of microglial
subpopulations were linked with AD and MDD, and with animal
behavior changes relevant to these diseases. Our findings provide
new evidence for how the gut microbiome may regulate brain
function through the MGB at single-cell molecular resolution.
Furthermore, these findings may pave the way for a better
understanding of the pathophysiological mechanisms of AD
and MDD.
In recent years, important progress has been made in under-

standing how the gut microbiome affects the brain [1, 2], but its
transcriptional changes at the single-cell level have not been
uncovered. Here, we found that the lack of a gut microbiome can
lead to systematic changes in the transcription of neuronal and
glial cells. Among them, microglia were most vulnerable to the
influence of the gut microbiome. In line with our findings, Erny
et al. observed significant differences in microglial structure and
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function between SPF and GF mice [54], and Thion et al. found
that signals from the maternal gut microbiome may shape fetal
microglia developmental trajectories near birth [55]. We found
that most microglial DEGs derived from microglia could be
rescued by microbial colonization. For example, changes in a
panel of GABA DEGs (e.g., Gabarap, Gabarapl2, Gabra2, Gabrb1)
were reversed by microbial recolonization, suggesting the gut
microbiome may influence GABA-related signaling pathways. Our
findings are consistent with several publications reporting GABA-
related signaling pathways modulation through the MGB axis
[15, 56, 57], although the specific cell types impacted in those
studies were not delineated. Olson et al. have shown that a
ketogenic diet could reduce seizures through gut-brain GABA-
related pathways [15]. Cryan et al. reported that Lactobacillus
strain ingestion regulates emotional behaviors and central GABA
receptor expression in mice [56]. We have also reported that the
gut microbiome may be linked with schizophrenia through the
gut-brain glutamate-glutamine-GABA cycle [57]. Since microglial
gene transcription was both affected by the lack of a gut
microbiome, and could be rescued by microbial colonization,

targeted regulation of microglial transcription through the MGB
axis may represent a promising new therapeutic avenue for brain
disease. In addition, we found that gut microbiome absence
significantly increased microglia-astrocyte communication, which
could not be reversed by microbial colonization. This result
suggests that the roles of microglia-astrocyte communication in
MGB-axis-related diseases need to be further explored in the
future.
While we observed that microglia were most vulnerable to gut

microbiome absence, single-cell technology provides an advan-
tage to further clarify the major altered microglial subtypes. Here,
we found that the gut microbiome regulated mutual transforma-
tion of microglial subpopulations, which could be effectively
reversed by microbial colonization. Functionally, these altered
microglial subpopulations were enriched with anti-inflammatory
and Treg gene sets, suggesting changes in inflammation-related
signals. In line with our findings, Shemer et al. found that
peripheral inflammation induced by lipopolysaccharide (LPS)
could result in microglial activation changes [58, 59]. Meanwhile,
Erny et al. also observed increased LPS levels in GF mice relative to
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SPF mice [54]. In the future, it is necessary to further explore how
the gut microbiome mediates the transformation of microglial
subtypes through inflammatory pathways.
Interestingly, one of the marker genes of Hip_M1&4, Mafb [60],

is a principal transcription factor that regulates adult microglial
homeostasis. We also observed that Runx1 [61] and Selplg [62],
which were marker genes of PFC_M2, involved in maintaining

microglial homeostasis, could be the inducer of PFC_M2. Thus, we
compared our data with the research on precise typing of
microglia [63] and detailed information was listed in Supplemen-
tary Table S8. Hip_M1, Hip_M4, and PFC_M2 which were enriched
in GF mice showed abundant homeostatic signatures and
inflammatory signatures (Supplementary Fig. 10a, b); however,
Hip_M0 and PFC_M0 which were rescued by microbial
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colonization showed homeostatic signatures. We thought the
absence of microbiome may bring disturbance to homeostatic
microglia and endows it with inflammatory-related function.
In addition, using cross-species analysis, we found that

transcriptome changes of microglial subpopulations regulated
by gut microbiota were associated with AD and MDD. Previously,
clinical and animal studies have shown that AD and MDD were
accompanied by disturbances of the gut microbiome [4, 9, 13, 64].
Targeted intervention of the gut microbiota with drugs, prebiotics,
and short-chain fatty acids has potential therapeutic value for
these two disorders. Significantly, recent single-cell investigations
have shown that AD was associated with specific changes in
microglial subtypes [22–24, 53], and intervention of microglia
subtypes showed a potential therapeutic effect [22]. In agreement
with these findings, we found that some altered classic genes in
microglia, such as Apoe and Trem2, could be reversed by microbial
colonization. Corresponding to these results, we found that the
absence of a gut microbiome resulted in altered short-term
memory in the Y-maze test, which was also reversed by microbial
colonization. A similar phenomenon was found in depression as
well, while comparing the transcriptome changes of microglial
subpopulations across different species including human, monkey,
and mouse. These studies suggest that the gut microbiome may
be involved in the pathogenesis of AD and MDD by regulating
transcriptional changes of microglial subtypes.
Nonetheless, the following caveats are worth noting: (i) advent

of an unfamiliar SPF in CGF group may result in a certain degree of
transient stress. (ii) Like most studies [6, 10, 15, 16], we used GF
mice as the main model to study brain function affected by the
MGB axis. Thus, single-cell analysis of SPF mice with antibiotic
treatment would further confirm our findings. (iii) In addition,
spatial transcriptomic data would help further clarify the spatial
localization of these vital cell-specific genes related to AD and
MDD. (iv) Finally, intervening cell-specific DEGs of microglia and
their subtypes also need to be explored to uncover their roles in
the development of AD and MDD.
In conclusion, using an snRNA-seq approach, we showed

transcriptome changes of neural cell types modulated by the
absence of gut microbiome. Microglia and their subpopulations
were preferentially impacted in the Hip and PFC. The gut
microbiome may regulate the mutual transformation of microglial
subtypes. Furthermore, their transcriptomic changes were asso-
ciated with AD and MDD. Our research provided single-cell
transcriptional evidence for an in-depth understanding of how the
gut microbiome affects the brain, which may help uncover the
pathogenesis of AD and MDD.

DATA AVAILABILITY
All data needed to evaluate the conclusions in the paper are present in the paper
and/or the Supplementary Materials. The raw single-cell sequence data reported in
this paper have been made available at the Gene Expression Omnibus (GEO)
repository under the accession number GSE202704.

REFERENCES
1. Cryan JF, O’Riordan KJ, Cowan CSM, Sandhu KV, Bastiaanssen TFS, Boehme M,

et al. The microbiota-gut-brain axis. Physiol. Rev. 2019;99:1877–2013.
2. Morais LH, Schreiber HLT, Mazmanian SK. The gut microbiota-brain axis in

behaviour and brain disorders. Nat Rev Microbiol. 2021;19:241–55.
3. Agirman G, Yu KB, Hsiao EY. Signaling inflammation across the gut-brain axis.

Science. 2021;374:1087–92.
4. Li B, He Y, Ma J, Huang P, Du J, Cao L, et al. Mild cognitive impairment has similar

alterations as Alzheimer’s disease in gut microbiota. Alzheimers Dement.
2019;15:1357–66.

5. Rosario D, Bidkhori G, Lee S, Bedarf J, Hildebrand F, Le Chatelier E, et al.
Systematic analysis of gut microbiome reveals the role of bacterial folate
and homocysteine metabolism in Parkinson’s disease. Cell Rep. 2021;34:
108807.

6. Sharon G, Cruz NJ, Kang DW, Gandal MJ, Wang B, Kim YM, et al. Human gut
microbiota from autism spectrum disorder promote behavioral symptoms in
mice. Cell. 2019;177:1600–18.e17.

7. Zheng P, Zeng B, Zhou C, Liu M, Fang Z, Xu X, et al. Gut microbiome remodeling
induces depressive-like behaviors through a pathway mediated by the host’s
metabolism. Mol Psychiatry. 2016;21:786–96.

8. Zheng P, Yang J, Li Y, Wu J, Liang W, Yin B, et al. Gut microbial signatures can
discriminate unipolar from bipolar depression. Adv Sci. 2020;7:1902862.

9. Ueda A, Shinkai S, Shiroma H, Taniguchi Y, Tsuchida S, Kariya T, et al. Identifi-
cation of Faecalibacterium prausnitzii strains for gut microbiome-based inter-
vention in Alzheimer’s-type dementia. Cell Rep Med. 2021;2:100398.

10. Sampson TR, Debelius JW, Thron T, Janssen S, Shastri GG, Ilhan ZE, et al. Gut
microbiota regulate motor deficits and neuroinflammation in a model of Par-
kinson’s disease. Cell. 2016;167:1469–80.e12.

11. Blacher E, Bashiardes S, Shapiro H, Rothschild D, Mor U, Dori-Bachash M, et al.
Potential roles of gut microbiome and metabolites in modulating ALS in mice.
Nature. 2019;572:474–80.

12. Willyard C. How gut microbes could drive brain disorders. Nature. 2021;590:22–5.
13. Zhuang Z, Yang R, Wang W, Qi L, Huang T. Associations between gut microbiota

and Alzheimer’s disease, major depressive disorder, and schizophrenia. J Neu-
roinflammation. 2020;17:288.

14. Muller PA, Schneeberger M, Matheis F, Wang P, Kerner Z, Ilanges A, et al.
Microbiota modulate sympathetic neurons via a gut-brain circuit. Nature.
2020;583:441–6.

15. Olson CA, Vuong HE, Yano JM, Liang QY, Nusbaum DJ, Hsiao EY. The gut
microbiota mediates the anti-seizure effects of the ketogenic diet. Cell.
2018;173:1728–41.e13.

16. Wu WL, Adame MD, Liou CW, Barlow JT, Lai TT, Sharon G, et al. Microbiota
regulate social behaviour via stress response neurons in the brain. Nature.
2021;595:409–14.

17. Kim JJ, Diamond DM. The stressed hippocampus, synaptic plasticity and lost
memories. Nat Rev Neurosci. 2002;3:453–62.

18. Revest JM, Dupret D, Koehl M, Funk-Reiter C, Grosjean N, Piazza PV, et al. Adult
hippocampal neurogenesis is involved in anxiety-related behaviors. Mol Psy-
chiatry. 2009;14:959–67.

19. Luczynski P, Moquin L, Gratton A. Chronic stress alters the dendritic morphology
of callosal neurons and the acute glutamate stress response in the rat medial
prefrontal cortex. Stress. 2015;18:654–67.

20. Hains AB, Vu MA, Maciejewski PK, van Dyck CH, Gottron M, Arnsten AF. Inhibition
of protein kinase C signaling protects prefrontal cortex dendritic spines and
cognition from the effects of chronic stress. Proc Natl Acad Sci USA.
2009;106:17957–62.

21. Ofengeim D, Giagtzoglou N, Huh D, Zou C, Yuan J. Single-cell RNA sequencing:
unraveling the brain one cell at a time. Trends Mol Med. 2017;23:563–76.

22. Keren-Shaul H, Spinrad A, Weiner A, Matcovitch-Natan O, Dvir-Szternfeld R,
Ulland TK, et al. A unique microglia type associated with restricting development
of Alzheimer’s disease. Cell. 2017;169:1276–90.e17.

23. Mathys H, Davila-Velderrain J, Peng Z, Gao F, Mohammadi S, Young JZ, et al.
Single-cell transcriptomic analysis of Alzheimer’s disease. Nature. 2019;570:332–7.

24. Olah M, Menon V, Habib N, Taga MF, Ma Y, Yung CJ, et al. Single cell RNA
sequencing of human microglia uncovers a subset associated with Alzheimer’s
disease. Nat Commun. 2020;11:6129.

25. Wang S, Mustafa M, Yuede CM, Salazar SV, Kong P, Long H, et al. Anti-human
TREM2 induces microglia proliferation and reduces pathology in an Alzheimer’s
disease model. J Exp Med. 2020;217:e20200785.

26. Grubman A, Chew G, Ouyang JF, Sun G, Choo XY, McLean C, et al. A single-cell
atlas of entorhinal cortex from individuals with Alzheimer’s disease reveals cell-
type-specific gene expression regulation. Nat Neurosci. 2019;22:2087–97.

27. Tran MN, Maynard KR, Spangler A, Huuki LA, Montgomery KD, Sadashivaiah V,
et al. Single-nucleus transcriptome analysis reveals cell-type-specific molecular
signatures across reward circuitry in the human brain. Neuron.
2021;109:3088–103.e5.

28. Hasel P, Rose IVL, Sadick JS, Kim RD, Liddelow SA. Neuroinflammatory astrocyte
subtypes in the mouse brain. Nat Neurosci. 2021;24:1475–87.

29. Chu C, Murdock MH, Jing D, Won TH, Chung H, Kressel AM, et al. The microbiota
regulate neuronal function and fear extinction learning. Nature. 2019;574:543–8.

30. Arnoriaga-Rodríguez M, Mayneris-Perxachs J, Burokas A, Contreras-Rodríguez O,
Blasco G, Coll C, et al. Obesity impairs short-term and working memory through
gut microbial metabolism of aromatic amino acids. Cell Metab.
2020;32:548–60.e7.

31. Chini M, Hanganu-Opatz IL. Prefrontal cortex development in health and disease:
lessons from rodents and humans. Trends Neurosci. 2021;44:227–40.

32. Small SA, Schobel SA, Buxton RB, Witter MP, Barnes CA. A pathophysiological
framework of hippocampal dysfunction in ageing and disease. Nat Rev Neurosci.
2011;12:585–601.

Y. Huang et al.

1620

Molecular Psychiatry (2023) 28:1611 – 1621



33. Godsil BP, Kiss JP, Spedding M, Jay TM. The hippocampal-prefrontal pathway: the
weak link in psychiatric disorders? Eur Neuropsychopharmacol. 2013;23:1165–81.

34. Liu CC, Zhao J, Fu Y, Inoue Y, Ren Y, Chen Y, et al. Peripheral apoE4 enhances
Alzheimer’s pathology and impairs cognition by compromising cerebrovascular
function. Nat Neurosci. 2022;25:1020–33.

35. Zhai J, Guo J, Wan H, Qi L, Liu L, Xiao Z, et al. Primate gastrulation and early
organogenesis at single-cell resolution. Nature. 2022;612:732–8.

36. Dulken BW, Buckley MT, Navarro Negredo P, Saligrama N, Cayrol R, Leeman DS,
et al. Single-cell analysis reveals T cell infiltration in old neurogenic niches.
Nature. 2019;571:205–10.

37. Carter RA, Bihannic L, Rosencrance C, Hadley JL, Tong Y, Phoenix TN, et al. A
single-cell transcriptional atlas of the developing murine cerebellum. Curr Biol.
2018;28:2910–20.e2.

38. Krishnaswami SR, Grindberg RV, Novotny M, Venepally P, Lacar B, Bhutani K, et al.
Using single nuclei for RNA-seq to capture the transcriptome of postmortem
neurons. Nat Protoc. 2016;11:499–524.

39. Huang LJ, Mao XT, Li YY, Liu DD, Fan KQ, Liu RB, et al. Multiomics analyses reveal a
critical role of selenium in controlling T cell differentiation in Crohn’s disease.
Immunity. 2021;54:1728–44.e7.

40. Jaeger N, Gamini R, Cella M, Schettini JL, Bugatti M, Zhao S, et al. Single-cell
analyses of Crohn’s disease tissues reveal intestinal intraepithelial T cells het-
erogeneity and altered subset distributions. Nat Commun. 2021;12:1921.

41. Velmeshev D, Schirmer L, Jung D, Haeussler M, Perez Y, Mayer S, et al. Single-cell
genomics identifies cell type-specific molecular changes in autism. Science.
2019;364:685–9.

42. Qiu X, Mao Q, Tang Y, Wang L, Chawla R, Pliner HA, et al. Reversed graph
embedding resolves complex single-cell trajectories. Nat Methods.
2017;14:979–82.

43. Yaari G, Bolen CR, Thakar J, Kleinstein SH. Quantitative set analysis for gene
expression: a method to quantify gene set differential expression including gene-
gene correlations. Nucleic Acids Res. 2013;41:e170.

44. Efremova M, Vento-Tormo M, Teichmann SA, Vento-Tormo R. CellPhoneDB:
inferring cell-cell communication from combined expression of multi-subunit
ligand-receptor complexes. Nat Protoc. 2020;15:1484–506.

45. Azizi E, Carr AJ, Plitas G, Cornish AE, Konopacki C, Prabhakaran S, et al. Single-cell
map of diverse immune phenotypes in the breast tumor microenvironment. Cell.
2018;174:1293–308.e36.

46. Szentes N, Tékus V, Mohos V, Borbély É, Helyes Z. Exploratory and locomotor
activity, learning and memory functions in somatostatin receptor subtype 4
gene-deficient mice in relation to aging and sex. GeroScience. 2019;41:631–41.

47. Pei L, Li S, Wang M, Diwan M, Anisman H, Fletcher PJ, et al. Uncoupling the
dopamine D1-D2 receptor complex exerts antidepressant-like effects. Nat Med.
2010;16:1393–5.

48. Reisel D, Bannerman DM, Schmitt WB, Deacon RM, Flint J, Borchardt T, et al.
Spatial memory dissociations in mice lacking GluR1. Nat Neurosci. 2002;5:868–73.

49. Booeshaghi AS, Yao Z, van Velthoven C, Smith K, Tasic B, Zeng H, et al. Isoform
cell-type specificity in the mouse primary motor cortex. Nature. 2021;598:195–9.

50. Badimon A, Strasburger HJ, Ayata P, Chen X, Nair A, Ikegami A, et al. Negative
feedback control of neuronal activity by microglia. Nature. 2020;586:417–23.

51. Piñero J, Bravo À, Queralt-Rosinach N, Gutiérrez-Sacristán A, Deu-Pons J, Centeno
E, et al. DisGeNET: a comprehensive platform integrating information on human
disease-associated genes and variants. Nucleic Acids Res. 2017;45:D833–d9.

52. Chen WT, Lu A, Craessaerts K, Pavie B, Sala Frigerio C, Corthout N, et al. Spatial
transcriptomics and in situ sequencing to study Alzheimer’s disease. Cell.
2020;182:976–91.e19.

53. Sayed FA, Kodama L, Fan L, Carling GK, Udeochu JC, Le D, et al. AD-linked R47H-
TREM2 mutation induces disease-enhancing microglial states via AKT hyper-
activation. Sci Transl Med. 2021;13:eabe3947.

54. Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, et al.
Host microbiota constantly control maturation and function of microglia in the
CNS. Nat Neurosci. 2015;18:965–77.

55. Thion MS, Low D, Silvin A, Chen J, Grisel P, Schulte-Schrepping J, et al. Micro-
biome influences prenatal and adult microglia in a sex-specific manner. Cell.
2018;172:500–16.e16.

56. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al.
Ingestion of Lactobacillus strain regulates emotional behavior and central GABA
receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA.
2011;108:16050–5.

57. Zheng P, Zeng B, Liu M, Chen J, Pan J, Han Y, et al. The gut microbiome from
patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and
schizophrenia-relevant behaviors in mice. Sci Adv. 2019;5:eaau8317.

58. Henry CJ, Huang Y, Wynne AM, Godbout JP. Peripheral lipopolysaccharide (LPS)
challenge promotes microglial hyperactivity in aged mice that is associated with
exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory
IL-10 cytokines. Brain Behav Immun. 2009;23:309–17.

59. Shemer A, Scheyltjens I, Frumer GR, Kim JS, Grozovski J, Ayanaw S, et al.
Interleukin-10 prevents pathological microglia hyperactivation following per-
ipheral endotoxin challenge. Immunity. 2020;53:1033–49.e7.

60. Matcovitch-Natan O, Winter DR, Giladi A, Vargas Aguilar S, Spinrad A, Sarrazin S,
et al. Microglia development follows a stepwise program to regulate brain
homeostasis. Science. 2016;353:aad8670.

61. Nayak D, Roth TL, McGavern DB. Microglia development and function. Annu Rev
Immunol. 2014;32:367–402.

62. Masuda T, Sankowski R, Staszewski O, Böttcher C, Amann L, Sagar, et al. Spatial
and temporal heterogeneity of mouse and human microglia at single-cell reso-
lution. Nature. 2019;566:388–92.

63. Stogsdill JA, Kim K, Binan L, Farhi SL, Levin JZ, Arlotta P. Pyramidal neuron
subtype diversity governs microglia states in the neocortex. Nature.
2022;608:750–6.

64. Yang J, Zheng P, Li Y, Wu J, Tan X, Zhou J, et al. Landscapes of bacterial and
metabolic signatures and their interaction in major depressive disorders. Sci Adv.
2020;6:eaba8555.

AUTHOR CONTRIBUTIONS
Designed the experiments: PX and PZ. Operated experiments: YH, JW, YFL, LW, HPZ,
KC, and HYW. Performed the sc-RNA-seq analysis: YH, JW, YFL, LXL, and JCP. Animal
behaviors analysis: YH, JW, YFL, XMT, and YYL. Drafted the manuscript: YH and PZ.
Revised the manuscript for intellectual content: PX, PZ, SWP, MLW and JL.

FUNDING
This work was supported by the National Key R&D Program of China
(2017YFA0505700), Projects of International Cooperation and Exchanges NSFC
(81820108015), Non-profit Central Research Institute Fund of Chinese Academy of
Medical Sciences (2019PT320002), the Natural Science Foundation Project of China
(81971296, 82171523, and 82101596), Chongqing Science & Technology Commission
(cstc 2019 jcyjjqX0009), China Postdoctoral Science Foundation (2020TQ0393,
2021TQ0396, 2021MD703928, 2021M693926), Chongqing Talents Plan for Young
Talents (CQYC202105017) and institutional funds from the State University of New
York (SUNY) Upstate Medical University. This paper is subject to the SUNY Open
Access Policy.

COMPETING INTERESTS
The authors declare no competing interests.

ADDITIONAL INFORMATION
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41380-023-02017-y.

Correspondence and requests for materials should be addressed to Peng Zheng or
Peng Xie.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in anymedium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://
creativecommons.org/licenses/by/4.0/.

© The Author(s) 2023

Y. Huang et al.

1621

Molecular Psychiatry (2023) 28:1611 – 1621

https://doi.org/10.1038/s41380-023-02017-y
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The gut microbiome modulates the transformation of microglial subtypes
	Introduction
	Method
	Ethics statement
	Co-housing method
	Extraction of single-cell nuclei
	10x library construction
	Single-cell nucleus RNA statistical analysis
	Differentially expressed genes burden analysis on downsampling data
	Gene ontology and canonical pathway analyses
	Pseudotime analysis
	QuSAGE analysis (gene enrichment analysis)
	Cell communication analysis
	Behavioral tests
	Statistical methods and reproducibility

	Results
	Single-cell nucleus RNA-seq profiling of Hip and PFC
	The absence of gut microbiota changed glial cells proportion in the Hip and PFC
	The absence of gut microbiota resulted in cell-specific transcriptomic changes
	Microglial transcriptomes were preferentially influenced
	The gut microbiome mainly modulated microglia-astrocyte communication
	Microbial colonization rescued microglial gene alterations
	Gut microbiota modulated mutual transformation of microglial subpopulations
	The microglial genes rescued by microbial colonization are linked with AD and MDD
	Cross-species analysis showed that microglia subpopulations regulated by gut microbiota were associated with AD and MDD
	Behavioral tests support the association between gut microbiota, AD, and MDD

	Discussion
	References
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION




