Skip to main content
. 2023 May 17;617(7962):764–768. doi: 10.1038/s41586-023-06034-3

Fig. 1. Functional genomics analyses for SLC22A31 and SFTPD.

Fig. 1

a, Effect-size plot for the effect of multiple variants on SLC22A31 expression (eQTLgen, x axis) against increasing susceptibility to critical COVID-19 (βxy = 0.11; Pxy = 1.3 × 10−9). The colour shows linkage disequilibrium (LD) with the missense variant rs117169628. b, Three cartoon views of an AlphaFold22 model of putative solute carrier family 22 member 31 (SLC22A31; UniProtKB: A6NKX4). The side chains of Pro474 and interacting amino acids are shown as connected spheres. A putative channel for small-molecule transport across the cell membrane is indicated by a dashed circle. Pro474 is predicted to be located in the transmembrane helix and point towards a putative transport pathway of a small molecule. The risk variant, P474L (Ala at rs117169628) would be expected to introduce more flexibility to the transmembrane helix and might therefore affect the transport properties of SLC22A31. Pro474 is predicted to be in a tightly packed environment, and may therefore affect the folding of SLC22A31. c, Effect-size plot for effect of multiple variants on SFTPD expression (eQTLgen, x axis) against increasing susceptibility to critical COVID-19 (βxy = 0.16; Pxy = 9.7 × 10−6). Colour shows linkage disequilibrium with the missense variant rs721917. d, Three cartoon views of an AlphaFold22 model of pulmonary surfactant-associated protein D (SFTPD; UniProtKB: P35247). The side chain of the variant Met31 is shown as connected spheres. Met31 is predicted to be located in the secondary-structure-lacking region of SFTPD. In the diagram on the right, oxygen and nitrogen atoms are coloured red and blue respectively, and the sulfur atom is coloured yellow.