Skip to main content
. 2023 May 13;9(5):e16290. doi: 10.1016/j.heliyon.2023.e16290

Table 5.

Forecasting performance indices of models for combination 1.

Model NSE
d
KGE
MAE
MBE
RE
RMSE
PCC
R2
Training Data set (N = 1284)
Linear Regression 0.700 0.899 0.743 0.459 −0.009 −0.900% 0.757 0.837 0.701
LR-SVM 0.716 0.907 0.758 0.451 −0.009 −0.900% 0.736 0.847 0.717
LR-RSS 0.936 0.982 0.905 0.177 0.002 0.200% 0.348 0.969 0.939
LR-REPTree 0.995 0.999 0.996 0.033 −0.001 −0.100% 0.094 0.998 0.996
LR-M5P 0.771 0.922 0.740 0.439 −0.016 −1.600% 0.660 0.887 0.787
Testing Data set (N = 550)
Linear Regression 0.760 0.922 0.773 0.420 −0.104 −10.400% 0.664 0.878 0.771
LR-SVM 0.781 0.930 0.789 0.403 −0.109 −10.900% 0.635 0.890 0.792
LR-RSS 0.934 0.982 0.910 0.179 0.179 0.100% 0.349 0.968 0.937
LR-REPTree 0.993 0.998 0.987 0.041 −0.010 −1.000% 0.109 0.997 0.994
LR-M5P 0.810 0.937 0.753 0.412 −0.132 −13.200% 0.591 0.917 0.841