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Coenzyme Q (CoQ) is important not only as an essential lipid for
the mitochondrial electron transport system, but also as an
antioxidant. CoQ levels decrease during aging and in various
diseases. Orally administered CoQ is not readily taken up in the
brain, so it is necessary to develop a method to increase the
amount of CoQ in neurons. CoQ is synthesized via mevalonate
pathway, like cholesterol. Transferrin, insulin, and progesterone
are factors used in the culture of neurons. In this study, we
determined the effect of these reagents on cellular CoQ and
cholesterol levels. The administration of transferrin, insulin, and
progesterone increased cellular CoQ levels in undifferentiated
PC12 cells. When serum was removed and only insulin was
administered, intracellular CoQ levels increased. This increase was
even more pronounced with concurrent administration of
transferrin, insulin, and progesterone. Cholesterol level decreased
by the administration of transferrin, insulin, and progesterone.
Progesterone treatment lowered intracellular cholesterol levels in
a concentration-dependent manner. Our findings suggest that
transferrin, insulin, and progesterone may be useful in regulating
CoQ levels and cholesterol levels, which are products of the
mevalonate pathway.
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Coenzyme Q (CoQ) is important not only as an essential
lipid for the mitochondrial electron transport system to

produce ATP, but also as an antioxidant.(1,2) CoQ levels have been
reported to decrease with aging and in various diseases, such as
Parkinson’s disease.(3–6)

Several other neuronal diseases which are caused by a muta‐
tion in CoQ biosynthesis genes, have been reported. Tsuji et al.(7)

reported a homozygous mutation in COQ2 in multiple-system
atrophy (MSA) patients. They reported that functionally impaired
heterozygous COQ2 variants were associated with sporadic
MSA. COQ1 is a heterodimer consisting of PDSS1 and PDSS2
proteins. Mutations in the PDSS2 gene cause Leigh syndrome
and nephropathy.(8) COQ8 gene mutations are reported to cause
progressive neurological disorders with cerebellar atrophy, devel‐
opmental delay, and hyperlactatemia.(9) In such cases, CoQ10
levels are decreased.

CoQ supplementation as an oral drug has paid attention. In
fact, CoQ administration has been reported to be effective in
several diseases. For example, in a meta-analysis that reviewed
eight randomized controlled trials from one database up to

January 2014, CoQ administration in patients undergoing cardiac
bypass surgery was associated with a lower rate of inotropic drug
use and a lower risk of developing ventricular arrhythmias.(10) In
another meta-analysis of three randomized placebo-controlled
trials from four databases up to December 2012, CoQ10 adminis‐
tration to infertile men resulted in increased sperm density and
motility.(11)

Following its administration, CoQ is primarily taken up by
the liver, adrenal gland, and spleen, whereas the levels of
CoQ10 taken up by the neurological systems are very low.
Yuzuriha et al.(12) reported that following intravenous injection of
[14C] CoQ10 into guinea pigs, radioactivity levels were highest in
the liver and spleen at 30 min following injection and decreased
thereafter. The levels in the blood and kidney peaked at 8 h,
whereas those in the heart and brain peaked at 24 h and subse‐
quently decreased. The levels of [14C] CoQ10 in the brain were
much lower compared with that in the liver, spleen, and adrenal
grand. Bentinger et al.(13) reported that the administration of
radioactive CoQ10 ([3H]CoQ) to rats intraperitoneally resulted in
its efficient uptake into the circulation and resulted in a high
concentration in the spleen, liver, and white blood cells. Lower
concentrations were detected in the adrenal glands, ovaries,
thymus, and heart whereas essentially no uptake occurred in the
kidneys, muscle, or brain. Thus, CoQ is difficult to administer to
the brain and a method is needed to increase cellular CoQ10
levels in the nervous system.

CoQ is synthesized intracellularly, and elucidation of the
mechanisms regulating CoQ biosynthesis will contribute to the
regulation of intracellular CoQ levels. CoQ is produced by the
mevalonate pathway.(14,15) The mevalonate pathway also produces
cholesterol.(16) Cholesterol homeostasis is essential for cellular
function and metabolism. The brain has the highest amount of
cholesterol.(17) Approximately 70–80% of cholesterol in the
adult brain is partially present in the plasma membrane of
neurons and astrocytes, where it influences cell morphology,
stabilizes cell surface receptors, and modulates synaptic trans‐
mission. Cholesterol is also essential for neurite outgrowth,
synapse formation, and the formation of new membranes
required for neurotransmitter release, and plays an important role
in neuronal differentiation and maturation.(18–20)

We previously evaluated the concentration of CoQ before
and after neuronal differentiation. We found that treatment of
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PC12 cells with nerve growth factor (NGF) significantly
increased intracellular CoQ levels during neurite outgrowth and
neuronal differentiation.(21) Furthermore, we found that the inhi‐
bition of CoQ biosynthesis impaired neurite elongation.(21)

Several reports have indicated that a serum-free medium
containing transferrin, insulin, and progesterone (TIP) are useful
for culturing cells from a variety of nervous system tissues.(22,23)

In fact, many commercial culture media additives for neuronal
and neural stem cell cultures contain TIP. For example, Thermo
Fisher Scientific offers a neuronal cell culture supplement,
B-27™ Supplement, which contains TIP. TIP is also contained in
the culture medium additives, N2-MAX and N21-MAX Media
Supplement, from R and D systems for growing nerve cells.

In this study, we determined the effect of TIP on cellular CoQ
and free cholesterol (FC) levels.

Materials and Methods

Cell culture. PC12 established from a rat adrenal medullary
tumor (pheochromocytoma) were grown in DMEM/F-12
containing 10% horse serum, 5% fetal bovine serum, and 1%
penicillin/streptomycin at 37°C in a 5% CO2 incubator.(21) The
cells were seeded at 1 × 105 cells/ml on collagen-coated plates
and incubated for 72 h. The culture medium was changed with
serum-free DMEM/F-12 medium containing TIP and incubated
for 48 h. The medium was changed again and after a 48-h incu‐
bation, the cells were collected and analyzed for lipid content and
gene expression. The levels of CoQ and FC following TIP treat‐
ment were also measured after 2, 4, and 6 days of TIP treatment.

Neurite length measurement. As reported previously,
cultured cells were observed at 100× magnification with an
inverted phase contrast microscope (#CKX41; OLYMPUS,
Tokyo, Japan), photographed with a camera (#IX71;
OLYMPUS),(21) and printed. The length of the neurites in the
printed picture was measured with a ruler. For the measurement
changes in neurite length over time, we used the photographs
taken after 4 days of NGF and TIP treatment. For the NGF-
treated group, 221 ± 40 neurites were present in the photographs.
For the NGF + TIP-treated groups, 217 ± 9 neurite were included
in each image. We measured the photographs in triplicate. The
results are expressed relative to the NGF-treated group.

Lipid analysis. As reported previously, CoQ and FC levels
in cells were analyzed using HPLC-UV, ECD.(21,24–26) Briefly,
cells were collected in isopropanol, centrifuged, and the resulting
supernatant was analyzed HPLC. Two separation columns
(Ascentis® C8, 5 μm, 250 mm × 4.6 mm i.d. and SupelcosilTM
LC-18, 3 μm, 5 cm × 4.6 mm i.d.; Supelco Japan, Tokyo, Japan)
and a reduction column (RC-10, 15 mm × 4 mm i.d.; IRICA,
Kyoto, Japan) were used. The samples were detected by UV and
ECD. The mobile phase for the separation was 50 mM NaClO4 in
methanol/isopropanol (85/15, v/v) and was run at a flow rate of
0.8 ml/min. The columns were maintained at 25°C.

Quantitative reverse transcription-PCR. Total RNA was
prepared from cultured PC12 cells using TRIzol reagent. cDNA
was synthesized by reverse transcription using QuantiTect
Reverse Transcription Kit (QIAGEN, Venlo, The Netherlands).
The PCR primer sequences are shown in Table 1. Quantitative
PCR was conducted on a QuantStudio® 5 (Thermo Fisher Scien‐
tific) instrument as follows: 95°C for 2 min followed by 40
cycles of 95°C for 5 s and 60°C for 30 s, with a final extension
step of 60°C for 1 min. mRNA expression was calculated using
the 2−ΔΔCt method.(26,27)

Establishment of CoQ-deficient cells. To decrease CoQ
levels in PC12 cells, 4-nitrobenzoate (4-NB), a well-known CoQ
biosynthesis inhibitor, was used.(28,29) PC12 cells were cultured
with 4-NB that was dissolved in DMSO, and the same volume of
DMSO was added to the control cell line. 4-NB was administered
for 2 days or 6 months.

Statistical analysis. All results are presented as means and
SD. Statistical significance was determined by a Student’s t test
and a one-way analysis of variance (ANOVA). Statistical anal‐
ysis was performed using BellCurve for Excel (Social Survey
Research Information Co., Ltd., Tokyo, Japan).

Results

Effect of TIP on cellular CoQ levels. As shown in Fig. 1A,
the addition of TIP did not affect cell morphology in PC12 cells
in the absence of NGF; however, the addition of NGF signifi‐
cantly affected cell morphology. After administration of NGF, the
cells extended into neurites. Based on the cell shape, PC12 cells
were considered differentiated into neural cells. NGF-treated

Table 1. Primer used in real time PCR analysis

Gene Forward Sequence (5'-3') Reverse Sequence (5'-3')

GAPDH GTTACCAGGGCTGCCTTCTC GATGGTGATGGGTTTCCCGT

RPL29 TTGCCAAGAAGCACAACAAG GGCATCTTGGGCTTGACA

PDSS1 GAAAGGTTTGCCCACTACCT CATCTGGTCAGAACATGAGGTG

PDSS2 CTTCAGATCTCTCGACACCATC CAGTGGTAAGCAGTGGGTG

coq2 GATGATGCTCTGATTGGCCT GGTGTAAATCTGGTGAGCCA

coq3 GGATGAAGATTCTCGACGTTGG CTCATTCAAGGTCTCCTCCAG

coq4 CGGAGAAGTTGTGGTAAAGTGG CTCCCAACGCTGTTCATAGTAG

coq5 AGTACCAGAGTAAAGAGGACCC TGACATTCCGGATCCCAAAG

coq6 CTGCTCAGAGGCCTTGATAATG CCATCACCTAGGGTAATATGGACC

coq7 CCTCAGGAATCACTTTTGGCTG GGAATGTCCTATGTAGACCAGG

coq8 GATCTGTCAGAGTGGAGACGTA CTATGGGGGTCTGTTGCATT

coq9 AGAACTGTTCTCTAGGAGTGGG CACTATGTGTTGCCTTTGGACC

FDFT1 AGCCACAAGGATGGAGTTCG GAGTTCCGGTCCATCTTGGG

HMGCR GCTCAGGGTAATCACTTGCT TAGGCCTGGTTCTTGTTCAC

GSS CTCCAGGGGCTTTAGGGAAG TTGCCTCAAAGGAGCTTCCA

Catalase TCAGCGTTTGGTGGAGAA GCCTGGCTCATCTTTATC

SOD1 CCAGTTGTGGTGTCAGGACA CTCTCTTCATCCGCTGGACC

SOD2 TTCTGGACAAACCTGAGCCC CCTGAACCTTGGACTCCCAC
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Fig. 1. Addition of TIP increases cellular CoQ levels in PC12 cells. (A) Microscopic photographs of PC12 cells treated with and without TIP and NGF.
Scale bar = 200 μm. The concentration of NGF was 20 ng/ml. TIP consisted of 5 μg/ml transferrin, 10 μg/ml insulin, and 8 μM progesterone. (B)
Administration of TIP enhanced the length of neuronal elongation. The concentration of NGF was 20 ng/ml. TIP consisted of 5 μg/ml transferrin,
10 μg/ml insulin, and 8 μM progesterone. The data were analyzed using Student’s t test are expressed as means ± SD (n = 3). (C) CoQ levels
corrected for protein in PC12 cells. The concentration of NGF was 20 ng/ml. TIP consisted of 5 μg/ml transferrin, 10 μg/ml insulin, and 8 μM proges‐
terone. The data were analyzed using a one-way ANOVA and are expressed as means ± SD (n = 3). **p<0.01 and ***p<0.001 compared with NGF
(−), TIP (−), and serum (+) group. (D) Time course of CoQ levels normalized to protein levels in PC12 cells treated without (black line) or with (gray
line) TIP (5 μg/ml transferrin, 10 μg/ml insulin, and 8 μM progesterone). The data were analyzed using a Student’s t test and are expressed as means
± SD (n = 3). *p<0.05 and **p<0.01 compared with and without TIP. (E) Measurement of CoQ levels in the presence insulin. In some experiments,
transferrin and progesterone were also administrated. CoQ levels corrected for protein. The data were analyzed using a one-way ANOVA and are
expressed as means ± SD (n = 3). *p<0.05 and ***p<0.001 compared with insulin (−). (F) Analysis of the concentration dependence of each factor of
TIP. Concentration of 1 factor was changed in the presence of other 2 factors. CoQ levels corrected for protein. White bar: control cells cultured
with serum without TIP. Gray bar: Cells cultured without serum with various concentration of TIP. The data were analyzed using a one-way ANOVA
and are expressed as means ± SD (n = 3). ***p<0.001 compared with 0 μg/ml transferrin, 0 μg/ml insulin, and 0 μM progesterone. #p<0.05, ##p<0.01
compared with 5 μg/ml transferrin, 10 μg/ml insulin, and 0 μM progesterone.
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cells exhibited enhanced neurite outgrowth following treatment
with TIP. Neurite length was measured and as shown in Fig. 1B,
the neurites were longer in TIP-treated cells compared with that
in TIP untreated cells. PC12 cells contain CoQ9 because it is
derived from rats. Figure 1C shows the CoQ levels measured in
control and TIP-treated cells. Cellular CoQ levels were signifi‐
cantly increased following the administration of TIP in undiffer‐
entiated PC12 cells. CoQ levels increased following NGF treat‐
ment as we reported previously.(21) Administration of TIP to
NGF-treated differentiated cells increased the average cell CoQ
levels, but no significant increase was observed. These results
indicate that the addition of TIP increases the levels of CoQ in
undifferentiated PC12 cells.

Next, we analyzed the time-dependent changes in cellular CoQ
levels after the addition of TIP in undifferentiated PC12 cells. As
shown in Fig. 1C, the CoQ levels increased with time in both
control and TIP-treated cells. The levels of CoQ were higher in
TIP-treated cells at all time points.

Determination of which factor is important for increasing
cellular CoQ levels. To identify which factor increase CoQ
levels, we analyzed the change in CoQ levels when only one type
of factor was administered. However, when serum was removed
and progesterone alone was administered, cells died and could
not be analyzed. Cells also died when transferrin alone was
administered. When only insulin was administered, cells survived
and CoQ levels could be analyzed. As shown in Fig. 1E, insulin-
only treatment increased cellular CoQ levels. Interestingly,
cellular CoQ levels were tended to be higher when the three
were administered simultaneously. Unexpectedly, the effect of
TIP was ameliorated when serum was administered at the same
time as TIP.

Next, to analyze the concentration dependence of each factor,
we analyzed cellular CoQ levels by varying the concentration
of only one factor. As shown in Fig. 1F, when the concentration
of transferrin was changed, cellular CoQ levels did not change.
We failed to evaluate the concentration of insulin at 0 and
0.01 μg/ml, because the cells cannot survive at lower concentra‐
tions of insulin without serum. Insulin increased CoQ levels
significantly; however, further increases in insulin did not
increase CoQ levels. For progesterone, there was a trend toward
a concentration-dependent increase in CoQ levels. High proges‐
terone resulted in higher CoQ levels compared with untreated
cells.

Effect of TIP on cellular FC levels. FC is also produced by
mevalonate pathway as CoQ. The effect of TIP on the cellular
level of FC is studied. Figure 2A shows FC levels in the presence
and absence of TIP. FC levels were reduced in the presence of
TIP, with and without NGF. Figure 2B shows the time-dependent
changes in cellular FC levels. FC levels in TIP-treated cells were
lower compared with that in control cells at all time points. FC
levels increased with time in control cells, and decreased in TIP-
treated cells.

Determination of which factor is important for decreasing
cellular FC levels. As shown in Fig. 2C, insulin administration
reduced FC levels. The addition of progesterone and transferrin
further accelerated this decrease. The addition of serum
suppressed the decrease in FC levels. As shown in Fig. 2D, FC
levels decreased in a progesterone concentration-dependent
manner. The decrease in FC levels may result from the addition
of progesterone; however, it should be noted that even at a
progesterone concentration of 0 μM, a decrease in FC levels was
observed. Taken together, these results indicate that insulin and
transferrin exhibit an FC-lowering effect, but progesterone has a
concentration-dependent effect on FC levels.

mRNA expression of CoQ and FC biosynthesis enzymes.
To elucidate the mechanism of elevated CoQ levels, we analyzed
the gene expression of the CoQ synthase gene. Figure 3A illus‐
trates the reported mechanisms for the biosynthesis CoQ. CoQ

levels were increased following the administration of TIP;
however, FC levels did not increase. Therefore, we measured the
expression CoQ synthesis genes after the junction of CoQ
synthesis and cholesterol synthesis. As shown in Fig. 3B, the
expression levels of these genes were not significantly altered by
TIP treatment of PC12 cells. Thus, the increased CoQ levels
following the addition of TIP may not be explained simply by
change in gene expression. We also analyzed mRNA expressions
of FC synthesis genes, HMG-CoA reductase (HMGCR) and
farnesyl-diphosphate farnesyltransferase 1 (FDFT1). HMGCR is
the rate-limiting enzyme in the mevalonate pathway. FDFT1 is
the branch point enzyme between CoQ and cholesterol. As
shown in Fig. 3C, the expressions of these genes are upregulated.
Therefore, the decreased FC levels following the addition of TIP
also may not be explained simply by change in gene expression.

Effect of TIP on 4-NB treated CoQ deficient cells. We next
determined whether TIP increases cellular CoQ levels when CoQ
synthesis is partially inhibited. The CoQ synthesis inhibitor 4-NB
was used to inhibit the synthesis of CoQ. As shown in Fig. 4A,
cellular CoQ level decreased by the administration of 4-NB dose
dependently. Result shown in Fig. 4A is obtained with 2 day
4-NB treated cells. Administration of 4-NB for longer time (for
several months), cells with 5 mM 4-NB died. Therefore, we used
1 mM 4-NB treated cell samples. As shown in Fig. 4B, the addi‐
tion of TIP to 4-NB-treated for 6 months cell also increased
cellular CoQ levels, but this increase was lower compared with
that in the control cells. In NGF-treated differentiated cells,
4-NB-treatment reduced cellular CoQ levels. Similar to the
control cells, the administration of TIP to 4-NB-treated cells did
not increase intracellular CoQ levels in the presence of NGF.
FC levels were reduced in both control and 4-NB treated cells
following the administration of TIP (Fig. 4C).

Effect of TIP on antioxidative enzymes. Since TIP treat‐
ment increased cellular level of CoQ, which is an important
antioxidant, we analyzed the level of antioxidative enzymes.
As shown in Fig. 5, mRNA expression level of glutathione
synthetase (GSS) does not altered by the administration of TIP.
Levels of catalase and superoxide dismutase (SOD) also does
not altered.

Discussion

As indicated above, the administration of TIP to undifferen‐
tiated PC12 cells increased cellular CoQ and decreased FC
levels. CoQ is important to the mitochondrial electron transport
system and as an antioxidant. We also previously reported that
neurite outgrowth is suppressed by CoQ deficiency.(21) This study
shows that administration of TIP increased intracellular CoQ
levels. At this time, the neurite outgrowth is increased. Although
a more detailed analysis will be done in the future, we found that
the administration of TIP increased cellular CoQ levels and
increased neurite outgrowth. TIP is added to media for culturing
nerve cells and exerts a variety of effects. In the present study, we
found that TIP maintains intracellular CoQ and FC levels, which
may be one of its key effects.
Several physiological stimuli are known to increase intracel‐

lular CoQ levels such as, cold stress.(30) Endurance exercise
training reportedly increases CoQ content in red quadriceps,
soleus muscles, and adipose tissues.(31) Oxidative stress also
increases intracellular CoQ levels.(32–34) Calorie restriction has
reported to influence the balance of endogenous CoQ. Long-term
calorie restriction increases CoQ in mitochondria from skeletal
muscle,(31) liver, heart, and kidney.(35) The administration of
dietary omega-3 unsaturated fatty acids increases intracellular
CoQ levels.(36) TIP was also found to increase CoQ. TIP contains
of protein, peptide hormone, and steroid hormone, the safety of
which is assured. Therefore, it may be applied for the treatment
of elevated CoQ levels.
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The administration of TIP increased the amount of CoQ,
which is an antioxidant, but there was no significant change in
the expression levels of other antioxidant enzyme-related genes.
Moreover, it did not affect the expression levels of enzymes
involved in glutathione biosynthesis.
TIP not only increased the intercellular levels of CoQ, but also

suppressed the levels of FC in undifferentiated PC12 cells.
Progesterone alone suppressed the levels of FC in a dose depen‐
dent manner. Metherall et al.(37) previously reported that the
administration of progesterone to CHO-7 cells reduced cellular
cholesterol levels and increased lanosterol accumulation.(37,38)

They also reported that effect of progesterone on reducing
cholesterol was observed in HepG2, CHO, Hela, and Caco-2
cells.(37)

An increase in the CoQ levels was observed following the
removal of serum and insulin treatment alone. In addition, the
administration of progesterone and transferrin tended to promote

the insulin-dependent CoQ increase. We examined the putative
mechanism of CoQ increase by TIP. A synthesis pathway for
CoQ (Fig. 4A) has been proposed.(39) Because TIP increased CoQ
levels and decreased FC levels, we focused on CoQ synthase,
which functions after the junction between CoQ synthesis and
cholesterol synthesis. Specifically, we evaluated PDSS1, PDSS2,
and coq2~9. The administration of TIP did not change the
expression levels of these CoQ synthetic genes. This suggests
that mRNA expression remains the same, whereas the protein
content fluctuates or that the protein content also remains the
same, but metabolism fluctuates. For the latter, the following
hypotheses are possible. Insulin promotes the mevalonate
pathway,(40) which may be the result of HMGCR activation. The
product, cholesterol, causes negative feedback that suppresses
the mevalonate pathway.(41,42) Progesterone inhibits cholesterol
synthesis at the stage after lanosterol,(37,38,43) thus suppressing
the cholesterol-induced negative feedback loop. As a result, it is
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terone. #p<0.05, ##p<0.01 compared with 5 μg/ml transferrin, 10 μg/ml insulin, and 0 μM progesterone.
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possible that the insulin-mediated activation of the mevalonate
pathway could further increase CoQ levels. Another possibility is
based on recent studies suggesting that CoQ synthase forms a
complex called CoQ-synthome, which efficiently synthesizes
CoQ.(44) TIP may influence the formation of CoQ-synthome.
These possibilities should be studied further.
As shown above, administration of TIP caused changes in

CoQ and FC levels, which are products of the mevalonate
pathway. Even when serum was removed and only insulin was
administered, an increase in CoQ and a decrease in FC were
observed, albeit weaker than when TIP was administered.
Whether this was due to the effect of insulin administration or the
effect of serum removal requires further investigation. Removal
of serum from the medium is an important stimulus for neuronal
differentiation. For example, N1E-115 cells show neurite

outgrowth when serum is removed from the medium.(21,45)

Although it is difficult to examine the effect of serum removal
alone on PC12 cells used in this experiment because the cells die
when the serum is removed, clarification of the effect of serum
removal on intracellular CoQ and FC levels is expected to be an
issue for future investigation.
The levels of CoQ decrease with age;(3) however, the mecha‐

nism is unknown. Also the amount and effects of insulin change
with age.(46) Signal transduction following insulin receptor activa‐
tion decreases with age and progesterone levels fluctuate signifi‐
cantly with aging and menopause,(47–49) especially in women. It
has also been reported that transferrin receptors decrease with
age.(50) Taken together, these effects may contribute to age-related
changes in CoQ levels.
Among the pathological conditions associated with CoQ
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Fig. 3. Outline of the CoQ synthesis pathway and the expression levels of each gene. (A) Illustrated schemes of the CoQ and cholesterol biosyn‐
thetic pathways. The CoQ and cholesterol synthesis pathways share some similarities. (B) The relative mRNA expression levels of coq1 to coq9 were
normalized to GAPDH expression. White bar: control, gray bar: with TIP (5 μg/ml transferrin, 10 μg/ml insulin, and 8 μM progesterone). Values are
presented as the mean ± SD (n = 3) of the data obtained from three independent experiments. (C) The relative mRNA expression levels of HMGCR
and FDFT1 were normalized to GAPDH expression. White bar: control, gray bar: with TIP (5 μg/ml transferrin, 10 μg/ml insulin, and 8 μM proges‐
terone). The data were analyzed using a Student’s t test. The data were analyzed using a Student’s t test and are expressed as means ± SD (n = 6).
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synthase deficiency, many neurological diseases have been
reported.(7–9) CoQ administration may be beneficial for these
diseases, but orally administered CoQ is not taken up readily by
the brain.(12) Therefore, it is necessary to develop methods to
increase CoQ levels in cells by means other than oral supple‐
ments. Although we performed in vitro experiments at the level
of cultured cells, the administration of TIP increases CoQ levels,
even in 4-NB-treated cells. In the future, we will determine
whether these effects occur in vivo and anticipate that the admin‐
istration of TIP will lead to new treatments that increase CoQ
levels.
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Fig. 5. The relative mRNA expression levels of GSS, Catalase, SOD1,
and SOD2 reductase were normalized to RPL29 expression. White bar:
control, gray bar: with TIP (5 μg/ml transferrin, 10 μg/ml insulin, and
8 μM progesterone). The data are expressed as means ± SD (n = 3).
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Fig. 4. TIP increases cellular CoQ levels and decreases FC levels in 4-NB-treated PC12 cells. (A) CoQ levels in PC12 cells corrected for protein in the
presence of 4-NB (1 mM, 3 mM, and 5 mM) for 2 days. (B) CoQ levels corrected for protein in PC12 cells in the presence and absence of 1 mM 4-NB
for 6 months. (C) FC levels corrected for protein in PC12 cells in the presence and absence of 1 mM 4-NB for 6 months. The data were analyzed
using a one-way ANOVA and are expressed as means ± SD (n = 3). *p<0.05, **p<0.01, and ***p<0.001 compared with NGF (−), TIP (−), and 4-NB (−)
group.
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