Table 6.
Forecasting performance indices of models for combination 2.
| Model | NSE |
d |
KGE |
MAE |
MBE |
RE |
RMSE |
PCC |
R2 |
|---|---|---|---|---|---|---|---|---|---|
| Training Data set (N = 1284) | |||||||||
| Linear Regression | 0.638 | 0.855 | 0.607 | 0.598 | −0.014 | −1.400% | 0.830 | 0.815 | 0.664 |
| LR-SVM | 0.660 | 0.874 | 0.665 | 0.548 | −0.012 | −1.200% | 0.805 | 0.819 | 0.671 |
| LR-RSS | 0.849 | 0.955 | 0.840 | 0.290 | 0.009 | 0.900% | 0.536 | 0.924 | 0.854 |
| LR-REPTree | 0.993 | 0.998 | 0.995 | 0.042 | 0.006 | 0.600% | 0.119 | 0.996 | 0.992 |
| LR-M5P | 0.964 | 0.990 | 0.933 | 0.137 | 0.002 | 0.200% | 0.261 | 0.983 | 0.966 |
| Testing Data set (N = 550) | |||||||||
| Linear Regression | 0.705 | 0.887 | 0.635 | 0.563 | −0.162 | −16.200% | 0.737 | 0.875 | 0.766 |
| LR-SVM | 0.734 | 0.906 | 0.700 | 0.503 | −0.136 | −13.600% | 0.700 | 0.875 | 0.766 |
| LR-RSS | 0.865 | 0.961 | 0.864 | 0.278 | −0.015 | −8.400% | 0.498 | 0.932 | 0.869 |
| LR-REPTree | 0.941 | 0.984 | 0.923 | 0.143 | −0.089 | −0.900% | 0.331 | 0.973 | 0.947 |
| LR-M5P | 0.950 | 0.986 | 0.892 | 0.181 | −0.084 | −1.500% | 0.304 | 0.980 | 0.960 |