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Abstract
We investigated the co-occurrence of the nine of the most relevant canine vector-borne pathogens (CVBP) using conven-
tional and real-time PCR and evaluated risk factors and potential non-apparent haematological alterations associated with 
co-infection in 111 rural, owned, free-ranging dogs in the Metropolitan Region of Chile.

At least one pathogen was detected in 75% of the dogs. DNA of Anaplasma platys (Ap; 36%), Candidatus Mycoplasma 
haematoparvum (CMhp; 31%), Mycoplasma haemocanis (Mhc; 28%), Trypanosoma cruzi (17%), Leishmania spp. (4.5%), 
and Acanthocheilonema reconditum (1%) was detected. All dogs were negative for Ehrlichia spp., Rickettsia spp., Barton-
ella spp., Piroplasmida, and Hepatozoon spp. Thirty-eight dogs (34%) were coinfected. CMhp was involved in 71%, Mhc 
in 58%, and Ap in 50% of the co-infections. The most common co-infection pattern was CMhp–Mhc (37% of the cases). 
The prevalence of Ap was higher in juvenile than in adult dogs, whereas the opposite was found for CMhp and Mhc. Adult 
dogs were four times more likely of being co-infected than juveniles. Co-infected animals showed higher white blood cell 
count, segmented neutrophil count, and GGT levels than non-co-infected dogs. Clinically healthy but infected dogs may 
act as reservoirs of CVBP, and their free-ranging behavior would facilitate the spread of these pathogens to other dogs as 
well as human beings or wild carnivores.

Highlights
	● DNA of at least one of nine vector-borne pathogens found in 75% of rural dogs.
	● Anaplasma platys was most prevalent but C. M. haematoparvum was involved in more coinfections.
	● Adults were four times more likely of being co-infected than juveniles.
	● Most infections were subclinical, so dogs act as silent reservoirs of pathogens.
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Introduction

Canine vector-borne pathogens (CVBP) comprise a rel-
evant and globally distributed group of disease agents (i.e., 
viruses, bacteria, protozoa, and helminths) transmitted by 
hematophagous arthropods such as ticks, fleas, lice, triato-
mines, mosquitoes, and sand flies (Otranto et al. 2009b; 
Mullen and Durden 2019). The distribution of some vec-
tors and the pathogens they transmit is changing and the 
transmission risk is increasing due, among other factors, 
to climate change (Haines et al. 2006; Beugnet and Marié 
2009; Colwell et al. 2011). The increased mobility and 
worldwide distribution of domestic dogs and cats have also 
contributed to the rapid extension of some vector arthropods 
and CVBP (Shaw et al. 2001). Furthermore, the importa-
tion of dogs from endemic areas has resulted in an overall 
increased number of diagnoses of canine vector-borne dis-
eases (CVBD) in previously non-endemic areas (Otranto et 
al. 2009a). In addition to canine welfare, CVBD is attract-
ing a growing medical interest due to the zoonotic nature of 
some of those pathogens (Otranto et al. 2009b; Irwin 2014). 
An extended range of clinical manifestations characterizes 
the outcomes of CVBDs, according to host individual fac-
tors, as well as the occurrence of co-infection with more 
than one agent (De Tommasi et al. 2013). Hematological 
and biochemical abnormalities induced by CVBP are often 
unpredictable, especially when the dog has become co-
infected by two or more organisms (Otranto et al. 2009c).

Rickettsial bacteria of the genus Anaplasma, Ehrlichia, 
and Rickettsia have been molecularly detected in dogs and 
associated ectoparasites in different regions of Chile (Abarca 
et al. 2007, 2012, 2013; López et al. 2012a; Poo-Muñoz et 
al. 2016; Cevidanes et al. 2018; Di Cataldo et al. 2021a). 
Hemotropic Mycoplasma spp., also known as hemoplas-
mas, have been also broadly detected in dogs all across 
Chile (Soto et al. 2017; Di Cataldo et al. 2020a; Cataldo et 
al. 2021b). In contrast, the molecular presence of bacteria 
of the Bartonella genus in dogs and their ectoparasites has 
been less studied (Pérez-Martínez et al. 2009; Cevidanes et 
al. 2018; Müller et al. 2018). Vector-borne protozoa have 
not been widely studied in Chilean dogs either. Although 
Chile is an endemic region for Chagas disease, caused by 
the parasite Trypanosoma cruzi, few studies have been pub-
lished in the last decades about the molecular presence of 
this parasite in dogs (Ortiz et al. 2016; Opazo et al. 2021). 
The only canine Piroplasmida, molecularly confirmed in 
dogs in Chile is Babesia vogeli (Di Cataldo et al. 2020b), 
but it appears to be restricted to some areas (Di Cataldo et al. 
2022). At least three variants of Hepatozoon spp. have been 
described in foxes in the country, but not in dogs (Di Cataldo 
et al. 2022). DNA and antibodies against Leishmania sp. 
were recently described in Chile (Di Cataldo et al. 2022). 

Regarding vector-borne filaroids, Acanthocheilonema spp. 
and Dirofilaria repens have been detected in dogs in Chile 
(Alcaíno and Rudolph 1970; Alcaíno et al. 1984; López et 
al. 2012b; Di Cataldo et al. 2022). Acanthocheilonema sp. 
was also found in an Andean fox (Lycalopex culpaeus) from 
Chile (Oyarzún-Ruiz et al. 2020).

The dog population in Chile was estimated at 4.059.200 
individuals (Gompper 2014), and owned free-roaming dogs 
(i.e. characterized by the lack of continuous direct super-
vision and irresponsible ownership) are common in Chile 
(Villatoro et al. 2016). Owned free-ranging dogs are con-
sidered the intermediate stage between well-managed pets 
with movement restrictions and feral dogs without human 
control and management (Bonacic et al. 2019). In Chile, 
prophylactic measures such as antiparasitic treatments are 
infrequently applied to rural dogs by their owners (Poo-
Muñoz et al. 2016). This is why these animals are useful 
sentinels for vector and pathogen environmental pressure in 
a given area (Cardoso et al. 2012; Dantas-Torres et al. 2012). 
Free-ranging dog lifestyle is indeed considered an important 
factor for parasite or pathogen transmission (Otranto et al. 
2017). Outdoor and/ or hunting lifestyle has been associated 
with higher exposure to some CVBP when compared with 
indoor and pet lifestyles (Solano-Gallego et al. 2006; Checa 
et al. 2019).

Despite the diversity of studies carried out in Chile detect-
ing CVBP, the concomitant presence of different agents and 
the impact of being co-infected on dogs’ health have never 
been evaluated to date. Nevertheless, coinfection is the rule 
more than the exception (Brooker 2010). The complexity of 
the so-called ‘host-parasite ecosystems’ includes a variety 
of direct and indirect interactions between hosts and patho-
gens. For example, acquired immunity to one pathogen spe-
cies may have negative effects on a second species, but can 
also produce immunosuppression, increasing infection sus-
ceptibility (Telfer et al. 2008).

Since all the studies in Chile addressed infection in dogs 
by a single vector-borne pathogen, the actual burden of 
CVBP has likely been underestimated. This study aimed 
to determine the presence and co-occurrence of nine of the 
most relevant CVBP in free-ranging, owned, rural dogs 
of central Chile, and to evaluate infection risk factors and 
potential “hidden” haematological alterations associated 
with the concurrent infection by two or more pathogens.

Materials and methods

Study area and dog sampling

The study was conducted in the Metropolitan Region of 
Chile (Fig. 1), which has a typical Mediterranean climate, 
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with a mean annual temperature of around 14.7ºC and annual 
precipitation of 243.3 mm (INE 2017). From 2016 to 2018, 
111 free-roaming rural dogs were sampled and examined in 
situ. All sampled animals were free-ranging (without perma-
nent confinement). Age estimation (based on tooth eruption) 
and sex of the dogs were recorded, and a general clinical 
sign examination was carried out. Dogs were methodically 
inspected for ectoparasites for 5  min. The data about the 
prevalence and abundance of ticks and fleas in these dogs 
were published elsewhere (Cevidanes et al. 2021). Blood 
obtained from the cephalic vein was collected in two sepa-
rated EDTA tubes and a further tube with a serum separator. 
The serum was removed after centrifugation and frozen at 
-20ºC until biochemistry analysis. Hematological analyses 
were performed on whole blood and the remaining sample 
was frozen at -20° until molecular analysis.

Laboratory analysis

DNA extraction from 100 μl of blood was performed using 
DNeasy Blood & Tissue Kit (QIAGEN, Hilden, Germany) 
according to the manufacturer’s instructions. DNA was 
eluted in 200 µl of elution buffer. An internal control PCR 
targeting the RPS19 gene for canine genomic DNA was 

carried out in all samples examined (Brinkhof et al. 2006). 
Primers and protocols for pathogen DNA detection are pre-
sented in Supplementary Table  1. Briefly, DNA of hemo-
tropic Mycoplasma spp., Bartonella spp., Rickettsia spp., 
Anaplasmataceae (Anaplasma spp. and Ehrlichia spp.), 
Piroplasmida (Babesia spp. and Theileria spp.), and Hepa-
tozoon spp. was screened by conventional PCR (cPCR) with 
the primers and run protocols previously described (Millán 
et al. 2019). The prevalence of three of the pathogens was 
included in country-wide surveys published elsewhere (Di 
Cataldo et al. 2021a; Cataldo et al. 2021b, 2022). Samples 
scored positive for Mycoplasma were examined with spe-
cific primers for Mycoplasma haemocanis (Mhc) and Can-
didatus Mycoplasma haematoparvum (CMhp) to detect 
coinfections (Watanabe et al. 2008; Martínez-Díaz et al. 
2013). Trypanosoma cruzi was detected and quantified by 
real-time PCR following the protocols described by Yefi-
Quinteros et al. (2018). Leishmania spp. DNA was screened 
by conventional PCR using the protocol described by Cortés 
et al. (2004)  and positive samples were further analyzed by 
qPCR using primers and run protocol previously described 
by Francino et al. 2006) 2004 for sequencing purposes. Fila-
roids were screened by cPCR as described by Casiraghi et 
al. (2001). To avoid cross-contamination, DNA extraction, 

Fig. 1  Map of the study area. Circles correspond to dog sampling areas. Numbers indicate the sample size
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random effects only), using the likelihood ratio test. Indi-
viduals with information on all factors were included in 
the models. In the case that a category of the independent 
variables had not any positive animal, the evaluation of that 
variable was carried out by Fisher’s exact test. In that case, 
that variable was removed from the full model of GLMM 
analysis. Differences in hematological and biochemistry 
values were tested using Student’s t or Mann Whitney U 
depending on data distribution. Initially, differences between 
adult (older than one year) and young dogs (younger than 
one year) were evaluated. In case of not finding significant 
differences between ages, these were pooled to assess the 
association between parameter and co-infection status and 
otherwise were analyzed separately. All statistical analyses 
were carried out using R software.

Results

Pathogen occurrence and co-infection patterns

Seventy-five percent of the dogs were infected with at least 
one CVBP (Table 1). Anaplasmataceae DNA was found in 
40 dogs (36%; Table 1, Fig. 2) and sequencing confirmed 
that all amplicons corresponded to A. platys. Hemoplasmal 
DNA was found in 45 dogs, for an overall prevalence of 
40.5% (95% Confidence Intervals = 31.4–49.7). CMhp and 
Mhc DNA were confirmed, respectively, in 34 (30%) and 31 
(28%) dogs. DNA of T. cruzi was detected in 19 dogs (17%), 
with a parasite load of one T. cruzi parasite equivalent/mL. 
Using both qPCR and cPCR methods, we found samples 
that scored positive for Leishmania spp. in five dogs (4.5%). 
Unfortunately, no readable sequences were obtained. One 
dog was positive for filariae, and the obtained sequence 
showed 99.4% identity with an A. reconditum available in 
GenBank (JF461456.1). All dogs were negative for Rick-
ettsia spp., Bartonella spp., Piroplasmida, and Hepatozoon 
spp. Thirty-eight dogs (34%) were infected with more than 
one pathogen (Table  1, Fig.  2). Among them, 30 animals 
were infected by two pathogens, seven by three pathogens, 
and one by four pathogens. The most common co-infection 
pattern was CMhp – Mhc (n = 14/38, 36.8%). CMhp was 
involved in 71.0% of the co-infections (n = 27), Mhc in 
57.8% (n = 22) and A. platys in 50% of them (n = 19).

Risk factor analysis

The probability of being infected by A. platys was four times 
higher (OR = 4.13, 95%CI = 1.60-10.66; z-value = 2.93; 
p = 0.003) for a juvenile than for an adult dog (Table  1, 
Fig. 3). In contrast, adult age was associated with a higher 
prevalence for CMhp (Fisher’s p = 0.0001) and Mhc 

mixing of DNA-free PCR reagents, and the addition of the 
template DNA was carried out in separate areas with sepa-
rate equipment and solutions. PCR products were visualized 
on a 2% agarose electrophoresis gel and later purified and 
sequenced by the Sanger technique. Obtained sequences 
were then compared with those available in GenBank® by 
BLAST analyses (http://www.ncbi.nlm.nih.gov/blast).

Hematology and serum chemistry

The following hematological parameters were analyzed 
through manual and automatic cell counter (HumaCount 
80TS©, Human, Germany): hematocrit (HCT), red blood 
cell (RBC), platelet (PLT) and total leukocyte count 
(WBC), hemoglobin concentration (HGB), mean corpus-
cular volume (MCV) and mean corpuscular hemoglobin 
concentration (MCHC). Relative leukocyte differentiation 
was performed by microscopic observation. The following 
serum biochemistry parameters were evaluated using Ana-
lyzer BA400© (BioSystems, Spain): total proteins, albu-
min, calcium, phosphorus, cholesterol, glucose, creatinine, 
urea, blood urea nitrogen (BUN), aspartate aminotransfer-
ase (AST), alanine transaminase (ALT), alkaline phospha-
tase (ALP) and gamma-glutamyl transferase (GGT).

Data analysis

Confidence intervals for prevalence were calculated using 
the “EpiR” package of R software. Parasitological terms 
follow Bush et al. (1997). Differences in the occurrence 
of pathogens, the existence of coinfection, and the number 
of pathogens per host depending on the dog’s sex (male/
female) and age (young/adult) were evaluated. For Ana-
plasma platys, Mhc, and CMhp, the prevalence, and abun-
dance of Rhipicephalus sanguineus sensu stricto were 
also analyzed as independent variables. Generalized linear 
mixed models (GLMMs) were used to study the binary vari-
ables (i.e., pathogen occurrence = absence/presence; patho-
gen coinfection = not coinfected/ coinfected) and fixed and 
random effects. GLMMs handle non-normal data by using 
link functions and exponential family distributions and 
incorporate random effects (Bolker et al. 2009). The study 
zone (Andean hillside, central valley, and coastal hillside) 
was included as a random effect. GLMMs were analyzed 
using the “lme4” package of R software with binomial error 
(logit-link function). The best model was selected using the 
“dredge” function from the “MuMIn” package, which gen-
erates, given a full model, a subset of models and selects 
the best model that best fits the data, based on Akaike infor-
mation criterion corrected to sample size (AICc). The over-
all fit of the best model was assessed by residuals analysis 
and comparison with the null model (with an intercept and 
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Discussion

The present study is the most extensive study ever con-
ducted in the most relevant CVBP in Chile. We documented 
frequent rates of infection (inferred from DNA detection) 
in these dogs, with up to three-quarters of the individuals 
positive for at least one pathogen. The outdoor activity of 
the studied free-ranging dogs exposes them to a range of 
vectors. Although we did not collect information in this 
regard about the sampled dogs, rural dogs in Chile are rarely 
subjected to antiparasitic prophylactic treatments. Previous 
studies in other parts of the world showed that rural dogs are 
frequently exposed to or infected by different vector-borne 
pathogens (Proboste et al. 2015; Dantas-Torres et al. 2018), 
and higher rates of exposure or infection were found in rural 
dogs when compared with their urban counterparts (Lim 
et al. 2010; Vieira et al. 2012; Costa-Júnior et al. 2013). 
In the Metropolitan Region of Chile, the prevalence of R. 

(OR = 5.49, 95%CI = 1.2-25.01, z-value = 2.51, p = 0.01). 
Dogs infected by A. platys showed a higher abundance of 
R. sanguineus than those non-infected (z-value = 1.947, 
p = 0.05; Table  1, Fig.  4). The prevalence and abundance 
of R. sanguineus were not related to the presence of any 
other agent. Adult dogs were five times more likely of being 
co-infected than juveniles (OR = 4.9, 95%CI = 1.4–17.8, 
z-value = 2.44, p = 0.01) (Fig. 3).

Clinical, hematological, and biochemical findings

Most of the animals were considered apparently healthy 
in the physical evaluation. Only eight of the dogs (7.2%) 
presented pale mucous membranes, without differences 
between co-infected and non-co-infected animals (Fish-
er’s p = 1). Co-infected animals showed significant higher 
white blood cell count (WBC) (t = 2.01, p < 0.05) and seg-
mented neutrophil count (t = 2.46, p < 0.05) and GGT levels 
(U = 583.5, p < 0.05) (Fig. 5; Supplementary Table 2).

Fig. 3  Differences in prevalence 
of Anaplasma platys, Candidatus 
Mycoplasma haematoparvum, 
Mycoplasma haemocanis, and co-
infection (these pathogens plus 
Trypanosoma cruzi, Leishmania 
sp., and/or Acanthocheilonema 
reconditum) depending on the 
age class of rural dogs sampled 
in central Chile. All these 
differences were statistically 
significant

 

Fig. 2  Number of positive 
animals and observed prevalence 
for each pathogen and each 
co-infection pattern in rural dogs 
sampled in central Chile
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individuals to the pathogen (Otranto et al. 2010; de Cap-
rariis et al. 2011) and might be related to the lower levels 
CD8 T lymphocytes found in young dogs (Greeley et al. 
1996), which have a role in the clearance of rickettsial infec-
tions (Walker et al. 2015). Overall, our results suggest that 
the risk of infection with A. platys is more associated with 
the abundance of the tick than just the presence of the tick. 
In agreement with our results, other studies found that dogs 
infested with R. sanguineus were more likely to be infected 
with or exposed to Anaplasma spp. than uninfested dogs 
(Costa-Júnior et al. 2013; Rojas et al. 2014; Piantedosi et al. 
2017; Di Cataldo et al. 2021a).

Hemoplasmas were the second more abundant CVBP 
detected in this survey. Rural environments and free-rang-
ing behavior were pointed out as risk factors for hemo-
plasma infections (Biondo et al. 2009; Soto et al. 2017, 
Aktas and Ozubek 2018). Interestingly, the prevalence of 
the two hemoplasma species in the studied dog population 
differs when co-infections are evaluated. When comparing 
the prevalence obtained with our specific primers with the 
screening protocol and direct sequencing alone, as reported 
by Di Cataldo et al. (2021b), prevalence increased from 
21% to 28% for Mhc and from 13.5% to 31% for CMhp. 
The reason for this difference could be due to a lower bac-
teremia level of CMhp than of Mhc and must be taken into 
account when studying these pathogens. On the other hand, 
the observed higher infection percentage in older dogs 
may be explained by an increased probability of exposure 
throughout life and/or by the characteristic long-term bac-
teremia of hemoplasma infection (Willi et al. 2010; Greene 
2013). In this sense, a lack of hemoplasma clearance was 
reported in infection follow-up studies (Wengi et al. 2008; 
Hulme-Moir et al. 2010).

To the best of our knowledge, this survey represents the 
second molecular detection of T. cruzi in dogs in central 
Chile (Opazo et al. 2021), although the presence of parasit-
ized dogs in this region was known in the past (Schenone 
et al. 1991). Dogs are competent hosts with importance in 
the cycle of T. cruzi in endemic areas (Esch and Petersen 
2013), being signaled as a bridge between the domestic and 
sylvatic transmission cycles (Ramírez et al. 2013). This can 

sanguineus and Ctenocephalides canis was indeed higher in 
rural than in urban dogs (Abarca et al. 2016).

Anaplasma platys was the only Anaplasmataceae con-
firmed in this study, as for the whole country (Di Cataldo 
et al. 2021a). This picture is similar to that reported in other 
geographical areas where the temperate lineage of R. san-
guineus s.s. is the only tick species infecting dogs (Latrofa 
et al. 2014; Otranto et al. 2019). The higher prevalence of A. 
platys infections in juvenile dogs in our study was already 
been recorded in a previous study in Africa (Matei et al. 
2016), most likely due to a primary exposure of young 

Fig. 5  Differences in total leuko-
cyte count, segmented neutrophil 
count, and gamma-glutamyl 
transferase (GGT) depending on 
the co-infection status. All these 
differences were statistically 
significant. Black lines indicate 
the mean and orange lines the 
maximum and minimum refer-
ence values based on Thrall et al. 
(2012)

 

Fig. 4  Abundance of Rhipicephalus sanguineus sensu stricto depend-
ing on the Anaplasma platys infection status
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subclinical carriers of different CVBP, possibly contribut-
ing to the spreading of some of these pathogens to potential 
vectors and among their owners, other dogs, or protected 
wild carnivores. Their free-ranging behavior would further 
facilitate their role as uncontrolled reservoirs and a bridge 
between anthropized and natural environments. In conse-
quence, we believe that authorities must promote among 
dog owners in rural areas of Chile the use of prophylactic 
measures, such as the periodic application of antiparasitic 
products to diminish the burden of ticks, fleas, and vector-
borne pathogens. Dogs should not be allowed to roam free 
and their confinement in the household should be enforced.
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from all over Chile; (3) dogs were not analyzed for all the pathogens 

be the case in our study area, where all of the studied dogs 
live outdoor and some of them accompany mule drivers in 
areas where triatomines abound (Cattan et al. 2002). Further 
studies should aim to characterize the genetic diversity of T. 
cruzi in the region.

A third of the studied dogs were co-infected with two 
or more pathogens. Co-infection is considered frequent in 
CVBD-endemic areas, especially in dogs living in environ-
ments with high vector density and without antiparasitic 
treatment (Otranto et al. 2009c). Interestingly, although A. 
platys was the most prevalent agent in our study, was not 
the pathogen most commonly associated with co-infection 
in dogs, in contrast with previous studies carried out in areas 
where R. sanguineus is prevalent (Otranto et al. 2010). In 
our case, hemoplasma species were common in cases of 
co-infection, and concomitant infections have indeed been 
considered a risk factor for hemoplasma infection (Roura et 
al. 2010; Aktas and Ozubek 2018).

Higher WBC and segmented neutrophil levels were found 
in co-infected animals. No consistent leukogram abnor-
malities have been associated with canine hemoplasmosis 
or anaplasmosis (Greene 2013; Sainz et al. 2015; Soto et 
al. 2017). However, increased leukogram values have been 
associated with T. cruzi infections (Villalba-Alemán et al. 
2019). On the other hand, higher GGT values were found 
in co-infected animals. Anyway, almost all the GGT values 
were in the range of the reference values (Thrall et al. 2012). 
Our findings may be explained by the absence of acute stages 
of infection. Chronically infected dogs usually present low 
bacteremia or parasitemia (Otranto et al. 2009c). Thus, dogs 
with chronic or “hidden” infections used to be healthy with 
absent or minor hematological abnormalities (Otranto et al. 
2009c; de Caprariis et al. 2011). For example, most of the 
cases of canine hemoplasmosis used to be chronic subclini-
cal infections and infected dogs seemed unable to clear the 
infection (Willi et al. 2010). Therefore, as suggested before, 
co-infection complicates the diagnosis based on clinical 
examination and hematological and biochemistry abnor-
malities alone (Otranto et al. 2009c). Moreover, it has to be 
mentioned that many other parasites (helminths) and patho-
gens (viruses, bacteria) probably infecting the studied dogs 
were not tested. It has been shown that neglecting some taxa 
of the host-parasite community diminishes the chances of 
detecting the cost of infection (Serrano and Millán 2014).

Conclusion

Rural, owned free-ranging dogs of central Chile are infected 
or parasitized by a range of agents of veterinary and poten-
tially zoonotic interest. It is important to remark that those 
clinically healthy but infected dogs could be acting as 
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