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Single-cell analysis of gastric signet ring cell
carcinoma reveals cytological and immune
microenvironment features

Weizhu Zhao1,2,3,7, Yanfei Jia 4,7, Guangyu Sun3, Haiying Yang5, Luguang Liu 6,
Xianlin Qu 6, Jishuang Ding 6, Hang Yu 6, Botao Xu 6, Siwei Zhao 6,
Ligang Xing 1,2 & Jie Chai 6

Gastric signet ring cell carcinoma (GSRC) is a special subtype of gastric cancer
(GC) associated with poor prognosis, but an in-depth and systematic study of
GSRC is lacking. Here, we perform single-cell RNA sequencing to assess GC
samples. We identify signet ring cell carcinoma (SRCC) cells.
Microseminoprotein-beta (MSMB) can be used as a marker gene to guide the
identification of moderately/poorly differentiated adenocarcinoma and signet
ring cell carcinoma (SRCC). The upregulated differentially expressed genes in
SRCC cells are mainly enriched in abnormally activated cancer-related sig-
nalling pathways and immune response signalling pathways. SRCC cells are
also significantly enriched in mitogen-activated protein kinase and oestrogen
signalling pathways, which can interact and promote each other in a positive
feedback loop. SRCC cells are shown to have lower cell adhesion and higher
immune evasion capabilities as well as an immunosuppressive microenviron-
ment, which may be closely associated with the relatively poor prognosis of
GSRC. In summary, GSRC exhibits unique cytological characteristics and a
unique immune microenvironment, which may be advantageous for accurate
diagnosis and treatment.

Gastric cancer (GC) is a common cancer worldwide that ranks fifth in
incidence and fourth in mortality1. Fewer early-stage GC patients are
diagnosed in China than in other countries, and late-stage GC patients
account for the highest proportion of patients with large tumours at
the time of diagnosis2. Despite advances in early-stage diagnosis and
treatment, the current understanding of the biology of GC is still
preliminary, and the 5-year survival rate of patients with advanced GC
remains below 5%3.

Gastric adenocarcinoma (GA) is themost common subtype of GC,
accounting for 95% of all GC cases. GA is a highly heterogeneous
disease4,5 and is classified into different histological subtypes based on
Lauren’s classification system, including intestinal-type, diffuse-type
andmixed-type6. Gastric signet ring cell carcinoma (GSRC) is classified
as diffuse-type GA, which develops from poorly cohesive cells without
gland formation7. GSRC is histologically diagnosed based on micro-
scopic characteristics, specifically, the presence of signet ring cells in
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over 50% of cancer cells, according to the guidelines of the World
Health Organization (WHO). Cancer cells secrete a large amount of
mucus, but most of it is not discharged from the cell. Rather, the large
amount of mucus in the cytoplasm squeezes the nucleus to one side,
making the cancer cell look like a signet ring, hence the name signet
ring cell carcinoma (SRCC). GSRC has the characteristics of low dif-
ferentiation, high malignancy, strong invasiveness, higher risk of
metastasis, poor response to radiotherapy and chemotherapy, and its
incidence is increasing yearly, especially in women8–11.

The molecular mechanisms involved in the occurrence and het-
erogeneity of GSRC have been described using exome and tran-
scriptome sequencing, and changes in several driving factors have
been recognized12–14, However, these sequencing data reflect the
average expression level of the gene in bulk cells.They mask the
molecular characteristics of different cell subgroups within the tissue
and cannot truly reflect the specificity and heterogeneity of the gastric
printed cells. In recent years, single-cell RNA sequencing (scRNA-seq)
has been used to directly analyse gene expression and intracellular
population heterogeneity at the single-cell level, define dynamic
transformations in cell type and cell state, and recognize new cell
subtypes, thereby improving the understanding of transcription
kinetics and gene regulation in rare cells15–17. The method can also be
used to analyse biological tissues and has been widely applied in
tumour microenvironment analysis, including tumorigenesis and
immune tolerance contexts18. Furthermore, several studies have pro-
filed the single-cell landscape of immune cell heterogeneity and
tumour cell heterogeneity in GC19,20. However, a detailed under-
standing of the cytological and immunemicroenvironment in GSRC at
the single-cell resolution level remains elusive.

In this work, we analyse para-cancerous and GA tissues by scRNA-
seq. We compare the differences between moderately/poorly differ-
entiated adenocarcinoma(M/PDA) and GSRC in cytology and immune
microenvironment. Our data provide an in-depth understanding of
GSRC and may provide a resource for the accurate diagnosis and
treatment of GSRC.

Results
scRNA-seq overview and identification of major cell types in
para-cancerous and GA tissues
From December 2019 to December 2021, 13 patients with GA who
underwent radical gastrectomyat ShandongCancer Institute and Jinan
Central Hospital (Jinan, China) were enrolled. No enrolled patient
received any other therapies before surgery, such as radiotherapy,
chemotherapy, and immunotherapy, or had other tumours. All
patients were negative for a family history of tumours. The patients
were divided into 4 groups based mainly on the degree of differ-
entiation and the signet ring cell content, andnogender-based analysis
was performed. Additional patient data are presented in Supplemen-
tary Table 1. scRNA-seq was used to analyse the samples of 13 GA
patients. After filtering out low-quality cells, removing doublet reads,
and correcting for batch effects, the transcriptomes of a total of
149,782 single cells were analysed (Fig. 1a). In the discovery cohort,
32,456 single cells were obtained from para-cancerous tissues from 5
patients, and 117,326 single cells were obtained from cancer tissues
from 13 patients. The validation cohort was used to confirm the dif-
ferences found in the discovery cohort (Fig. 1b). Using CellRanger, the
official analysis software from 10× Genomics, the cells were divided
into 26 clusters based on principal component analysis (PCA) and
cluster analysis (Fig. 1c). Seurat software was utilized to analyse the
gene expression differences among the cell clusters and to screen the
genes thatwere upregulated in different cells (Fig. 1d). Thedistribution
of 8 different cell clusters was finally determined based on unbiased
cell type recognition (Fig. 1e). The cell clusters were named according
to specific marker genes: B cells (expressing CD79B, CD79A, and
MS4A1), endothelial cells (expressing VWF, CDH5, and PECAM),

epithelial cells (expressing CDH1, KRT8, and EPCAM), fibroblast cells
(expressing PDGFRB, COL1O2, and DCN), mast cells (expressing
SLC18A2, FCER1A, TPSB2, and KIT), myoid cells (expressing FCGR2A,
CD163, andMRC1), smooth muscle cells (expressing TAGLN, RGS5, and
ACTA2) and T cells (expressing TRBC2, CD2, and CD3E)19. To further
understand the cell clustering, in-depth analysis was carried out from
the aspects of cell source, grouping and cell proportion (Fig. 1f–h).

Identification of malignant and nonmalignant epithelial cells
Cell clusters 5, 7, 15, and 19 were defined as epithelial cell clusters.
Through cluster analysis of the epithelial cells, 20 subclusters (Fig. 2a)
were obtained. According to marker genes cancer cells (expressing
CLDN4, REG4, TTF3, and CEACAM6), mucous cells (expressing TFF1,
MUC5AC, TFF2, and MUC6), chief cells (expressing PGA3 and PGA4),
parietal cells (expressing ATP4A and ATP4B), and endocrine cells
(expressing CHGA and CHGB)19 (Fig. 2b), the subclusters were redi-
vided into 5 subclusters. Subclusters 6, 11, 12, and 13 were identified as
M/PDA cells, subclusters 14 and 16 were identified as chief cells, sub-
clusters 18 and 19 were identified as parietal cells, subcluster 9 was
identified as endocrine cells, and other subclusters were identified as
mucous cells (Fig. 2c, d).

The proportion of mucous cells increased significantly in poorly
differentiated adenocarcinoma with signet ring cell carcinoma
(PDSRCC) and GSRC (Fig. 2e). According to the abovementioned
findings, immunofluorescence analysis of mucous cell markers was
conducted, and it was revealed that thesemarkerswere also expressed
in SRCC cells (Fig. 2f). SRCC cells contained a great deal of mucous,
thus, these cells may be identified as mucous cells. To further distin-
guish mucous and SRCC cells, tissue origin was considered. Sub-
clusters 1, 4, 8, and 15 were independently derived from cancer tissues
and were defined as SRCC cells, and subclusters 0, 2, 3, 5, 7, 10, and 17
were defined as mucous cells (Fig. 2g, h).

To verify the accuracy of clustering, the following steps were
performed. First, to facilitate analysis, the chief cells, parietal cells, and
endothelial cells were classified as nonmalignant epithelium, and their
identification was relatively clear. The average expression levels of 80
cancer cell-elevated genes obtained from The Cancer Genome Atlas
(TCGA) were used; the cancer-related score was compared between
nonmalignant epithelium and M/PDA cells, and there was a significant
difference between the two groups (Fig. 3a). The same results were
also foundbetweenSRCCandmucous cells (Fig. 3b). Second, InferCNV
is a tool used to analyse copy number variations (CNV) in tumour cells
using scRNA-seq data. Based on the expressionmatrix of InferCNV, the
CNV ofM/PDA cells was significantly higher than that of nonmalignant
epithelium and mucous cells, while the CNV of SRCC cells was lower
than that of mucous cells (Fig. 3c, Supplementary Fig. 2). Moreover, to
further verify the accuracy of the identification, the CNV scores of all
subclusters were calculated based on InferCNV. The CNV scores of
subclusters 6, 11, 12, and 13were relatively high; thus, these subclusters
were identified asM/PDA cells with characteristics typical ofmalignant
tumours (Fig. 3d). The CNV score of SRCC cells was lower than that of
M/PDA and mucous cells but higher than that of nonmalignant epi-
thelial cells (t-test, p <0.001) (Fig. 3e). Finally, volcano plot analysis
revealed that REG4, S100A10, TSPAN8, OLMF4, and PHGR1 were upre-
gulated in M/PDA cells compared with nonmalignant epithelial cells
(Supplementary Fig. 3a). According to the results of the GSVA, M/PDA
cells were mainly enriched in cancer-related signalling pathways con-
tributing to tumour growth, proliferation, and metastasis, such as the
epithelial-mesenchymal transition, E2F targets, PI3K/AKT/mTOR and
KRAS signalling pathways (Supplementary Fig. 3b, Supplementary
Data 1). GSVA was also performed to characterize different sources of
mucous and SRCC cells.PDAucous cells, SRCC cells were enriched for
signalling pathways such as the tumour necrosis factor-α (TNF-α),
nuclear factor-κB (NF-κB), and transforming growth factor-β (TGF-β)
signalling pathways, which are crucial for cancer development (Fig. 3f).
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Collectively, the subclusters of epithelial cells were reidentified,
and corresponding verification was carried out.

scRNA-seq revealed the characteristics of SRCC
SRCC cells were divided into four subclusters (Fig. 4a). There was
significant heterogeneity among SRCC cells according to heatmap
analysis (Fig. 4b). However, in the four subclusters, some common
highly expressed genes were identified, such as CLDN18, PHLDA2,
ATF3,HBEGF, SYTL2, PGC, and LYZ, whichmight also be involved in the
occurrence and development of GSRC.

According to the gene set enrichment analysis (GSEA) results,
the genes upregulated in SRCC cells were mainly enriched in the
immune response and included TNF-α signalling via the NF-kB

signalling pathway, the TGF-β signalling pathway, and the IL-18 sig-
nalling pathway. In addition, SRCC cells were enriched in cell
proliferation-related signalling pathways, including the G2/M
checkpoint, mitogen-activated protein kinase (MAPK), and TP63-
targets signalling pathways (Fig. 4c). In addition, oestrogen
response signalling and cholesterol homoeostasis signalling could
be specifically enriched in SRCC cells, indicating that oestrogen
receptor levels and cholesterol metabolism could be involved in
cancer occurrence and development.

Importantly, MSMB was found to be a potential marker gene of
GSRC. The expression level of MSMB was basically consistent with
that in the subclusters of SRCC cells.MSMB exhibited essentially no/
low expression in M/PDA cells (Fig. 4d, e). The scRNA-seq results

Fig. 1 | scRNA-seq overview and identification of major cell types in para-
cancerous and GA tissues. a Schematic diagram of the scRNA-seq process.
Designed with BioRender©. b Experimental design for scRNA-seq and the corre-
sponding validation. In the discovery cohort, cancer tissues (n = 13) and para-
cancerous tissues (n = 5) of 13 patients with GAwho underwent radical gastrectomy
were analysed. In the validation cohort, GSRC (n = 30) and M/PDA (n = 30) samples
were used for IHC verification. The mRNA transcriptome was sequenced from
cultured cells. Relevant databases were used for bioinformatics validation.
Designedwith BioRender©. cThe t-distributed stochastic neighbour embedding (t-
SNE) plot of the 26main cell types identified from cancer tissues (n = 13) and para-

cancerous tissues (n = 5); 32,456 single cells were obtained from para-cancerous
tissues, and 117,326 single cells were obtained from cancer tissues. d Violin plot
showing the expression levels of cell type marker genes in 8 cell types. e t-SNE plot
of cells from cancer and para-cancerous tissues (coloured by cell type). f t-SNE plot
of cells from cancer and para-cancerous tissues (coloured by sample origin).
g t-SNE plots of cells from cancer tissues, which were grouped by the degree of
differentiation and signet ring cell content. h Scale plot of cells from cancer tissues
(n = 13), which were grouped by the degree of differentiation and signet ring cell
content. Source data are provided as a Source Data file.
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showed that the expression level of MSMB was higher in SRCC cells
than in mucous cells and M/PDA cells (Fig. 4f). Verification was
carried out in the corresponding cell lines. The SRCC cell line NUGC4
exhibited a higher expression level of MSMB than the poorly dif-
ferentiated MKN-45 adenocarcinoma cell line (Fig. 4g, h). Verifica-
tion was conducted using IHC, and the results confirmed that the
MSMB expression level in SRCC cells was higher than that in M/PDA
cells but lower than that in the gastric foveal proliferation area in
para-cancerous tissues (Fig. 4I). Taken together, these data sup-
ported the high MSMB expression level in SRCC cells.

Similarities and differences between M/PDA and SRCC cells
Clinically, there were significant differences in biological beha-
viours between M/PDA and GSRC, and these differences were
mainly manifested in the tumour parenchyma. To clarify these dif-
ferences, DEGs were analysed in M/PDA and SRCC cells (Fig. 5a).
Through the enrichment analysis of upregulated DEGs and signal-
ling pathways, it was revealed thatPDA/PDA cells, the upregulated
genes in SRCC cells were mainly enriched with abnormally active
cancer-related signalling pathways (e.g., transcriptional misregula-
tion in cancer, pathways in cancer and microRNAs in cancer) and

Fig. 2 | Single-cell transcriptome plots of epithelial cells. a t-SNE plot of 20
epithelial cells from cancer tissues (n = 13) and para-cancerous tissues (n = 5). bDot
plot of the expression levels of cell typemarker genes in 5 cell types. c t-SNE plot of
epithelial cells from cancer tissues (n = 13) and para-cancerous tissues (n = 5)
(coloured by cell type). Subclusters 6, 11, 12, and 13 were identified as M/PDA cells,
subclusters 14 and 16 were identified as chief cells, subclusters 18 and 19 were
identified as parietal cells, subcluster 9 was identified as endocrine cells, and other
subclusters were identified as mucous cells. d t-SNE plot of expression levels of
marker genes for 5 cell types. e Scale plot of epithelial cells from cancer tissues

(n = 13). f Immunofluorescence plot of characteristic genes of selected cell types
(n = 26). The gastric antrum mucus cells were stained with DAPI (blue), TTF1 (red)
andMUC5AC (green). The gastric antrum basal glandmucus cells were stainedwith
MUC6 (green),TTF2 (red), andDAPI (blue). Scale bar: 50 µm.g t-SNEplot ofmucous
cells from cancer tissues (n = 13) and para-cancerous tissues (n = 5) (coloured by
tissue origin). h t-SNE plots of mucous cells of subclusters from cancer tissues
(n = 13) and para-cancerous tissues (n = 5) (categorized by tissue origin and
coloured by cell type). Source data are provided as a Source Data file.
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were closely correlated with signalling pathways of immune escape
(e.g., the TNF-α signalling pathway, TGF-β signalling pathway, and
NF-kB signalling pathway) (Fig. 5b, c). The corresponding verifica-
tion was carried out in cell culture, and the same results were

obtained (Fig. 5d, e). M/PDA cells had high proliferation and
immune surveillance capabilities, while SRCC cells had low
cell adhesion and high immune escape capabilities (t-test,
p < 0.001). (Fig. 5f).

Fig. 3 | Verification plots of nonmalignant epithelium and malignant epithe-
lium after identification. a Box plot showing distribution of cancer-related scores
(average expression levels of cancer-related epithelial marker genes) for cells
categorized as nonmalignant epithelial cells and M/PDA cells (t-test, p < 2.2 × 10−16).
b Box plot showing distributions of cancer-related scores (average expression
levels of cancer-related epithelial marker genes) for cells categorized as SRCC and
mucous cells (t-test, p < 2.2 × 10−16). cHeatmap showing inferCNV for all subclusters
of epithelial cells. Red: amplifications; blue: deletions. d Histogram showing CNV
score plot of all subclusters of epithelial cells. e Box plot showing CNV score plot of
epithelial cells by cell type. The CNV score of SRCC cells was lower than that of M/
PDA and mucous cells, while higher than that of nonmalignant epithelial cells (t-

test, p < 2.2 × 10−16). f GSVA of SRCC and mucous cells. SRCC cells were mainly
enriched in cancer-related signalling pathways such as the TNF-α signalling path-
way, NF-κB signalling pathway, and TGF-β signalling pathway. GSVA data were
plotted according to the t value of limma, and at value > 5 was considered sig-
nificant. The statistical strategy were two-sided Student’s t-test. In a, b, d and e, All
specimens were participated in the analysis (n = 18), Data are presented as mean
values ± SEM. In the box plot, the black dots represent outliers, the error bars
represent SEM, the box midpoints represent means and the boxes represent inter-
quartile positions. p values were calculated using the two-sided unpaired Student’s
t-test, P values < 0.05 were considered to indicate significance: **p <0.01;
***p <0.001. Source data are provided as a Source Data file.
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Infiltration characteristics of B cells in M/PDA and GSRC
B cells from clusters 3 and 4 were reclustered into 16 subclusters
(Fig. 6b, Supplementary Fig. 4a–c) using the marker gene (Fig. 6a). Of
these, subclusters 1, 2, 4, 6, 8 and 12weredefined asmucosa-associated

lymphoid tissue-derivedB (MALT-B) cells (expressing immunoglobulin
(Ig) and JCHAIN); subclusters 0, 3, 7, 14 and 15were defined as follicular
B cells (expressing MS4A1, CD74 and HLA-DRA); subclusters 9, 10, 11
and 13 were defined as plasma cells (expressing Ig-related genes and

Fig. 4 | Basic features of SRCC cells. a t-SNE plot of 4 subclusters of SRCC cells.
b Heatmap of 4 subclusters of SRCC cells. Some common highly expressed genes,
such as CLDN18, PHLDA2, ATF3, HBEGF, SYTL2, PGC, and LYZ were identified and
might also be involved in theoccurrenceanddevelopmentofGSRC.cThe results of
GSEA showed that cancer-related signalling pathways were enriched in SRCC cells.
The genes upregulated in SRCC cells were mainly enriched in signalling pathways
associated with immune response, such as the TNF-α signalling pathway, NF-kB
signalling pathway, and TGF-β signalling pathway, as well as cell proliferation-
related pathways, including the G2/M checkpoint signalling pathway, MAPK sig-
nalling pathway, and TP63 signalling pathway. The statistical strategy were one-
sided Student’s t-test. d Violin plot of expression level ofMSMB in subclusters. The
expression level ofMSMBwas generally consistent with that in subclusters of 1, 4, 8,

and 15 of SRCC cells. MSMB is weakly or not at all expressed in M/PDA cells (sub-
clusters of 0, 2, 3, 5, 7,10, and 17). e Violin plot of expression level of MSMB in
epithelial cells(categorized by cell type). The expression level of MSMB was rela-
tively higher in SRCC cells than mucous and M/PDA cells. f UMAP plot of the
expression level ofMSMB in subclusters.gTPMvalueof transcript ofMSMB inMKN-
45 and NUGC4 cells by cell culture. h TPM value of transcript ofMSMB in cell lines
by DepMap database. The transcriptional expression data of gastric cancer cell
lines were downloaded fromDepMap database (https://depmap.org/portal/). i IHC
plots of the expression level ofMSMB in cancer tissues and para-cancerous tissues
(n = 69). 1: PDA; 2: PDSRCC; 3: GSRC; 4: para-cancerous tissues. 1, 2 and 3, Scale bar:
50μm; 4, Scale bar: 5μm. Source data are provided as a Source Data file.
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IGHG1); and subcluster 5 was defined as memory B cells (expressing
HMGN2 and H2AFZ)21,22.

After extracting the top 10genes fromeach subcluster of B cells to
form a heatmap, it was found that MALT-B cells mainly expressed IgA-
related genes, while plasma cells mainly expressed IgG-related genes
(Fig. 6c). MALT-B cells are similar to plasma cells in their functions and
play an important role in the humoral immunity of B cells. Afterwards,
enrichment analysis was performed on each subcluster, and it was
found thatMALT-B and plasma cells had similar functions, which were

mainly related to the immune response, B-cell activation, and partici-
pation in complement activation. However, follicular B cells had rela-
tively weak immune responses (immune system process and
regulation of B cells) (Fig. 6d).

Analysis of the samples revealed that the infiltration of MALT-B
cells was the mainstay in MDA, PDA, and PDSRCC in para-cancerous
tissues, while GSRC was mainly infiltrated by follicular B cells. The
analysis of cancer tissue showed thatMALT-B andmemoryB cells were
the main infiltrating cells in MDA and PDA, while follicular B and

Fig. 5 | Similarities and differences betweenM/PDA and SRCC cells. a t-SNE plot
of M/PDA and SRCC cells (coloured by cell type). b Pathway enrichment analysis
plots of DEGs upregulated in M/PDA and SRCC cells. Compared with M/PDA cells,
the DEGs upregulated in SRCC cells were mainly enriched in abnormally activated
cancer-related signalling pathways (e.g., transcriptional misregulation in cancer,
pathways in cancer and microRNAs in cancer) and were closely associated with
signalling pathways of immune escape (e.g., TNF signalling pathway, TGF-β sig-
nalling pathway and NF-kB signalling pathway). c Heatmap plot of DEGs in M/PDA
and SRCC cells. d Heatmap plot of DEGs in MKN-45 and NUGC4 cells. e KEGG
pathway enrichment analysis of MKN-45 and NUGC4 cells among DEGs.

f Differences between M/PDA and SRCC cells in terms of cell proliferation, cell
adhesion, immune surveillance, and immune escape. M/PDA cells had high pro-
liferation and immune surveillance capabilities, while SRCC cells had low cell
adhesion and high immune escape capabilities (t-test, p <0.001). n = 10 (include
3 samples in MDA and PDA groups, respectively; and 4 samples in GSRC group).
Data are presented as mean values ± SEM. In the box plot, the black dots represent
outliers, the error bars represent SEM, the boxmidpoints represent means and the
boxes represent inter-quartile positions. p values were calculated using the two-
sided unpaired Student’s t-test, p values < 0.05 were considered to indicate sig-
nificance: ***p <0.001. Source data are provided as a Source Data file.
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Fig. 6 | Similarities and differences of tumour-infiltrating B cells between M/
PDA and GSRC. aDot plot showing the expression levels of cell typemarker genes
in 4 cell types. b t-SNE plot showing subclusters of B cells (coloured by cell type).
c Heatmap plot showing subclusters of B cells. d Functional signalling pathway
enrichment plot of MALT-B cells. MALT-B cells were mainly related to immune
response, B-cell activation, and participation in complement activation.
e Functional signalling pathway enrichment plot of follicular B cells. Follicular B
cells were related to immune systemand regulation of B cells. f Box plot of tumour-
infiltrating follicular B and MALT-B cells in M/PDA and GSRC. Compared with M/
PDA, tumour-infiltrating follicular B cells in GSRC were higher, the difference was
not statistically significant (t-test, p =0.19); Similarly, there is no difference in
tumour-infiltrating MALT-B cells between M/PDA and GSRC (t-test, p = 1). n = 10
(include 3 samples in MDA and PDA groups, respectively; and 4 samples in GSRC
group). Data are presented as mean values ± SEM. In the box plot, the black dots

represent outliers, the error bars represent SEM, the box midpoints represent
means and the boxes represent inter-quartile positions. g Pod plot of tumour-
infiltrating follicular B andMALT-B cells in M/PDA and GSRC by IHC score (n = 30).
Comparedwith that ofM/PDA, the IHC score of tumour-infiltrating follicular B cells
(expressing CD74) in GSRC was higher, and the difference was statistically sig-
nificant (Wilcoxon rank-sum test, p =0.012); The IHC score of tumour-infiltrating
MALT-B cells (expressing JCHAIN) in GSRC was higher, but the difference was not
statistically significant (Wilcoxon rank-sum test, p =0.154).p values were calculated
using Wilcoxon rank-sum test. h Pseudochronological analysis of subclusters of B
cells. Starting from marker point 1, B cells were divided into two branches: one
consisting of follicular B cells and memory B cells; the other consisting of MALT-B
cells and plasma cells. In d, e and f, the statistical strategy were two-sided Student’s
t-test. p values < 0.05 were considered to indicate significance: *p <0.05; ns no
significance. Source data are provided as a Source Data file.
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memory B cells were the main infiltrating cells in PDSRCC and GSRC.
The increased proportion of SRCC was accompanied by a decreased
proportion ofMALT-B cells and a significant increase in the number of
follicular B cells, which was highly consistent with para-cancerous tis-
sues in GSRC (Supplementary Fig. 4d). Compared with M/PDA,
tumour-infiltrating follicular B cells in GSRC were higher, the differ-
ence was not statistically significant (t-test, p = 0.19); Similarly, there
was no difference in tumour-infiltrating MALT-B cells between M/PDA
andGSRC (t-test,p = 1) (Fig. 6e). Comparedwith that ofM/PDA, the IHC
scoreof tumour-infiltrating follicular B cells (expressingCD74) inGSRC
was higher, and the difference was statistically significant (Wilcoxon
rank-sum test, p = 0.012); The IHC score of tumour-infiltratingMALT-B
cells (expressing JCHAIN) in GSRC was higher, but the difference was
not statistically significant (Wilcoxon rank-sum test, p =0.154) (Fig. 6f,
Supplementary Fig. 5).

To gain insight into the evolutionary relationship among B-cell
subclusters, Monocle algorithm analysis was performed based on the
definition of subclusters. The majority of cells from different sub-
clusters were clustered according to the similarity of their gene
expression, while different subclusters, which were clustered in
pseudotime, illustrated a stepwise process, starting frommarker point
1. B cells were divided into two branches: one consisting of follicular B
cells and memory B cells; the other consisting of MALT-B cells and
plasma cells (Fig. 6g).

In summary, compared with M/PDA, subclusters of B cells exhib-
ited unique infiltration characteristics inGSRC,mainly follicularB cells.
Moreover, follicular B cells had relativelyweak immune responses; this
could also be one of the reasons for the poor prognosis of GSRC.

Infiltration characteristics of T cells in M/PDA and GSRC
T cells from clusters of 0, 1, 13, and 14 were reclustered into 14 inde-
pendent subclusters (Fig. 7a). The subclusters were subdivided into 10
cell subclusters (Fig. 7c) usingmarker genes (Fig. 7b). Among them, the
subcluster from cluster 0 was defined as CD4-Th17 cells (expressing
CD4,MAF, ICOS,CD40LG, andKLRB1); the subcluster fromcluster 1 was
defined as CD4-Tn or central memory T (Tcm) cells (expressing CD4,
IL7R,TCF7,CCR7, SELL, andCD44); subclusters fromclusters 2, 3, 4, and
10 were defined as CD8-Teff cells (expressing CD8A, NKG7, KLRD1, and
GZMB); the subcluster from cluster 5 was defined as CD8-Tex cells
(expressing CD8A, CTLA4, TIGIT, TNFRSF9, and PDCD1); the subcluster
from cluster 6 was defined as CD4-Treg cells (expressing CD4 and
FOXP3); the subcluster from cluster 7 was defined as naive T cells
(expressing CD3); the subcluster from cluster 8 was defined as CD8-
Tem cells (expressing PRF1, GNLY, GZMH, FGFBP2, S1PR1, and S1PR5);
the subcluster from cluster 9 was defined as pro-T cells (expressing
MKI67, CD3D, CD8A, and CD4); the subcluster from cluster 11 was
defined as natural killer (NK) cells (expressing CD3D, XCL1, TRDC, and
XCL2), and the subcluster from cluster 12 was defined as other cells21,22.

Through the analysis of the samples, it was found that CD4-Th17,
CD4-Tn or Tcm and CD8-Teff cells mainly infiltrated para-cancerous
tissues andmainly exhibited immune functions. The infiltration rate of
CD4-Treg cells was significantly higher in cancer tissues than in para-
cancerous tissues, especially in GSRC. Meanwhile, GSRC had fewer
tumour-infiltrating CD8-Teff cells than M/PDA (Fig. 7d). Compared
with that in M/PDA, the proportion of tumour-infiltrating CD4-Treg
cells in GSRC was higher, and the difference was not statistically sig-
nificant (t-test, p =0.25). The proportion of tumour-infiltrating CD8-
Teff cells in GSRC was lower, the difference was not statistically sig-
nificant (t-test, p =0.25) (Fig. 6e). Compared with that in M/PDA, the
IHC score of tumour-infiltrating CD4-Treg cells (expressing FOXP3) in
GSRC was higher, and the difference was statistically significant (Wil-
coxon rank-sum test, p =0.0032); The IHC score of tumour-infiltrating
CD8-Teff cells (expressing KLRD1) was lower in GSRC, and the differ-
ence was statistically significant (Wilcoxon rank-sum test, p = 0.0021)
(Fig. 6f, Supplementary Fig. 5).

Collectively, the subclusters of T cells in GSRC exhibited unique
infiltration characteristics, with increased infiltration of CD4-Treg cells
and decreased infiltration of CD8-Teff cells, mainly manifesting as an
immunosuppressive microenvironment.

Discussion
GC is a common gastrointestinal malignancy and remains the fourth
leading cause of cancer-related deaths worldwide1. Although recent
epidemiological surveys have shown that the overall incidence of GC
has decreased significantly, the incidence of diffuseGC is continuously
increasing. This is especially true for GSRC due to its high hetero-
geneity, and it accounts for 3.4–45% of new GA cases23–26. Patients
frequently exhibit advanced GSRC (stage III or IV) at the time of
diagnosis, which is associated with poor prognosis. Therefore, this
type of GC has particularly attracted oncologists’ attention27–30. How-
ever, there is still a lack of in-depth understanding of the biological
characteristics of GSRC, and further research is required to formulate
targeted treatment strategies for GSRC.

In this work, relying on scRNA-seq, it is very important to accu-
rately identify the SRCC cells. Starting from the unique characteristics
of SRCC, that is, the large amount of mucus contained in the cells. The
marker genes of gastric antrum basal gland mucus cells (MUC6 and
TFF2) and of gastric antrummucus cells (MUC5AC and TFF1) were used
for immunofluorescence examination19, and it was confirmed that
SRCC cells were identified in mucous cells. Further characterization,
mainly depending on tissue origin, combined with comprehensive
verification, such as cancer-related score, InferCNV, CNV score, and
GSVA, identified SRCC cells. The degree of variation and CNV score of
SRCC cells were lower than those of mucous and M/PDA cells. In
general, tumour cells are prone to CNV mutations, and genes in the
regions where CNV changes occur are always overexpressed or
downregulated compared with normal cells. InferCNV estimated the
single-cell CNV spectrum to distinguish between tumour cells and
normal epithelial cells, which is irrelevant to the malignancy of
tumours. The CNV score of cluster 15 was lower than that of the
mucous cell clusters, which may have consequences on the total CNV
score of clusters of SRCC cells. The role of tumour heterogeneity is
noteworthy. According to the abovementioned results, the level of
CNV does not discriminate benign and malignant GA cells, which is
consistent with the results of another single-cell analysis, in which only
25.0% of static malignant cells exhibited high levels of CNV in GC31. In
summary, InferCNV and CNV score provide favourable support for the
regrouping of epithelial cells.

Furthermore, heatmap analysis revealed that there was also sig-
nificant heterogeneity among SRCC subclusters. Similar to the case in
other malignant tumours, tumour heterogeneity mainly has a notice-
able influence on patient survival and prognosis32, which may justify
the poor prognosis of GSRCpatients. Among the 4 subclusters, further
analysis indicated that there were also some highly expressed genes
among the subclusters, such as CLDN18, PHLDA2, ATF3, HBEGF, SYTL2,
PGC, and LYZ. For instance, the importance of CLDN18-ARHGAP26 was
confirmed because of its frequent fusion in response to chemotherapy
in GSRC13. High expression ofCLDN18.2 is considered to have potential
value for targeted therapy of patients with advanced GSRC; the ana-
lysis of CLDN18.2 expression and genetic abnormalities provides a new
treatment option for advancedGSRC33. However, other genes have not
been reported in studies on GSRC, and this area deserves further in-
depth research.

In the process of studying GSRC, it was found that MSMB was
highly expressed in SRCC cells but had no/low expression in M/PDA
cells, consistent with previous studies34,35. In combination with data
from relevant studies, our findings suggest that SRCC may originate
from MUC5AC-/low MUC6- pre-pit cells in the proliferative zone of
gastric glands2; SRCC of the gastric foveolar epithelium is positive for
MUC1, MUC5AC, and MUC6, and SRCC, which is derived from the
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gastric foveolar epithelium, may originate from the proliferative
region of the bottom of the gastric pit and gland neck. The IHC results
confirmed theMSMB expression level in the gastric foveal proliferation
area. The UMAP plot of MSMB also demonstrated that subclusters 7
and 8 were adjacent and were closely associated. Thus, a high MSMB
expression level was detected in subcluster 7, while subclusters 0, 2, 3,
5, 10, and 17 were derived frommucous cells in other parts. SRCCmay
originate from subcluster 7. Therefore, MSMB was found to be a
potential marker of GSRC and could be related to the differentiation
anddevelopmentofGSRC, and its specificbiological functiondeserves
further research.

The heterogeneity of GC is determined mainly by the tumour
parenchyma and is closely correlated with its tumour microenviron-
ment (TME). To clarify the significant differences in the biological
behaviours between M/PDA and GSRC, the tumour parenchyma and
TME were analysed.

Through the enrichment analysis of upregulated differentially
expressed genes (DEGs), it was found that comparedwithM/PDA cells,
SRCC cells were enriched for abnormally active cancer-related signal-
ling pathways (transcriptional misregulation in cancer, pathways in
cancer and microRNAs in cancer), which might be closely associated
with the relativelypoorprognosis and insensitivity to chemotherapyof
GSRC36–38. The DEGs were also closely correlated with the signalling
pathways of the immune response (TNF-α signalling pathway, TGF-β
signalling pathway, and NF-kB signalling pathway), and the activity of
the signalling pathways of the immune response inmalignant tumours
mainly indicates that the tumour has a high immune escape function18.
The abovementioned pathway enrichment analysis results were highly
consistent with the pathway enrichment analysis results of SRCC cell
lines and adenocarcinoma cell lines in this study. Further analysis
indicated that M/PDA cells had stronger proliferation and immune
surveillance capabilities, while SRCC cells had weaker cell adhesion

Fig. 7 | Similarities and differences of tumour-infiltrating T cells between M/
PDA andGSRC. a t-SNE plot showing subclusters of T cells. bDot plot showing the
expression levels of cell type marker genes in 10 cell types. c t-SNE plot showing
subclusters of T cells (coloured by cell type). d Scale plot of subclusters of T cells
(n = 13). e t-SNE plots showing subclusters of T cells (coloured by group). fBOXplot
of tumour-infiltrating CD4-Treg and CD8-Teff cells in M/PDA and GSRC. Compared
with that in M/PDA, the proportion of tumour-infiltrating CD4-Treg cells in GSRC
was higher, and the difference was not statistically significant (t-test, p =0.25). The
proportion of tumour-infiltrating CD8-Teff cells in GSRC was lower, the difference
was not statistically significant (t-test, p =0.25). n = 10 (include 3 samples in MDA
and PDAgroups, respectively; and 4 samples in GSRC group). Data are presented as
mean values ± SEM. In the box plot, the black dots represent outliers, the error bars

represent SEM, the box midpoints represent means and the boxes represent inter-
quartile positions. P values were calculated using the two-side unpaired Student’s t-
test.gDifferential plot of tumour-infiltratingCD4-TregandCD8-Teff cells inM/PDA
and GSRC by IHC score (n = 30). Compared with that of M/PDA, the IHC score of
tumour-infiltrating CD4-Treg cells (expressing FOXP3) in GSRC was higher, and the
difference was statistically significant (Wilcoxon rank-sum test, p =0.0032); The
IHC score of tumour-infiltrating CD8-Teff cells (expressing KLRD1) was lower in
GSRC, and the difference was statistically significant (Wilcoxon rank-sum test,
p =0.0021). p values were calculated using the Wilcoxon rank-sum test. p values
were calculated using theWilcoxon rank-sum test. p values < 0.05 were considered
to indicate significance: **p <0.01; ns: no significance. Source data are provided as a
Source Data file.
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and stronger immune evasion capabilities. GSRC cells appeared less
sensitive to chemotherapy than M/PDA cells due to their low pro-
liferation. Studies have demonstrated that changes in cell adhesion
play an important role in the occurrence and development of GSRC. E-
cadherin, encoded by the CDH1 gene, is a cell‒cell adhesion molecule
that participates in the early formation of GSRC and plays a crucial
role39,40. The frequency of cell adhesion-related gene mutations
increased in GSRC3. PPI network analysis revealed 107 mutated genes
related to cell adhesion, indicating that the cell adhesion pathway
plays an important role in GSRC tumorigenesis13. However, it was
revealed that the CDH1 expression level was essentially the same
betweenM/PDA and SRCC cells, which could be related to the fact that
GSRCwas not detected in the early stage of formation. Comparedwith
that in M/PDA cells, the intercellular adhesion function was decreased
in SRCC cells; however, the intercellular adhesion function was
decreased or destroyed, which is the key in causing cancer cells to
break away from the parent tumour to initiatemetastasis andmay also
be associated with higher risks of invasive growth and metastasis,
especially for implanted metastases of GSRC.

The cell signalling pathways of M/PDA were enriched in the
hypoxia-inducible factor 1 (HIF-1), P53, and PI3K-AKT signalling path-
ways, which is consistent with previously reported findings22. SRCC
cells could also be significantly enriched in the MAPK signalling path-
way, which is involved in tumour growth, proliferation, and
metastasis41,42. This may be one of the intrinsic reasons for the high
levels of invasion andmetastasis of GSRC. In addition, itwas found that
theoestrogen signallingpathway could alsobe abnormally activated in
SRCC cells, confirming that oestrogen could play an important role in
the occurrence and development of GSRC43,44. Previous studies
demonstrated that young female GA patients are prone to GSRC, and
more than80% of GSRC cells can secretemucin and express oestrogen
receptors, which aremore likely tometastasize to the ovary, indicating
that GSRC has a higher affinity for oestrogen and can promote tumour
growth and invasion45,46. The oestrogen andMAPK signalling pathways
can interact and promote each other through membrane-initiated
steroid signalling47–49. Oestrogen signalling could also be activated by
nuclear-initiated steroid signalling and can be regulated by HPS70,
HPS90, and FKBP550–52. In this study, heat shock protein family mem-
bers were significantly enriched in the oestrogen signalling pathway. It
was indicated that thenuclear-initiated signallingof oestrogenwasone
of the important pathways for its function in GSRC. Collectively, these
findings show that blocking the MAPK and oestrogen signalling path-
ways is a potential method for the treatment of GSRC, and the asso-
ciated specific internal mechanisms should be explored further.

Tumour tissues are composed of not only tumour cells them-
selves but also the cells in the TME, such as immune cells, fibroblasts,
vascular endothelial cells, and stromal cells. Among these cells,
tumour-infiltrating immune cells (TICs) play a vital role in tumorigen-
esis, development, and therapy53,54. Therefore, quantitative analysis of
TICs in GC, especially comparative analysis of the immune micro-
environment ofM/PDAandGSRC,mayclarify the characteristics of the
mechanism of the immune response in the occurrence and develop-
ment of GC, thereby laying a theoretical foundation for
immunotherapy55.

The subclusters of B cells in GSRC have a unique infiltrating fea-
ture, dominated by the infiltration of follicular B cells, whose main
function is to activate immune system processes and regulate B cells56.
Their performance in the immune response is relatively weak, indi-
cating a relatively suppressed immune microenvironment, and the
same results were obtained from functional cluster analysis and quasi-
sequential analysis40,57,58. Follicular B cells account for approximately
25% of the total number of cells, which is indicative of the importance
of B cells in antitumour immunity in GA and suggests one of the rea-
sons for the poor prognosis of GSRC.

The infiltration rate of CD4-Treg cells in cancer tissues was sig-
nificantly higher than that in para-cancerous tissues, especially in
GSRC. Moreover, there were more infiltrating FOXP3+ CD4-Treg cells
in GSRC than in M/PDA, and the infiltrating proportion of CD8-Teff
cells in cancer tissues was lower than that in para-cancerous tissues,
especially in GSRC. The current study revealed that Treg cells could
inhibit the functions of effector T lymphocytes, and the positive
expression of FOXP3 was its main feature. The higher the positive rate
of FOXP3+ CD4-Treg cells is, the faster the progression of GC and the
lower the survival rate59,60. This may also be one of the reasons for the
poor prognosis of GSRC.

Taken together, the findings here show that the subclusters of B
and T cells in GSRC have unique infiltration characteristics. The infil-
tration of follicular B and CD4-Treg cells increased, and that of CD8-
Teff cells decreased, in GSRC. Therefore, GSRC has an immunosup-
pressive microenvironment, which could be closely associated with
the relatively poor prognosis and poor efficacy of immunotherapy.
Regrettably, the underlying mechanisms need further study.

In conclusion, 32,456 single cells from para-cancerous tissues of
5 patients and 117,326 single cells from cancer tissues of 13 patients
were analysed by scRNA-seq. We have identified SRCC cells. MSMB
could be used as amarker to guide the identification of SRCC andM/
PDA cells. The DEGs upregulated in SRCC were mainly enriched in
abnormally activated cancer-related signalling pathways and sig-
nalling pathways of the immune response. SRCC could also be sig-
nificantly enriched in the MAPK and oestrogen signalling pathways,
which could interact and promote each other and continue to
amplify each other’s effects. SRCC cells exhibited lower cell
adhesion and higher immune evasion capabilities, as well as an
immunosuppressive microenvironment, which could be closely
associated with the relatively poor prognosis of GSRC. One limita-
tion of the present study is that it is difficult to collect sufficient
samples and lack of analytical methods for multi-omics. Overall,
compared with M/PDA cells, GSRC cells have unique cytological
characteristics and a unique immune microenvironment, which may
be advantageous for the accurate diagnosis and treatment of GSRC.

Methods
Ethics
The present study was approved by the Institutional Review Boards of
Shandong Cancer Institute (Approval No. SDTHEC2020011006) and
Jinan Central Hospital (Approval No. GZR2019-041-01). All specimens
were obtained with written informed consent and were fully anon-
ymized. Consent to publish relevant clinical information potentially
identifying individuals (e.g., age, gender, histological grade, etc.) was
obtained. We have consent to publish the information that identifies
individuals. Participants were not granted any corresponding com-
pensation, as our study exclusively utilized residual tissue samples
(secondary use of surplus materials), effectively obviating the neces-
sity for supplementary patient follow-up or communication. This
research was conducted according to the principles of the Declaration
of Helsinki.

Human specimens
The gastroscopic biopsy pathology of enrolled patients at first diag-
nosis was GA; they had not received antitumour treatments, such as
radiotherapy, chemotherapy, and immunotherapy before surgery, and
did not have tumours in other organs. In the discovery cohort, 13
patients were prospectively enrolled for scRNA-seq, including 7 males
and 6 females with median ages of 63 and 51 years old. The patients
were groupedmainly based on the degree of differentiation and signet
ring cell content, and no gender-based analysis was performed. In the
validation cohort, 60 patients were retrospectively enrolled for
immunohistochemistry (IHC).
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Tissue dissociation and preparation of single-cell suspensions
Human gastric tissue was obtained from patients and placed into a
sterile RNase-free culture dish containing an appropriate amount of
calcium-free and magnesium-free 1× phosphate-buffered saline (PBS)
on ice. The tissue was then transferred into the culture dish, cut into
0.5mm2 pieces, and washed with 1× PBS, and blood residue and fatty
layers were removed. Tissues were dissociated into single cells in dis-
sociation solution. The overall cell viability was more than 85%, as
confirmed by trypan blue exclusion. The single-cell suspensions were
counted using the Countess II Automated Cell Counter, and the con-
centration was adjusted to 700–1200 cells/μl before single-cell
analysis.

10X Genomics Chromium library and sequencing
Single-cell suspensions were loaded onto a 10X Genomics Chromium
instrument to capture 8000 single cells according to the manu-
facturer’s instructions for the 10X Genomics Chromium Single-Cell 3′
kit (V3). The following cDNA amplification and library construction
steps were performed according to the standard protocol. Libraries
were sequenced on an Illumina NovaSeq 6000 sequencing system
(paired-end multiplexing run, 150bp) by LC-Bio Technology Co., Ltd,
(Hangzhou, China) at a minimum depth of 20,000 reads per cell.

CellRanger software (v7.0.0, 10X Genomics) was then used to
analyse the sequencing data, and gene expression information was
obtained for each cell. Cell Ranger (http://support.10xgenomics.com/
single-cell/software/overview/welcome) used the STAR aligner
(https://github.com/alexdobin/STAR) to perform splicing-aware
alignment of reads to the genome. The Cell Ranger output was loa-
ded onto Seurat (v4.1.1) software for dimensionality reduction, clus-
tering, and analysis of scRNA-seqdata.Overall, 149,782 cells passed the
quality control threshold; all genes expressed in less than three cells
were removed, the number of genes expressed per cell was between
500 and 5000,with a uniquemolecular identifier (UMI) count less than
500, and the rate of mitochondrial gene expression was <25%.

DoubletFinder (v2.0.3) was used to remove multiplet cells from
sequencing data. To visualize data, the LogNormalize method of the
“Normalization” function of Seurat software was utilized to calculate
the expression levels of the genes. PCA was performed using the
normalized expression levels, and the top 10 PCs were used to carry
out clustering and t-distributed stochastic neighbour embedding (t-
SNE) analysis. Due to the obvious batch effect among samples, Har-
mony (v0.1.0) was used for batch effect correction.

Gene Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analyses of differentially
expressed genes (DEGs)
GO enrichment analysis provides all GO terms that are significantly
enriched in DEGs compared with the genome background and filters
the DEGs that correspond to biological functions. First, all related
genes were mapped to GO terms in the Gene Ontology database
(http://www.geneontology.org/), gene numbers were calculated for
every term, and GO terms significantly enriched in DEGs compared
with the genome background were defined by hypergeometric test.

Pathway-based analysis helps to further improve the under-
standing of the biological functions of genes. KEGG is themajor public
pathwaydatabase. Pathwayenrichment analysis identified significantly
enrichedmetabolic pathways or signal transduction pathways in DEGs
compared with the whole genome background.

Gene set enrichment analysis (GSEA)
Using the “clusterProfiler” R package, GSEA was performed on the GO
and KEGG databases for RNA-seq data. GO and KEGG pathway
enrichment analyses were carried out, followed by visualization using
the “clusterProfiler” R package.

Gene set variation analysis (GSVA)
GSVA is a nonparametric unsupervised analysis method that is mainly
used to evaluate gene set enrichment results of microarray nuclear
transcriptomes. It is typically utilized to indicate whether different
metabolic pathways are enriched between different samples by con-
verting the expressionmatrix of genes, mainly from the perspective of
bioinformatics, to explain the causes of phenotypic differences.

DepMap database
DepMap is a cancer cell line database that integrates and provides the
existing cell line database. The transcriptional expression data of
gastric cancer cell lines were downloaded from the DepMap database
(https://depmap.org/portal/).

InferCNV
InferCNV is a relatively efficient analytical tool for determining intra-
cellular chromosomal copy number variation (CNV) changes. Tumour
RNA-seq data were explored using InferCNV to analyse somatic large-
scale CNVs, such as gains or losses of whole chromosomes and large
segments of chromosomes. In general, tumour cells are prone to CNV
mutations, and genes in the regions where CNV changes occur are
always overexpressed or downregulated compared with normal cells.

Cell culture
MKN-45 (CBP60488) and NUGC4(CBP60493) cells were purchased
from Nanjing Kebai Biotechnology Co., Ltd (Nanjing, China). MKN-45
and NUGC4 cells were authenticated using short tandem repeat ana-
lysis. No mycoplasma contamination was detected. MKN-45 and
NUGC4 cells cultured in Roswell Park Memorial Institute (RPMI)−1640
medium (HyClone, Logan, UT, USA) containing 10% foetal bovine
serum (FBS; Hangzhou Sijiqing Co., Ltd., Hangzhou, China) at 37 °C in
the presence of 5% CO2.

RNA extraction
Total RNA was extracted from the cells using TRIzol® reagent (RNA
isolation from plant tissue) according to the manufacturer’s instruc-
tions (Invitrogen, Carlsbad, CA, USA), and genomic DNA was removed
using DNase I (TaKaRa, Shiga, Japan). Then, RNA quality was deter-
mined by the 2100 Bioanalyzer system (Agilent Technologies, Inc.,
Santa Clara, CA, USA) and quantified using the ND-2000 spectro-
photometer (NanoDrop Technologies, Wilmington, DE, USA). Only
high-quality RNA samples (optical density (OD) 260/280 = 1.8 ~ 2.2,
OD260/230 ≥ 2.0, RNA integrity number (RIN) ≥ 6.5, 28S:18S ≥ 1.0,
>1μg) were used to construct the sequencing library.

Library preparation and Illumina HiSeq X Ten/NovaSeq
6000 sequencing
An RNA-seq transcriptome library was constructed following Tru-
SeqTM RNA sample preparation using a kit (Illumina Inc., San Diego,
CA, USA) with 1μg of total RNA. Briefly, messenger RNA (mRNA) was
isolated according to the poly(A) selectionmethod by oligo(dT) beads
and then initially fragmented by fragmentation buffer. Second,
double-stranded cDNA was synthesized using a SuperScript double-
stranded cDNA synthesis kit (Invitrogen) with random hexamer pri-
mers (Illumina). Afterwards, the synthesized cDNA was subjected to
end repair, phosphorylation, and ‘A’ base addition according to the
Illumina library construction protocol (Illumina Inc.). Libraries were
size-selected for cDNA target fragments of 300bp on 2% Low Range
Ultra Agarose, followed by polymerase chain reaction (PCR) amplifi-
cation via Phusion DNA polymerase (NEB) for 15 PCR cycles. After
quantification by TBS380, a paired-end RNA sequencing library was
sequenced using the Illumina HiSeq X Ten/NovaSeq 6000 sequencer
(2 × 150-bp read length). Data were analysed by the Majorbio cloud
platform (www.majorbio.com).
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Immunohistochemistry (IHC)
IHC was performed with a HistoMouse SP Broad Spectrum DAB kit
(Invitrogen) following themanufacturer’s instructions. Briefly, samples
were routinely deparaffinized, and antigen retrieval was conducted at
high temperature and high pressure. Subsequently, the samples were
incubated with primary antibody at 4 °C overnight. Then, 3,3′-diami-
nobenzidine (DAB) colour was developed, and each section was
counterstained with haematoxylin for 30 s. Antibody was replaced
with PBS as a blank control. The following antibodies were used to
detect the proteins: anti-EpCAM (rabbit, 1:400, bs-0593R, Bioss,
China), anti-TTF1 (rabbit, 1:1000, 66034-1-IG, 2C8F3, PROTEINTECH
GROUP, USA), anti-TTF2 (rabbit, 1:100, 13722-1-AP, PROTEINTECH
GROUP, USA), anti-MUC5AC (mouse,1:200, GB14112, l107, Servicebio,
China), anti-MUC6 (mouse, 1:50, GB14113, l108, Servicebio, China),
anti-JCHAIN (rabbit, 1:1000, bsm-60277R, J2H8, Bioss, China), anti-
MSMB (rabbit, 1:200, bs-19185R, Bioss, China), anti-CD74 (mouse,
1:1000, GB121179, 3H10A4, Servicebio, China), anti-FOXP3 (rabbit,
1:400, GB11093, Servicebio, China), antiKLRD1 (rabbit, 1:100, DF6773,
Affinity Biosciences, USA).The histopathological images of the cases
were examined by two experienced pathologists. The results were
judged by the semiquantitative integral method, and the score was
comprehensively assessed according to the percentage of positive
cells and the positive intensity. (1) Percentage of positive cells: ≤5%
positive cells, 0 points; 6–25%, 1 point; 26–50%, 2 points; 51–75%, 3
points; and >75%, 4 points. (2) Positive intensity: colourless, 0 points;
pale yellow, 1 point; yellow, 2 points; and brownish yellow; 3 points.
The final score was calculated as follows: final score = positive ratio
score × positive intensity score.

Statistical analysis
Marker genes for transcriptional subpopulations in scRNA-seq profiles
were identified using the FindAllMarkers function of Seurat software
with a minimum log-fold change threshold of 0.25 and with p values
calculated by the Wilcoxon rank-sum test. p values were computed
using a hypergeometric test and adjusted for multiple hypothesis
testing with the Benjamini‒Hochberg procedure. The experimental
data were statistically analysed using SPSS 24.0 software (IBM,
Armonk, NY, USA). The t-test andWilcoxon rank-sum testwere utilized
to compare mean values between two groups. The Bonferroni cor-
rection method was used to make pairwise comparisons when the
difference was statistically significant; correlations were explored
using Pearson’s correlation analysis. p <0.05 was considered statisti-
cally significant.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw scRNA-seq data used in this study are available in the Genome
Sequence Archive (Genomics, Proteomics & Bioinformatics 2021) in
the National Genomics Data Center (Nucleic Acids Res 2022), China
National Center for Bioinformation/Beijing Institute of Genomics,
Chinese Academy of Sciences database under accession code GSA-
Human: HRA003647. The raw RNA-seq data generated in this study
have been deposited in the Genome Sequence Archive (Genomics,
Proteomics & Bioinformatics 2021) in the National Genomics Data
Center (Nucleic Acids Res 2022), China National Center for Bioinfor-
mation/Beijing Institute of Genomics, Chinese Academy of Sciences
database under accession code GSA-Human: HRA003650. The pub-
lisheddata used for validationof the expression ofMSMB in cell lines in
this manuscript were retrieved from DepMap databases (https://
depmap.org/portal/Interactive). The data are provided in the formof a
single Excel file and placed in multiple label files in a compressed

folder. This file or folder was also named “SourceData”. The remaining
data are also available in this manuscript. Source data are provided
with this paper.
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