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Background. We aimed to evaluate icatibant, a competitive antagonist of the bradykinin B2 receptors, for the treatment of 
inpatients with coronavirus disease 2019 (COVID-19) pneumonia admitted in the early hypoxemic stage.

Methods. The randomized, open-label clinical trial of icatibant for COVID-19 pneumonia (ICAT·COVID, registered as 
NCT04978051 at ClinicalTrials.gov) was conducted in Barcelona. Inpatients requiring supplemental but not high-flow 
oxygen or mechanical ventilation were allocated (1:1) to treatment with either three 30-mg icatibant doses/d for 3 consecutive 
days plus standard care or standard care alone, and followed for up to 28 days after initial discharge. The primary and key 
secondary outcomes were clinical response on study day 10/discharge and clinical efficacy at 28 days from initial discharge, 
respectively.

Results. Clinical response occurred in 27 of 37 patients (73.0%) in the icatibant group and 20 of 36 patients (55.6%) in the 
control group (rate difference, 17.42; 95% confidence interval [CI], −4.22 to 39.06; P = .115). Clinical efficacy ensued in 37 
patients (100.0%) in the icatibant group and 30 patients (83.3%) in the control group (rate difference, 16.67; 95% CI, 4.49-28.84; 
P = .011). No patient died in the icatibant group, compared with 6 patients (16.7%) in the control group (P = .011). All patients 
but 1 had adverse events, which were evenly distributed between study arms. No patient withdrew because of adverse events.

Conclusions. Adding icatibant to standard care was safe and improved both COVID-19 pneumonia and mortality in this proof- 
of-concept study. A larger, phase 3 trial is warranted to establish the clinical value of this treatment.
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At the time of writing this article, more than 600 million people 
have been infected with the severe acute respiratory syndrome 

coronavirus 2 (SARS-CoV-2), of which more than 6 million 
have died [1]. The coronavirus disease 2019 (COVID-19) pan
demic has inflicted tremendous healthcare, societal, and econom
ic costs everywhere [2]. Research efforts into the pathophysiology 
of severe conditions caused by respiratory coronaviruses have 
usually targeted the renin-angiotensin system (RAS) [3]. 
However, right from the start of this pandemic, many experimen
tal courses of evidence have converged on the pivotal role that the 
disinhibition of the kallikrein-kinin system (KKS) plays in severe 
cases [4–6]. SARS-CoV-2 has the ability to activate many inflam
matory pathways in diverse ways, including the RAS, KKS, con
tact, complement, and coagulation systems [6] that intertwine 
with dysfunctional phenotypic endothelial [3, 7] and lympho
cytic [8] changes. SARS-CoV-2 would elicit a 2-fold mechanism 
to enhance bradykinin signaling both by triggering its produc
tion and by hindering its degradation (see the Supplementary 
Introduction), making bradykinin a point of convergence of in
flammatory mediators and effectors of particular interest in 
COVID-19 pathophysiology [3, 4, 9].
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Many antiviral, anti-inflammatory, and immunotherapeutic 
strategies targeting different components of the immunopatholo
gy of COVID-19 have been tested [10–13]. Corticosteroids and, to 
a lesser extent, remdesivir, kinase inhibitors, and interleukin-6 in
hibitors have shown consistent, albeit modest, benefits [13, 14]. 
Nevertheless, the modulation of the KKS has been one of the 
less studied alternatives [10]. Icatibant acetate is a competitive an
tagonist of constitutively expressed bradykinin receptors B2 (B2R) 
and is both indicated and effective for the on-demand treatment of 
acute hereditary angioedema attacks [15], prototype diseases of lo
cal peripheral transient increased bradykinin release [4]. It has 
been named a potential anti-COVID-19 therapy [16]. Its good 
safety record [17] justifies repeated dosing to stop fluid leaking 
into the lungs as COVID-19 interstitial pneumonia unfolds. In ad
dition, in silico screenings have consistently identified icatibant 
among other drugs as a potential SARS-CoV-2 inhibitor 
[18, 19]. Previous clinical studies have yielded promising results 
[20, 21]. Despite the scarce data available, it seems unlikely to 
help critically ill patients [20–22].

The present report concerns of a phase 2 proof-of-concept ran
domized controlled clinical trial that compared icatibant on a 
backbone of standard of care (SoC) with SoC alone for the man
agement of COVID-19 hypoxemic pneumonia in hospitalized pa
tients who required supplemental but not high-flow nasal cannula 
(HFNC) oxygen or mechanical ventilation. We hypothesized that 
pharmacological inhibition of the KKS by icatibant could soothe 
the acute inflammatory response in these patients. The main ob
jectives were to assess both safety and efficacy to establish the clin
ical value of this drug to avoid severe COVID-19 progression into 
late and often fatal stages, which we tested through the incidence 
of adverse events, and the primary and key secondary outcomes 
evaluated at days 10 and 28 after initial discharge.

METHODS

Study Design

The study to evaluate the efficacy and safety of icatibant for the 
treatment of COVID-19 hypoxemic pneumonia (ICAT·COVID) 
was a phase 2 proof-of-concept, multicenter, randomized, open- 
label, controlled trial that was conducted at hospitals in 
Barcelona [23]. The protocol and statistical analysis plan appear 
in the Supplementary Data available online. It was designed and 
overseen by the coordinating investigators, who are listed as au
thors. Takeda provided the study medication and partial funding 
for logistical issues. The Ethics Committee of the Bellvitge 
University Hospital and the Spanish Medicines Agency approved 
the trial protocol before the start. The trial was performed in accor
dance with the principles of the Declaration of Helsinki.

Patients

Inpatients with moderate to severe COVID-19 pneumonia requir
ing supplemental but not HFNC oxygen or mechanical ventilation 

were eligible for enrollment. Patients could be included if they had 
the infection confirmed by a polymerase chain reaction or rapid 
antigen test within 10 days before randomization, had radiograph
ic evidence of pulmonary infiltrate and a partial oxygen pressure to 
fraction of inspired oxygen ratio below 380. Patients with life ex
pectancy shorter than 24 hours, glomerular filtration rate below 
50 mL/min/1.73 m2, or hepatic transaminases above 5 times the 
upper limit of normality, recent (less than 1 month) acute coronary 
syndrome, or history of stroke were excluded. All participants pro
vided written informed consent.

Randomization and Masking

Participants were randomly assigned in a 1:1 ratio to either the ica
tibant plus SoC group or the SoC alone control group. The clinical 
investigators performed randomization via the electronic case re
port form. The random allocation sequence was generated at the 
Biostatistics Unit of the Bellvitge University Hospital by using se
quentially numbered containers in randomly permuted blocks, 
with a block size of 6 and stratified according to center.

Procedures

In the active arm, three 30-mg doses of icatibant per day were 
administered subcutaneously for 3 consecutive days on top of 
standard care. Patients were seen at follow-up visits on the sec
ond, third, and fourth days after randomization, the 10th day or 
at hospital discharge, whichever came first, at hospital dis
charge (if after day 10), and were assessed, either in person or 
by telephone, 28 days after initial discharge.

Outcomes

The primary outcome was clinical response by day 10, defined 
as being discharged (category 2 or lower of the 8-point ordinal 
modified World Health Organization clinical progression scale, 
Supplementary Table 1) for at least 48 consecutive hours in the 
absence of any grade 3 or higher adverse reaction according to 
the Common Toxicity Criteria for Adverse Events. This defini
tion was adopted following the Spanish Health Authority’s ad
vice of using an endpoint as hard and objective as possible to 
safeguard the safety of participants. At the initial stage of the 
pandemic when this study was designed, 10 days seemed suffi
cient to show efficacy. Clinical efficacy (staying out of the hos
pital) 28 days from initial discharge was the key secondary 
outcome. Other secondary outcomes included respiratory 
physiology parameters, need for HFNC oxygen, noninvasive 
or invasive mechanical ventilation, time to cessation of supple
mental oxygen and hospital discharge, postdischarge complica
tions, COVID-19-related and all-cause mortality, clinical 
laboratory examinations, thoracic radiology, and safety.

Statistical Analysis

In the absence of previous similar studies, the expected effect 
size of icatibant was unknown. Therefore, we did not perform 
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power-based sample size calculations but set instead a target of 
120 patients as an affordable goal for this proof-of-concept 
study that would have enabled us to detect risk differences as 
low as 10%. The analysis of the primary outcome and other pro
portions was performed with either Fisher exact (for absolute 
frequencies equal or lower than 5) or Pearson χ2 tests both, 
in the whole sample and in subgroups of potential prognostic 
relevance according to age (<65 years or ≥65 years), body 
mass index (≥30 kg/m2 or <30 kg/m2), presence of heart fail
ure, hypertension or chronic obstructive pulmonary disease, 
COVID-19 vaccination status, predominant SARS-CoV-2 var
iant (Delta or Omicron), and treatment with angiotensin- 
converting enzyme inhibitors, dexamethasone, remdesivir, or 
tocilizumab. Survival outcomes were analyzed with the use of 
time-to-event methods. Cumulative incidences of mortality 
were calculated as the complementary of the Kaplan-Meier sur
vival function. The cumulative incidence functions of the end 
of oxygen supplementation and hospital discharge were 

estimated using the Fine-Gray regression model in the presence 
of the competing risk of death. In the latter case, the 
cause-specific hazard ratios were used to compare the results 
between study arms. In all cases, log-minus-log plots showed 
good compliance with the hazard proportionality assumption. 
Between-group differences were expressed as rate differences 
(RD) or cause-specific hazard ratios (HR), as appropriate. 
Analyses were made using R software, version 4.1.3 (R 
Project for Statistical Computing, Vienna, Austria) in both, a 
full analysis set that included all randomized patients with an
alyzable follow-up data to adhere as much as possible to the 
intent-to-treat principle, and in a per-protocol set. Two-sided 
P values of .05 or less indicated statistical significance.

RESULTS

From April 2021 to February 2022, 77 patients were enrolled 
out of a group of 123 potential candidates; 39 patients were 

Figure 1. CONSORT flow diagram. Abbreviations: CONSORT, consolidated standards of reporting trials; FAS, full analysis set; FiO2, inspiratory oxygen fraction; HFNC, high 
flow nasal cannula; PaO2, partial (arterial) oxygen pressure; PP, high flow nasal cannula; SoC, standard of care.
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randomly assigned to the icatibant group and 38 patients were 
assigned to the control group. Of these, 37 and 36 patients, re
spectively, had the primary outcome assessed (full analysis set) 
and, incidentally, completed all study procedures (Figure 1). 
Overall, the 2 groups were balanced with respect to baseline 
characteristics, with the exception that patients in the icatibant 
group were slightly younger and had lower arterial hyperten
sion (Table 1 and Supplementary Table 2). In consonance 

with protocol selection criteria, respiratory physiology param
eters were suggestive of acute lung damage with 
moderate-to-severe impairment of oxygen uptake. Vital signs 
and respiratory parameters were well matched between study 
arms (Table 1). All patients showed alveolar infiltrates on chest 
X-ray or thoracic tomosynthesis (Supplementary Table 2). 
Clinical laboratory analyses showed typical anomalies of 
COVID-19 pneumonia (mild lymphopenia and abnormally el
evated markers of inflammation, acute-phase reactants, and 
D-dimer levels), without significant differences between arms 
(Supplementary Table 3). The proportions of patients who 
were fully vaccinated and received dexamethasone, remdesivir, 
or tocilizumab were similar as well (Supplementary Table 4).

Twenty-seven of 37 patients (73.0%) of the icatibant group 
and 20 of 36 (55.6%) of the control group attained a score of 
2 or less in the clinical progression scale on day 10, none of 
which had any grade 3 or higher adverse event. Thus, clinical 
response was more frequent with icatibant than with standard 
care, although this difference was not significant (RD, 17.42; 
95% confidence interval [CI], −4.22 to 39.06; P = .115). In 
fact, during hospital stay, 10 patients in the icatibant group 
(27.0%) and 13 patients in the standard care group (36.1%) 
worsened to the point of requiring HFNC oxygen or mechan
ical ventilation. However, although no patient randomized to 
icatibant required any of the above on day 10/discharge, 6 of 
36 randomized to standard care (16.7%) were still worse than 
baseline or deceased (RD, −16.67; 95% CI, −28.84 to −4.49; 
P = .011). Likewise, clinical efficacy at 28 days from initial dis
charge ensued in all patients of the icatibant group compared 
with 30 of 36 patients (83.3%) of the control group, and this dif
ference reached statistical significance (RD, 16.67; 95% CI, 
4.49-28.84; P = .011) (Figure 2 and Supplementary Table 5).

The need and median time on HFNC oxygen or mechanical 
ventilation were lower in the icatibant group than in the control 
group. No patient required invasive mechanical ventilation in 
the icatibant group compared with 4 of 36 (11.1%) in the control 
group (Supplementary Table 6). The hypoxemic indices of pa
tients who remained hospitalized for more than 10 days showed 
divergent patterns after day 2, as they stabilized or began to im
prove in the icatibant group but continued to worsen in the con
trol group (Supplementary Figure 1). Patients in the icatibant 
group spent significantly less time on supplemental oxygen 
than patients in the control group (median, 6.0 days, compared 
with 8.0 days; HR, 0.59; 95% CI, .36-.95; P = .032) (Figure 3A). 
The evolution of lung images and inflammatory markers was 
similar in both study groups (Supplementary Figures S2 and S3).

All patients who did not die were finally discharged. Hospital 
stay was significantly shorter in the icatibant group than in the 
control group (median, 8.0 days, compared with 10.0 days; HR, 
0.54; 95% CI, .33-.88; P = .014) (Figure 3B).

All postdischarge complications except asthenia were less 
frequent in the icatibant group than in the control group 

Table 1. Characteristics of the Patients at Baseline

Icatibant Group SoC (Control) Group
N = 37 N = 36

Median age (IQR), y 49.0 (41.0–59.0) 56.5 (46.8–70.2)

Male sex, no. (%) 27 (73.0) 22 (61.1)

Median body mass index (IQR), 
kg/m2 a

28.2 (25.7–36.3) 30.3 (26.3–33.0)

Ethnicity, no. (%)

Caucasian 22 (59.5) 16 (44.4)

Other 15 (40.5) 20 (55.6)

Median blood pressure (IQR), 
mmHgb

Systolic 120.0 (110.0–129.0) 128.0 (115.0–133.0)

Diastolic 75.0 (71.0–80.0) 75.5 (69.8–85.0)

Median body temperature  
(IQR), °C

36.4 (36.2–36.7) 36.7 (36.4–36.8)

Median respiratory rate (IQR), 
breaths/min

21.0 (18.0–25.0) 20.0 (18.0–22.0)

Oxygen delivery system, no. (%)

Nasal cannula 10 (27.8) 12 (33.3)

Venturi mask 26 (72.2) 24 (66.7)

Median PaO2 (IQR), mmHgb 71.0 (65.0–84.0) 71.0 (63.8–79.2)

Median FiO2 (IQR), unitless 0.28 (0.21–0.32) 0.28 (0.21–0.33)

Median PaO2/FiO2 (IQR), unitless 261.0 (212.0–317.0) 263.0 (210.0–320.0)

SpO2 (IQR), %c 96.0 (95.0–97.0) 96.0 (95.0–97.0)

Median FiO2 (IQR), unitlessc 0.30 (0.28–0.35) 0.31 (0.28–0.35)

Median SpO2/FiO2 (IQR), 
unitlessc

326.0 (274.0–346.0) 308.0 (275.0–343.0)

Median heart rate, beats/min 82.0 (70.0–90.0) 82.5 (77.8–93.8)

Median chest X-ray severity 
score, pointsd

7.0 (4.0–9.0) 6.5 (4.0–9.0)

Median tomosynthesis severity 
score, pointsd

7.5 (5.0–9.0) 8.0 (5.0–11.5)

Median C-reactive protein (IQR), 
mg/L

87.1 (39.4–155.0) 89.2 (45.6–137.0)

Fully vaccinated against 
SARS-CoV-2, no. (%)e

11 (29.7) 13 (36.1)

1 dose 6 (42.9) 6 (40.0)

2 doses 5 (37.5) 7 (46.7)

3 doses 3 (21.4) 2 (13.3)

Abbreviations: FiO2, inspiratory oxygen fraction; IQR, interquartile range; PaO2, partial 
(arterial) oxygen pressure; SARS-CoV-2, severe acute respiratory syndrome coronavirus 
2; SoC, standard of care; SpO2, peripheral oxygen saturation.  
aThe body mass index is the weight in kilograms divided by the square of the height in 
meters.  
bThe conversion factor to Système International units (kPa) is 0.133.  
cMeasured under oxygen supplementation.  
dCalculated as the sum of each of 6 lung regions (upper, middle, and lower right, and upper, 
middle, and lower left), scored as 0 = no findings, 1 = interstitial infiltrates, 2 = interstitial and 
alveolar infiltrates with an interstitial predominance, and 3 = interstitial and alveolar 
infiltrates with an alveolar predominance.  
eFully vaccinated patients are those who were up to date with the recommended schedule 
at the time of randomization.
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(Supplementary Table 7), but the differences did not reach stat
istical significance.

COVID-19-related and all-cause mortality differed signifi
cantly between treatment groups: none in the icatibant group 
vs. 5 (13.9%; RD, 13.89; 95% CI, 2.59-25.19; P = .025) and 6 pa
tients (16.7%; RD, 16.67; 95% CI, 4.49-28.84; P = .011), respec
tively, in the control group (Figures 3C and 3D).

There were 164 and 153 adverse events in the icatibant and 
control groups, respectively (Supplementary Table 8). The 
most common events were thrombocytosis, neutrophilia, de
rangements of blood cholesterol and triglyceride levels, and re
spiratory failure. With the exception of thrombocytosis, which 
was more common in the icatibant group (Pearson χ2 test 
P = .017), any other departure did not reach statistical signifi
cance (Table 2).

Serious adverse events occurred in 1 of 37 patients (2.7%) in 
the icatibant group and in 6 of 36 patients (16.7%) in the con
trol group. This difference was not significant. These serious 
adverse events were 1 hospitalization not related to 
COVID-19 in the icatibant group and 5 acute respiratory fail
ure events that resulted in death plus 1 further death probably 
related to COVID-19 in the control group.

The benefit of icatibant was preserved in most subgroups 
(Supplementary Figures S4 and S5). The slight baseline imbal
ances in age and hypertension prevalence had no apparent con
sequences. There was no apparent association between 
vaccination status and results, including COVID-19-related 

deaths (3 and 2 deaths among vaccinated and unvaccinated pa
tients, respectively).

The per-protocol set had just 1 less patient than the full anal
ysis set; the results, which can be conceived as a sort of sensitiv
ity analysis, were almost identical (not shown).

DISCUSSION

This unblinded, randomized, controlled trial identified an anti
edema, anti-inflammatory therapy as beneficial in the treatment 
of COVID-19 interstitial pneumonia. A 3-day course of icatibant 
plus SoC was better than SoC alone in the treatment of recently 
hospitalized patients requiring supplemental but not HFNC ox
ygen or mechanical ventilation. Patients who received icatibant 
were more likely to respond by day 10 (primary endpoint; RD, 
17.42; 95% CI, −4.22 to 39.06; remarkably, this difference would 
remain unchanged should a stricter definition [being category 1 
of the World Health Organization scale] had been used) and sig
nificantly less likely to be readmitted or deceased 28 days after 
initial discharge (key secondary endpoint; RD, 16.67; 95% CI, 
4.49-28.84). Important secondary endpoints supporting this 
finding include icatibant treatment resulting in a significantly 
shorter duration of oxygen supplementation and hospital stay, 
and a significantly lower COVID-19-related mortality (RD, 
13.89; 95% CI, 2.59-25.19). Icatibant was very well tolerated. 
Thrombocytosis was the only adverse event that showed a signif
icant association, which we deem of little clinical relevance.

Figure 2. Clinical response and clinical status (clinical progression scale) on study days 10 and 28 from initial discharge by treatment group. Abbreviations: ECMO, 
extracorporeal membrane oxygenation; HFNC, high-flow nasal cannula; SoC, standard of care.
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The findings in our trial are consistent with those from pre
vious research, supporting the notion that icatibant would be 
effective when started before the perpetuation of the self- 
reinforcing inflammatory cascades [22]. Therefore, it should 
be started during the initial hypoxemic stage, before the pleio
tropic inflammatory syndrome unfolds [10, 20, 21].

Our data suggest that treatment with icatibant prompted re
covery of patients with hypoxemic COVID-19 pneumonia, in
cluding those who worsened during their hospital stay, as 
shown by the stabilization of hypoxemic indices after treatment 
onset, the earlier cessation of oxygen therapy, and the null pro
gression to invasive mechanical ventilation or death. These 
findings suggest that timely treatment of COVID-19 pneumo
nia with icatibant was effective in maintaining an acceptable 
level of blood oxygenation and in preventing progression to fa
tal illness. The advantage persisted when the analyses were 
stratified by dexamethasone, remdesivir, and tocilizumab ther
apy use, which suggests that the benefit of these interventions 
[13] may be additive to that of icatibant.

Among the strengths of the ICAT·COVID are that it includ
ed randomized, selected patients in the optimum clinical stage 
to start icatibant therapy and there were no withdrawals affect
ing key outcomes. Thanks to randomization, the slight age and 

hypertension baseline imbalances can be entirely attributed to 
chance. Importantly, the initial clinical status was nearly iden
tical in both study arms, and the subgroup analyses that ex
plored the impact of baseline disparities did not reveal any 
concern. There was no reason to discourage the use of icatibant 
in sensitive groups of patients, such as those with cardiovascu
lar diseases, or in combination with other anti-COVID-19 ther
apies. Furthermore, the outcomes, such as the need for HFNC 
oxygen, mechanical ventilation, or mortality, and endpoints 
used were objective, which reduces the risk of assessor-related 
biases. The study has some limitations as well. Recruitment is
sues related to the long periods between pandemic waves and 
the use of prudent exclusion criteria prevented us from attain
ing the planned sample size; this may have limited the statistical 
power to yield significant results for obvious clinical trends. As 
in all clinical trials, the selection criteria restricted the spectrum 
of participants, which may limit the generalizability of the re
sults to populations at risk. Icatibant seemed to provide more 
benefit when Omicron was the predominant variant, but we 
could not confirm it because of sample size constraints and 
were also unable to perform systematic viral genomic sequenc
ing. We could neither use blinding or dummy placebos because 
of the urgent nature of the pandemic and limited funding. In 

Figure 3. Cumulative incidence curves for cessation of supplemental oxygen (A), hospital discharge (B), and COVID-19-related (C) and all-cause mortality (D). Abbreviations: 
CI, confidence interval; COVID-19, coronavirus disease 2019; HR, hazard ratio; SoC, standard of care.
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addition, subgroup analyses were not adjusted to curb false- 
positive rates after multiple comparisons, but this was of little 
practical relevance given that all contrasts except 1 were non
significant. When we designed the study at the initial stage of 
the pandemic, we expected that 10 days would be long enough 
to see improvement. However, COVID-19 turned out to have a 
more protracted course than initially thought [24], and thus we 
had to wait longer to observe statistical in addition to clinical 
evidence of superiority. This also happened in a major pivotal 
trial of remdesivir therapy [25].

SARS-CoV-2–driven angiotensin-converting enzyme 2 dys
function can evolve into a hyperinflammatory status through 
an array of intertwined pathways [11, 26]. Our results are con
sistent with the hypotheses that the loss of the natural counter
balancing role of the KKS over the RAS is decisive in the 
pathogenesis of severe COVID-19 [26], and that the B2R would 
have a pivotal role in the cross-talk between both systems [27] 
and, hence, its therapeutic relevance. The modulation of the 
KKS may be done at several levels. An upstream blockade of 
kallikrein, for example, might inhibit pulmonary angioedema 
more effectively than B2R blockade [4]. However, icatibant is 
a well-known and safe agent that costs much less than, say, 
monoclonal antibodies against active plasma kallikrein [28].

In summary, this randomized trial shows that treatment of 
patients with COVID-19 pneumonia with the B2R antagonist 
icatibant is safe, seems to prompt clinical improvement, and 
could reduce mortality. The modulation of the KKS has re
ceived little attention so far in the quest for COVID-19 thera
pies, but it seems to be a helpful strategy during the 
hypoxemic pneumonic stage before disease progression into 
critical illness. This justifies carrying out follow-up trials to val
idate the outcomes of this proof-of-concept trial.
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Supplementary materials are available at Clinical Infectious Diseases online. 
Consisting of data provided by the authors to benefit the reader, the posted 
materials are not copyedited and are the sole responsibility of the authors, so 
questions or comments should be addressed to the corresponding author.
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