Table 2.
Fracture classification performance comparison between the proposed two-stage method (in bold), a one-stage approach which directly classifies full X-ray images using EfficientNet-B3 ensemble model, and other two-stage frameworks using YOLO ensemble model for ROI detection and ensemble classification model with other base networks (ResNet-18, DenseNet169, Swin Transformer, EfficientNet-B0, B1, B2 and B4)
| Networks used in the Ensemble model |
AUC | Acc | TPR (Sen.) | FPR (1-Spe.) |
Precision | Recall | F1-score | Cohen’s kappa score |
|---|---|---|---|---|---|---|---|---|
| One-stage framework | ||||||||
| EfficientNet-B3 | 0.69 | 0.68 | 0.86 | 0.80 | 0.75 | 0.86 | 0.80 | 0.07 |
| Two-stage framework | ||||||||
| YOLO + EfficientNet-B3 (proposed) | 0.82 | 0.81 | 0.83 | 0.27 | 0.90 | 0.83 | 0.86 | 0.53 |
| YOLO + ResNet-18 | 0.42 | 0.26 | 0.10 | 0.27 | 0.50 | 0.10 | 0.16 | − 0.10 |
| YOLO + DenseNet169 | 0.50 | 0.28 | 0.02 | 0.00 | 1.0 | 0.02 | 0.05 | 0.01 |
| YOLO + Swin Transformer | 0.50 | 0.74 | 1.00 | 1.00 | 0.74 | 1.0 | 0.85 | 0.00 |
| YOLO + EfficientNet-B0 | 0.80 | 0.72 | 0.71 | 0.27 | 0.88 | 0.71 | 0.79 | 0.38 |
| YOLO + EfficientNet-B1 | 0.84 | 0.65 | 0.60 | 0.20 | 0.89 | 0.60 | 0.71 | 0.30 |
| YOLO + EfficientNet-B2 | 0.83 | 0.79 | 0.83 | 0.33 | 0.88 | 0.83 | 0.85 | 0.48 |
| YOLO + EfficientNet-B4 | 0.81 | 0.72 | 0.69 | 0.20 | 0.91 | 0.69 | 0.78 | 0.40 |
Acc. accuracy, TPR true positive rate (sensitivity), FPR false positive rate (1-specificity)