Skip to main content
. 2023 May 13;9(5):e16290. doi: 10.1016/j.heliyon.2023.e16290

Table 6.

Forecasting performance indices of models for combination 2.

Model NSE
d
KGE
MAE
MBE
RE
RMSE
PCC
R2
Training Data set (N = 1284)
Linear Regression 0.638 0.855 0.607 0.598 −0.014 −1.400% 0.830 0.815 0.664
LR-SVM 0.660 0.874 0.665 0.548 −0.012 −1.200% 0.805 0.819 0.671
LR-RSS 0.849 0.955 0.840 0.290 0.009 0.900% 0.536 0.924 0.854
LR-REPTree 0.993 0.998 0.995 0.042 0.006 0.600% 0.119 0.996 0.992
LR-M5P 0.964 0.990 0.933 0.137 0.002 0.200% 0.261 0.983 0.966
Testing Data set (N = 550)
Linear Regression 0.705 0.887 0.635 0.563 −0.162 −16.200% 0.737 0.875 0.766
LR-SVM 0.734 0.906 0.700 0.503 −0.136 −13.600% 0.700 0.875 0.766
LR-RSS 0.865 0.961 0.864 0.278 −0.015 −8.400% 0.498 0.932 0.869
LR-REPTree 0.941 0.984 0.923 0.143 −0.089 −0.900% 0.331 0.973 0.947
LR-M5P 0.950 0.986 0.892 0.181 −0.084 −1.500% 0.304 0.980 0.960