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Pathways link environmental and genetic factors with structural
brain networks and psychopathology in youth
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Adolescence is a period of significant brain development and maturation, and it is a time when many mental health problems first
emerge. This study aimed to explore a comprehensive map that describes possible pathways from genetic and environmental risks
to structural brain organization and psychopathology in adolescents. We included 32 environmental items on developmental
adversity, maternal substance use, parental psychopathology, socioeconomic status (SES), school and family environment; 10 child
psychopathological scales; polygenic risk scores (PRS) for 10 psychiatric disorders, total problems, and cognitive ability; and
structural brain networks in the Adolescent Brain Cognitive Development study (ABCD, n= 9168). Structural equation modeling
found two pathways linking SES, brain, and psychopathology. Lower SES was found to be associated with lower structural
connectivity in the posterior default mode network and greater salience structural connectivity, and with more severe psychosis
and internalizing in youth (p < 0.001). Prematurity and birth weight were associated with early-developed sensorimotor and
subcortical networks (p < 0.001). Increased parental psychopathology, decreased SES and school engagement was related to
elevated family conflict, psychosis, and externalizing behaviors in youth (p < 0.001). Increased maternal substance use predicted
increased developmental adversity, internalizing, and psychosis (p < 0.001). But, polygenic risks for psychiatric disorders had
moderate effects on brain structural connectivity and psychopathology in youth. These findings suggest that a range of genetic and
environmental factors can influence brain structural organization and psychopathology during adolescence, and that addressing
these risk factors may be important for promoting positive mental health outcomes in young people.
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INTRODUCTION
It is well-established that adolescence is a critical period for the
emergence of many psychiatric disorders. Many psychiatric
disorders, including neurodevelopmental disorders, anxiety, and
fear-related disorders, schizophrenia, and mood disorders, tend to
have their onset during adolescence or early adulthood [1]. A
combination of genetics and early life experiences and environ-
ments can influence the development of the brain and the risk of
psychopathology in adolescents. Early identification of environ-
mental and genetic factors that may increase the risk of
psychiatric disorders can be essential for optimizing neurodeve-
lopment and minimizing the risk of psychopathology in young
people.
During adolescence, the brain undergoes significant structural

changes that are thought to be related to the maturation and
specialization of brain function [2, 3]. These changes are
reflected in changes in brain anatomy as seen on magnetic
resonance imaging (MRI) scans, including changes in gray and
white matter volume and integrity. Brain gray matter volume
tends to decrease during adolescence, while white matter
increases [4, 5]. The changes in gray and white matter volumes
during adolescence are thought to be related to the pruning of
unnecessary neural connections and the strengthening of

important ones and to the process of myelination, in which
the axons of neurons are coated with myelin [6, 7]. These
processes contribute to the specialization and segregation of
brain function that occurs during adolescence [2, 3]. Additionally,
white matter integrity is thought to mature during adolescence
in association and projection fibers that support cortico-cortical
and cortico-cerebellum integration [8, 9]. These changes in brain
structure during adolescence may be important for the
emergence of adolescent brain transformation.
There are many environmental factors that can influence brain

development and psychopathology during adolescence, including
exposure to prenatal adversity reflected as birth weight and
prematurity [10–12], parental factors (e.g., parental psychopathol-
ogy, maternal substance use) [13–17], socio-economic status (SES,
household and neighborhood) [18–22], and social environment
(e.g., school and family environment) [23]. Most existing studies
assess these environmental factors and their influences on brain
and psychopathology separately [10–12, 18–23]. These environ-
mental factors play an important role in neurodevelopment and
tend to covary highly with each other, which makes it difficult to
parse out which environmental factor contributes most to
neurodevelopmental outcomes. In addition, the number and type
of potential environmental factors adjusted for in previous
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analyses vary widely [10–12, 18–23]. More studies are needed to
examine multifaceted environmental factors jointly. Also, more
research is needed to understand how environmental factors
interact with genes that may be particularly influential in the
development of brain and psychopathology in adolescence.
This study capitalized upon a comprehensive environmental,

genetic, and imaging dataset available in the Adolescent Brain
Cognitive Development (ABCD) study (version 3.0) in youth aged
9-to-11 years [24]. We aimed to explore a comprehensive map that
describes possible pathways among multifaceted environments,
genetic risks, structural brain organization, and psychopathology
in youth. Here, we computed polygenic risk scores (PRS) to
characterize the genetic contribution to susceptibility for psychia-
tric disorders with onset age in adolescence, total problems, and
cognitive ability. The PRS appears to reflect the cumulative
influence of multiple genetic variants [25, 26], which allows the
easy assessment of polygenic impacts on various psychiatric
disorders. As adolescence is a critical period of myelination and
synaptic pruning, we characterized the adolescent brain using the
structural connectivity between brain regions derived from
diffusion MRI. We derived transdiagnostic dimensions of psycho-
pathology to represent comorbid characteristics across psychiatric
disorders in youth. It has been suggested that dimensional
approaches to studying psychopathology in children and youth
are beneficial for characterizing the clinical phenomenology [27].
We took univariate and multivariate analyses and considered
comprehensive interplay among environmental factors, polygenic
risks, brain structural organization, and dimensional psychopathol-
ogy in youth. This study provided a comprehensive map
describing the contribution of individual aspects of environmental
factors and genetic risks to brain structural networks and
psychopathology, which is a necessary step toward early
identification of at-risk youth and might ultimately allow for
interventions to achieve improved functional outcomes.

MATERIALS AND METHODS
Participants
Participant data were obtained from the open baseline from the ongoing
Adolescent Brain Cognitive Development study (https://abcdstudy.org/).
Youth (n= 11,875) 9–11 years of age were recruited for this study, forming
a similar proportion of males and females living in the United States. The
sample selection criteria were targeted to reflect the sociodemographic
proportion of the population as described in the ABCD study design [28].
The brain images, genotypes, psychopathology, demographics, and
environmental factors were obtained from all participants at the same
visit [28]. The institutional review board approved the research protocol at
each data collection site [29] (https://abcdstudy.org/study-sites/). Written
informed consent was obtained from all parents and adolescents.
This study included participants with good structural and diffusion-

weighted images (see the image quality check below), environmental
factors, child psychopathology, and genotype data. Figure S1 illustrates the
flow chart of the subject selection. As a result, this study included
9168 subjects.

Environmental factors
This study included environmental items, such as developmental adversity,
maternal substance use, parental psychopathology, socioeconomic status
(SES), and school and family environment. The design and acquisition
protocol of questionnaires were detailed in [28, 30].

Developmental adversity. The parent-report developmental History Ques-
tionnaire [28] was used to assess prematurity, birth weight, pregnancy
complications, and birth complications. The Modified Ohio State University
Traumatic Brain Injury Screen-Short Version [31] was employed to assess the
parent-report overall brain injury/concussion during child development.

Maternal substance use. The developmental History Questionnaire [28]
was used to assess maternal substance use before knowing about the
pregnancy, including drinking, smoking, and marijuana.

Parent psychopathology. Parent psychopathology symptoms were
assessed using the Adult Self Report (ASR) [32] and Family History
Assessment Module Screener (FHAM-S) questionnaires [33]. Parents
reported these questionnaires. The ASR provided 8 empirically-based
syndrome scales (anxious/depressed, withdrawn, somatic complaints,
thought problems, attention problems, aggressive behavior, rule-
breaking behavior, and intrusive). FHAM-S reported the presence/absence
of symptoms associated with alcohol and drug use, depression, and mania
in all 1st and 2nd degree “blood-relatives” of the youth. The accumulated
presence of depression and mania is scored as the family psychopathology
risk of mental illness. The presence of alcohol and drug use problems in
the child’s relatives was defined as the family psychopathology risk of
substance use disorders.

Socioeconomic status (SES). The parent-report demographics battery from
the PhenX toolkit measured the social demographics of the parental
highest education, family income, and partner (do you have a partner) [34].
Economic insecurity and area deprivation index were also employed to
provide additional information about socioeconomic influences [35].
The “Safety from Crime” items from the PhenX Toolkit were used to

assess neighborhood safety and crime reports [36].

School environment. Children reported their school risk and protective
factors via a 12-item Inventory for School Risk and Protective Factors of the
PhenX toolkit [37]. Three measures were selected to assess a child’s
connectedness to his/her school, including school teacher and classroom
environment, personal involvement in school, and school disengagement
from academic goals.

Family environment. The child-reported parent monitoring and accep-
tance and the family conflicts were included to measure the family
environment. Parent monitoring was accessed by a 5-item summary score
of the Parental Monitoring Scale [38]. Parent acceptance was evaluated by
the Acceptance Scale, a subscale of the Child Report of Behavior Inventory
(CRPBI) [39]. To assess family conflicts, the ABCD protocol utilizes a 9-item
Family Conflict subscale of the Family Environment Scale (FES) for the
baseline protocol [40]. The psychosocial behavior of youth was assessed
using the child-reported Strengths and Difficulties Questionnaire [41].

Child psychopathology
Child psychopathology was dimensionally assessed based on the parent
report of Child Behavior Checklist (CBCL), the ten-item Mania Scale derived
from the Parent General Behavior Inventory for Children and Adolescents
[42], and the Prodromal Questionnaire Brief Version [43]. This project
included 8 empirically-based syndrome scales from CBCL (anxious/
depressed, withdrawn, somatic complaints, thought problems, attention
problems, aggressive behavior, rule-breaking behavior, social compe-
tence), mania in mood and behavior, and a severity score of psychosis risk
symptoms.

MRI acquisition
The ABCD imaging protocol was harmonized for three 3 T scanner platforms
(Siemens Prisma, General Electric (GE) 750, and Philips) and use of multi-
channel coils capable of multiband echo planar imaging (EPI) acquisitions,
using a standard adult-size coil [44]. This study only employed T1-weighted
MRI and diffusion-weighted images (DWIs). T1-weighted MRI and echo planar
DWIs were acquired with the following sequence parameters. The T1-
weighted MRI was acquired with repetition time (TR)= 2500ms; echo time
(TE)= 2–2.9ms; flip angle= 8°; field of view= 256mm× 256mm; matrix
size= 256 × 256; 176–225 slices; and voxel size =1 × 1 × 1mm. DWIs were
acquired in 6 directions at b= 500 s/mm2, 15 directions at b= 1000 s/mm2,
15 directions at b= 2000 s/mm2, and 60 directions at b= 3000 s/mm2 using
TR= 4100–5300ms; TE= 81.9–89ms; flip angle= 77–90°; field of view =
240mm × 240mm; matrix size= 140 × 140; voxel size = 1.7 × 1.7 × 1.7mm;
and 81 slices. Eight images were acquired at b= 0 s/mm2. The imaging
protocol was detailed in Casey et al. [44].

MRI analysis and brain structural networks
FreeSurfer longitudinal analysis pipeline (a bug-fixed version 5.3.0) was
used to analyze T1-weighted images and segment the brain into three
tissue types, gray matter, white matter, and cerebrospinal fluid (CSF) [45]. A
post-processing quality check was conducted by one well-trained
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researcher based on the instruction given at https://
surfer.nmr.mgh.harvard.edu/fswiki/FsTutorial/TroubleshootingData.
Diffusion-weighted images (DWIs) were processed using principal

component analysis (PCA)-based denoising [46], manual removal of
motion-corrupted volumes following visual inspection, eddy current
distortion correction with outlier replacement and intra-volume movement
correction [47–49], and bias field correction [50]. The diffusion tensor
model was fitted for each subject, and fractional anisotropy (FA) was
calculated using the dwi2tensor and tensor2metric commands from the
MRtrix3 package. For each subject, the T1-weighted image was aligned
with the first diffusion b= 0 s/mm2 image using rigid registration with 6
degrees of freedom [51, 52]. Its white matter and gray matter masks were
used to guide tractography using the probabilistic approach given in
MRtrix3 package. This probabilistic tractography constructs a possible
streamline based on the local tract orientation at each voxel. Multi-modal
LDDMM mapping [53, 54], was employed to align the structural and
diffusion tensor image (DTI) data into the JHU atlas space [55], where
intensity-corrected T1-weighted image, cortical surfaces, and FA image
were taken as input for mapping. This non-linear transformation was used
to align the tracts into the atlas space.
The DWI data quality was checked via the following steps: (1) removing

the DWI data with more than 20% volumes with head motion greater than
0.5 mm or/and missing signal; (2) removing the DWI data with mapping
errors; (3) removing the DWI data whose tracts were not in the white
matter mask.
A structural brain network was computed for individual subjects based

on the brain parcellation given in Shen et al. [56], where the brain was
divided into 268 regions. This study employed this functional atlas due to
the structure-function coupling in the brain networks [57, 58]. The
structural connectivity of two brain regions was computed as the number
of tracts going through them and normalized by their volumes. This study
employed the structural connectivity of any two brain regions as a brain
structural network measure in the following statistical analysis.

Genotype data analysis and polygenic risk score
This study employed the genotype data of the ABCD study (release version
3.0). The saliva and blood sample was collected at the baseline visit. DNA
was extracted in RUCDR. The Smokescreen™ Genotyping array [59] was
assayed. To maximize the number of quality-checked SNPs, both SNPs
from saliva and blood, whichever had higher successful calls, higher none-
missing, matched genetic sex, and less excessive IBS, have been merged.
The imputation was performed on the quality-checked genotype data
using the TOPMed imputation server. Pre-imputation steps were followed
as instructed at https://topmedimpute.readthedocs.io/en/latest/prepare-
your-data/. The imputation was performed using mixed ancestry and Eagle
v2.4 phasing. The imputed data contained 11099 unique individuals with
8,833,408 SNPs.
This study computed polygenic risk score (PRS) using PLINK (version 1.9)

based on the imputed SNPs of the ABCD study and meta-analysis GWAS
results retrieved from the Psychiatric Genomics Consortium (PGC, https://
www.med.unc.edu/pgc). The SNPs of the ABCD sample were selected with
low linkage disequilibrium to each other (r2 < 0.25 within 200 kb window),
minimum allele frequency [60] greater than 0.01, and not deviating from
Hardy-Weinberg Equilibrium (HWE; p < 1e–6). Among these SNPs, those
that survived at the p values of 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5
obtained from the existing GWAS study were used to incorporate the
proportion of variation in disease risk explained through their additive
effects [61–63]. The PRS was calculated for ten psychiatric disorders,
including Autism, ADHD, anxiety, social anxiety, panic disorder, phobia,
bipolar disorder, major depressive disorder (MDD), schizophrenia, insom-
nia, and total problems as well as cognitive ability, to represent the genetic
risks of youth for these disorders and cognitive ability. We chose these
disorders since their onset was in childhood or adolescence.

Statistical analysis
Univariate analysis. This study first employed univariate analysis to
examine the influences of individual environmental items and polygenic
risks on brain structural connectivity and child psychopathology. For this,
each score of environmental items, child psychopathology, and PRS was
first standardized with zero mean and unit variance using rank-based
inverse Gaussian transformation. A linear mixed effect model took one of
the structural connectivities as a dependent variable and one of the
environmental items, child psychopathology, or PRS scores, as an
independent variable. Here, the structural connectivity quantified the

structural connection between two brain regions. Bonferroni correction
was used to determine the significance of statistical tests (35778
connectivities x (32 environmental factors + 10 child psychopathology
scores + 12 PRS scores)) at p < 10e–5.

Covariates in univariate models. The above univariate models included
age, sex, and ethnicity as covariates. The information of twins, non-twin
siblings, and 22 different research sites was entered as random effects.

SEM analysis. We employed structural equation modeling (SEM, lavaan
package in R) to examine potential pathways that link environmental/
genetic factors with child brain structural networks and transdiagnostic
dimensions of psychopathology. We employed principal component
analysis (PCA) on environmental items to identify environmental factors
and to avoid multilinearity in SEM due to the high correlation among
environmental items. PCA was further examined to determine the
transdiagnostic dimensions of child psychopathology. We used SEM to
model (1) the pathways from all environmental and genetic factors to the
structural connectivities of individual brain networks and transdiagnostic
dimensions of child psychopathology; (2) the pathways from the structural
connectivities of individual brain networks to transdiagnostic dimensions
of child psychopathology; (3) pathways from SES to maternal factors
(psychopathology and substance use) and child developmental adversity;
(4) pathways from maternal factors to child developmental adversity and
family environment. Here, 268 brain regions were grouped into 14 brain
networks, where the structural connectivity was averaged to quantify the
structural connectivity strength at a network level. The 14 brain networks
were defined via spectral clustering of the brain functional connectivity
matrix (268 × 268) (see Fig. S2 [58]). We summarized the SEM used in this
study as follows:
brain ~ six environmental factors + 12 PRS scores + covariates
child psychopathology ~ brain + six environmental factors + 12 PRS

scores + covariates
maternal factors ~ SES+ covariates
child developmental adversity ~ SES+maternal factors + covariates
family environment ~ SES+maternal factors + school environment +

child developmental adversity + covariates
Bonferroni correction was used to determine the statistical significance

of pathways (14 connectivities x (6 environmental factors + 12 PRS scores
+ 3 transdiagnostic dimensions of psychopathology) + 12 pathways
among 6 environmental factors + 3 transdiagnostic dimensions x (6
environmental factors + 12 PRS scores)) at p < 0.01.

Covariates in SEM. The above SEM models included age, sex, and
ethnicity as covariates. The information of twins, non-twin siblings, and 22
different research sites was also entered as covariates.

RESULTS
Demographics
This study included 9168 youths aged 9–11 years (9.92 ± 0.62
years). Among them, 4838 were males (52.8%). This sample
comprised 54.4% white, 14.5% black, 19.4% Hispanic, 1.3% Asian,
and 10.3% others. Table S1 (Support Document) lists the
descriptive statistics for (1) 32 environmental factors related to
developmental adversity, maternal substance use, parental
psychopathology, SES, school and family environment; (2) 10
child psychopathological scales; (3) polygenic risk scores (PRS) for
psychiatric disorders (Autism, ADHD, anxiety, social anxiety, panic
disorder, phobia, bipolar disorder, major depressive disorder
(MDD), schizophrenia), as well as total problems and cognitive
ability.

Environment-wide associations with brain structural
connectivities
We first investigated associations of individual environmental
items with brain structural connectivities via univariate analysis
while controlling for age, gender, ethnicity, and mixed effects of
family and study sites. Figure 1A illustrates the Manhattan plot of
environment-wide associations with the structural connectivities
between 268 brain regions defined in Shen’s atlas [56].
Prematurity and birth weight from developmental adversity,
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parental highest education, family income, and area deprivation
index of SES were most associated with the structural
connectivities.
There were 138, 338, 7, 2, and 3 structural connectivities

associated with prematurity and birth weight, pregnancy compli-
cations, birth complications, and traumatic brain injury, respec-
tively. When summarizing the significant environmental
associations as the number of structural connectivities per region
in each brain network, prematurity and birth weight were more
associated with the connectivities in primary networks, including
sensorimotor (SM) and visual (Vis) networks, cerebellar networks,
and orbitofrontal network (OFN, Fig. 1B).
Likewise, 51, 206, 417, 34, 876, 21, and 6 structural connectiv-

ities were associated with partnership, parental highest education,
family income, economic insecurity, area deprivation index,
neighborhood safety, and neighborhood crime, respectively.
Figure 1E illustrates the number of structural connectivities per
brain region averaged over each brain network that were
significantly associated with SES. Area deprivation index, family
income, and parental highest education showed widespread

associations across all brain networks in the order of the anterior
and posterior cerebellar networks (aCere and pCere), executive
networks (right frontoparietal (rFP) and OFN, left FP (lFP)),
attention (Att), amygdala (Amy), anterior and posterior default
mode networks (aDMN, pDMN), salience network and primary
networks (Thalamus-hippocampal network (Thal.Hipp), SM, Vis,
visual associate network (Vis.Asso)).
Maternal substance use (13 connectivities, Fig. 1C), parental

psychopathology (32 connectivities, Fig. 1D), school environment
(8 connectivities, Fig. 1F), and family environment (12 connectiv-
ities, Fig. 1G) showed environment-specific associations with only
a few structural connectivities predominantly in the executive
networks (lFP, Att, OFN), DMN, and salience.

PRS-wide associations with brain structural connectivities
We then investigated the influences of the PRS scores on brain
structural connectivities. The PRS score at 0.01 gave the most
statistical power among all the p values (0.001, 0.01, 0.05,
0.1–0.5) investigated in this study. Therefore, only the findings of
PRS at 0.01 were reported in the following. Figure 2A shows the

Fig. 1 Environment-wide associations with brain structural connectivities. A The Manhattan plot illustrates the associations of individual
environmental factors with the structural connectivities between any two brain regions. The dashed line indicates Bonferroni corrected
p value at a level of 1e–05. B–G, The pie charts show the number of structural connectivities per region averaged over each brain network that
was statistically significant for developmental adversity, maternal substance use, parental psychopathology, socioeconomic status (SES),
school environment, and family environment, respectively. B–G employ the same color scheme as in (A). OFN orbitofrontal network, lFP left
frontoparietal, rFP right frontoparietal, aDMN and pDMN anterior and posterior default mode network, SM, sensorimotor, Vis visual, Vis.Asso
visual association, aCere and pCere anterior and posterior cerebellum, Thal.Hipp thalamus and hippocampus, Amy amygdala.
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Manhattan plot of PRS-wide association with all the structural
connectivities. The PRS scores for schizophrenia and panic
disorder showed relatively strong associations with 97 and 45
brain structural connectivities (Fig. 2B), respectively. The PRS for
panic disorder was most related to the structural connectivities
in the Att, pCere, Vis, and Amy networks (pink curve in Fig. 2B).
The PRS for schizophrenia was predominately associated with
the structural connectivities in the aDMN, salience, and OFN
networks, the primary visual network, the subcortical and
cerebellar networks (Amy, Thal-Hipp, and pCere) (black curve
in Fig. 2B).
The PRS for the other disorders, total problems, and cognitive

ability show distinct patterns of the PRS-wide associations with the
brain structural connectivities (Fig. 2C). The number of structural
connectivities ranged from 2 to 10. The PRS for Autism was most
associated with the connectivities in the Att, rFP, and aDMN.
Moreover, the PRS for anxiety and social anxiety were most
associated with the connectivities in the aDMN and the visual
associate network (Vis.Asso), respectively. Furthermore, the PRS for
bipolar disorder was predominantly associated with the con-
nectivities in the rFP, pDMN, and salience networks while the PRS
for MDD was related to the OFN and rFP. Finally, the PRS for total
problems and cognitive ability were associated with the
connectivities in the salience and amygdala networks. In summary,
the strongest PRS-wide associations for psychiatric disorders, total
problems, and cognitive ability occurred most in the executive
networks (rFP, Att, OFN), DMN, and salience. Nevertheless, the
number of structural connectivities per region that contributed to
PRS-wide associations was smaller than that for the environment-
wide associations (Figs. 1B, 1E, and Fig. 2B).

Child psychopathology-wide associations with brain structural
connectivities
Figure 3A illustrates the Manhattan plot of the associations
between child psychopathology and brain structural connectiv-
ities. The number of structural connectivities ranged from 1 to 80.
The structural connectivity of the OFC was most associated with
mania (Fig. 3B). On the other hand, the structural connectivities of
the lFP and pDMN were most associated with psychosis (Fig. 3B).

Pathways among environmental factors, PRS, brain structural
connectivity, and psychopathology
We employed multivariate analysis to identify the pathways that
quantify the environmental and genetic contributions to structural
brain networks and the transdiagnostic dimension of psycho-
pathology. PCA identified six environmental factors (51.4% of total
variance) that represented parental psychopathology, school
environment, SES, developmental adversity, maternal substance
use, and family environment (Fig. S2 in Support Document). Figure
S3 (Support Document) illustrates three transdiagnostic dimen-
sions of child psychopathology (68.7% of total variance), including
externalizing, psychosis, and internalizing dimensions. Figure 4
shows the heat map among the six environmental factors, three
transdiagnostic dimensions of child psychopathology, and child
PRS at corrected p < 10e–5. The environmental factors, except
developmental adversity, were highly correlated with child
internalizing, externalizing, and psychosis. Increased developmen-
tal adversity was associated with increased psychosis. Only SES
was correlated with most of the PRS, except for ADHD, Phobia,
insomnia, and cognitive ability. Child psychosis was correlated
with child PRS for panic disorder and schizophrenia.

Fig. 2 PRS-wide associations with brain structural connectivities. A The Manhattan plot illustrates the associations of individual PRS scores
with the structural connectivities between any two brain regions. The dashed line indicates Bonferroni corrected p value at a level of 1e–05.
B The pie chart shows the number of structural connectivities per brain region averaged over each brain network that was statistically
significant for PRS. C The enlarged pie chart illustrates the associations of the PRS scores, except for panic disorder and schizophrenia, with
brain structural connectivities. All the panels employ the same color scheme.
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Figure 5 illustrates the pathways that link environmental factors,
genetic risks, brain structural connectivity, and transdiagnostic
dimensions of psychopathology in youth via SEM. Comparative fit
index (CFI) indicates the goodness of fit of our SEM model
(CFI= 0.968) [64]. Among six environmental factors, increased SES
(ß= –16.1, corrected p < 0.001) and school engagement (ß= –55.1,
corrected p < 0.001), decreased parental psychopathology (ß= 5.58,
corrected p < 0.001) predicted reduced family conflicts and increased
family monitoring. Moreover, increased maternal substance use
(ß= 4.61, corrected p= 0.001) predicted increased developmental
adversity (e.g., earlier prematurity, lower birth weight).
Developmental adversity positively predicted the structural

connectivities in early developing brain networks, such as the
Thal.Hipp network (ß= 4.39, corrected p= 0.004), but negatively

predicted the structural connectivities in the SM (ß= –4.38,
corrected p= 0.004) and Amy networks (ß= –4.33, corrected
p= 0.005). Moreover, increased SES predicted decreased struc-
tural connectivities in the Vis (ß= –6.07, corrected p < 0.001), Amy
(ß= –4.23, corrected p= 0.008), aCere (ß= –5.04, corrected
p < 0.001), OFN (ß= –5.12, corrected p < 0.001), and salience
network (ß= –4.37, corrected p= 0.004) but increased structural
connectivities in the pDMN (ß= 5.58, corrected p < 0.001). While
controlling for all the environmental factors, age, gender, and race,
only the PRS for social anxiety predicted less structural connectiv-
ities in the Vis.Asso (ß= –5.06, corrected p < 0.001) and OFN
(ß= –4.93, corrected p < 0.001).
The environmental factors and structural brain networks but

not polygenic risks for psychiatric disorders predicted the
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Fig. 4 Heatmap among the environmental factors, polygenic risk scores, and child transdiagnostic dimensions of psychopathology. The
correlation values less than corrected p < 10e–5 are shown.

Fig. 3 Child psychopathology-wide associations with brain structural connectivities. A The Manhattan plot illustrates the associations of
individual child psychopathological scales with the structural connectivities between any two brain regions. The dashed line indicates
Bonferroni corrected p-value at a level of 1e–05. B The pie chart shows the number of structural connectivities per region in each brain
network that was statistically significant with child psychopathological scales.
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transdiagnostic dimension of psychopathology in youth.
Increased externalizing problems were predicted by increased
parental psychopathology (ß= 51.7, corrected p < 0.001), mater-
nal substance use (ß= 6.31, corrected p < 0.001), and family
conflict (ß= 7.55, corrected p < 0.001), decreased SES (ß= –9.83,
corrected p < 0.001) and school engagement (ß= –4.52, cor-
rected p= 0.002), as well as decreased structural connectivities
in the pCere (ß= –5.02, corrected p < 0.001) and lFP (ß= –4.80,
corrected p < 0.001) but increased structural connectivities in the
Att (ß= 4.60, corrected p= 0.001). Moreover, increased inter-
nalizing problems were predicted by increased parental
psychopathology (ß= 56.6, corrected p < 0.001), maternal sub-
stance use (ß= 6.54, corrected p < 0.001), decreased school
engagement (ß= –6.41, corrected p < 0.001), and increased
structural connectivities in the salience network (ß= 4.67,
corrected p < 0.001). Last, increased psychosis was predicted
by increased family conflict (ß= 17.0, corrected p < 0.001) and
developmental adversity (ß= 5.02, corrected p < 0.001),
decreased SES (ß= –10.6, corrected p < 0.001) and structural
connectivities in the aDMN (ß= –4.59, corrected p= 0.002) and
pDMN (ß= –4.79, corrected p < 0.001).

DISCUSSION
This study discovered a possible comprehensive map that links
environmental factors, genetic risks, brain structural networks, and
dimensional psychopathology in youth. Environmental factors and
genetic risks contributed independently to child brain structural
networks in youth with environmental factors having a stronger
influence, in particular developmental adversity and SES. Devel-
opmental adversity predicted the structural connectivities in the
SM and subcortical networks, while SES was linked with the
subcortical, cerebellar, and primary visual networks, pDMN, and
salience. Moreover, the triple structural networks and cerebellar
networks showed distinct patterns of associations with externaliz-
ing, internalizing, and psychosis in youth. Furthermore, six
environmental factors showed different associations with exter-
nalizing, internalizing, and psychosis in adolescents. Our findings
suggested direct and indirect pathways of environmental factors
and genetic risks influencing brain structural organization and
dimensional psychopathology in youth.
This study included the multifaceted constructs of SES,

including household and neighborhood SES. Among the 32
environmental measures, SES (e.g., area deprivation index, family

Fig. 5 Pathways link environmental factors and polygenic risk scores with the brain structural connectivity and transdiagnostic
dimensions of psychopathology in youth. For visualization, we repeatedly represent child internalizing and externalizing on the bottom row.
Statistical coefficients are given for each path. All statistical significance passes Bonferroni correction (p < 10e–5). The values for each path
denote the standardized beta coefficients.
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income, parental highest education) had the strongest indepen-
dent associations with the structural connectivities dispersed
across brain networks. Using the same sample, Sripada et al. [21]
demonstrated that the SES score, a composite of both household
and neighborhood SES, highly correlated to the functional
connectivities broadly distributed across brain networks. House-
hold and neighborhood SES also demonstrated common effects
on resting-state functional connectivities, particularly in sensory
systems and cognitive executive networks [65]. Previous work
found that neighborhood SES is more predictive of cognitive
performance than parental education [66] and moderates the
development of functional brain segregation in youth [20]. Our
study demonstrated that area deprivation index had the most
impact, providing new evidence on the importance of neighbor-
hood SES in modifying the brain structural organization in youth.
Our pathway analysis demonstrated that the SES factor had

direct and indirect influences on the structural brain networks and
the three transdiagnostic dimensions of psychopathology in youth
while covarying the polygenic risks, other environmental factors,
age, gender, and race. The direct link between lower SES and
worse externalizing and psychosis was highly consistent with
previous findings [18, 19]. The two indirect pathways linked SES,
brain, and psychopathology, suggesting that lower SES predicted
(1) lower pDMN structural connectivity and more severe psychosis,
(2) greater salience structural connectivity and more severe
internalizing in youth. The DMN is vital in monitoring the internal
mental landscape [67], while the salience network plays a crucial
role in the attentional capture of relevant events and the
engagement of frontoparietal systems for working memory and
higher-order cognitive control [68]. Increasingly, the DMN and
salience networks have been identified as disease volumetric
and functional connectomic “fingerprints” that are commonly
disrupted across distinct forms of mood, psychosis, fear behaviors
in adolescents [69, 70] or schizophrenia, depression, anxiety in
adults [71]. Our findings suggested that SES might be a crucial
environmental factor for reconfiguring the common core of brain
structural organization in psychiatric disorders and hence
improving psychopathology in youth.
Prematurity and birth weight are the purported proxies for

adverse prenatal exposure. Our study found their dominant
associations with the early-developed brain networks, such as the
SM and subcortical networks. The sensorimotor cortex and
subcortical structures, such as the thalamus, amygdala, and
hippocampus, are mature in childhood [4]. Weaker functional
connectivity strength in the SM network is found in preterm
children and adolescents [72]. Volume reductions in the thalamus
and hippocampus have been found in individuals with low birth
weight [12, 73]. These findings suggest long-lasting alterations in
brain morphology, structural and functional organization due to
developmental adversity. Such an impact is related to the timing
of exposure and the stage of brain development.
Nevertheless, this study did not find a direct relationship

between family and school environment and brain structural
connectivity. This is consistent with previous research, which has
also not found a relationship between school environment and
fractional anisotropy values of white matter tracts in the same
cohort [74].
Our pathway analysis also demonstrated the interleaved

relationship among the six environmental factors and their direct
and indirect associations with psychopathology in youth.
Increased parental psychopathology, decreased SES and school
engagement was associated with increased family conflict and
psychosis, and externalizing behaviors in youth. Likewise,
increased maternal substance use predicted increased develop-
mental adversity, internalizing, and psychosis. These findings
indicated the importance of SES, parental, and school social
factors in improving family social interactions, parenting, and
developmental adversity.

Our findings further suggest that the polygenic risks for
psychiatric disorders, total problems, and cognitive ability
moderately affected brain structural connectivity and psycho-
pathology in youth. While considering the environmental com-
plexity, variations in structural connectivity and transdiagnostic
dimensions of psychopathology were largely associated with
environmental factors rather than polygenic risks. Judd et al. [75]
recently also found that parental education predicted cognitive
function and total cortical surface area, independent of the
polygenic risk score for years of education in adolescents. This
might result from fine-tuning synapses [7], brain morphology and
functional organization associated with environmental complexity
[20], or stress-induced alterations in neuroendocrine pathways
[76] in adolescence.
Despite the large sample size and the comprehensive data

analysis in this study, several limitations are worth considering.
Our SEM model did not incorporate individual environmental
items due to their collinearity. This study used univariate analysis
to provide complementary information on the contributions of
individual environmental items. Moreover, this study was a cross-
sectional study. Longitudinal data would be needed to investigate
the timing and influence of environmental factors on the
developmental trajectory of brain structural connectivity and
psychopathology during adolescence. Another limitation is that
the study only included participants aged 9–11 years, which may
limit the generalizability of the finding to other age groups. Finally,
the study found moderate effects of polygenic risks on brain
structural organization. But, the offspring of parents with elevated
psychopathological problems were up to 50 times more likely to
develop externalizing and internalizing behaviors, suggesting
some form of heritability. Advanced genetic analysis methods may
need to be developed for future investigation.
Our study provided a unique and comprehensive map that

shows pathways linking environmental factors, genetic risks, brain
structural connectivity, and psychopathology in youth. They
highlight some risks to optimal development, including SES,
parental psychopathology, maternal substance use during preg-
nancy, and school engagement, which can interfere with other
environmental factors and the reconfiguration of brain structural
connections unique to dimensional psychopathology. These
findings suggest that a range of genetic and environmental
factors can influence brain structural organization and psycho-
pathology during adolescence, and that addressing these risk
factors may be important for promoting positive mental health
outcomes in young people.
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