Table 5.
Forecasting performance indices of models for combination 1.
| Model | NSE |
d |
KGE |
MAE |
MBE |
RE |
RMSE |
PCC |
R2 |
|---|---|---|---|---|---|---|---|---|---|
| Training Data set (N = 1284) | |||||||||
| Linear Regression | 0.700 | 0.899 | 0.743 | 0.459 | −0.009 | −0.900% | 0.757 | 0.837 | 0.701 |
| LR-SVM | 0.716 | 0.907 | 0.758 | 0.451 | −0.009 | −0.900% | 0.736 | 0.847 | 0.717 |
| LR-RSS | 0.936 | 0.982 | 0.905 | 0.177 | 0.002 | 0.200% | 0.348 | 0.969 | 0.939 |
| LR-REPTree | 0.995 | 0.999 | 0.996 | 0.033 | −0.001 | −0.100% | 0.094 | 0.998 | 0.996 |
| LR-M5P | 0.771 | 0.922 | 0.740 | 0.439 | −0.016 | −1.600% | 0.660 | 0.887 | 0.787 |
| Testing Data set (N = 550) | |||||||||
| Linear Regression | 0.760 | 0.922 | 0.773 | 0.420 | −0.104 | −10.400% | 0.664 | 0.878 | 0.771 |
| LR-SVM | 0.781 | 0.930 | 0.789 | 0.403 | −0.109 | −10.900% | 0.635 | 0.890 | 0.792 |
| LR-RSS | 0.934 | 0.982 | 0.910 | 0.179 | 0.179 | 0.100% | 0.349 | 0.968 | 0.937 |
| LR-REPTree | 0.993 | 0.998 | 0.987 | 0.041 | −0.010 | −1.000% | 0.109 | 0.997 | 0.994 |
| LR-M5P | 0.810 | 0.937 | 0.753 | 0.412 | −0.132 | −13.200% | 0.591 | 0.917 | 0.841 |