Skip to main content
. 2023 Apr 27;46(2):877–886. doi: 10.1007/s13246-023-01261-4

Table 2.

Fracture classification performance comparison between the proposed two-stage method (in bold), a one-stage approach which directly classifies full X-ray images using EfficientNet-B3 ensemble model, and other two-stage frameworks using YOLO ensemble model for ROI detection and ensemble classification model with other base networks (ResNet-18, DenseNet169, Swin Transformer, EfficientNet-B0, B1, B2 and B4)

Networks used
in the Ensemble model
AUC Acc TPR (Sen.) FPR
(1-Spe.)
Precision Recall F1-score Cohen’s kappa score
One-stage framework
EfficientNet-B3 0.69 0.68 0.86 0.80 0.75 0.86 0.80 0.07
Two-stage framework
YOLO + EfficientNet-B3 (proposed) 0.82 0.81 0.83 0.27 0.90 0.83 0.86 0.53
YOLO + ResNet-18 0.42 0.26 0.10 0.27 0.50 0.10 0.16 − 0.10
YOLO + DenseNet169 0.50 0.28 0.02 0.00 1.0 0.02 0.05 0.01
YOLO + Swin Transformer 0.50 0.74 1.00 1.00 0.74 1.0 0.85 0.00
YOLO + EfficientNet-B0 0.80 0.72 0.71 0.27 0.88 0.71 0.79 0.38
YOLO + EfficientNet-B1 0.84 0.65 0.60 0.20 0.89 0.60 0.71 0.30
YOLO + EfficientNet-B2 0.83 0.79 0.83 0.33 0.88 0.83 0.85 0.48
YOLO + EfficientNet-B4 0.81 0.72 0.69 0.20 0.91 0.69 0.78 0.40

Acc. accuracy, TPR true positive rate (sensitivity), FPR false positive rate (1-specificity)