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Around one-third of epilepsy patients develop drug-resistant seizures; early detection of seizures could
help improve safety, reduce patient anxiety, increase independence, and enable acute treatment. In recent
years, the use of artificial intelligence techniques and machine learning algorithms in different diseases,
including epilepsy, has increased significantly. The main objective of this study is to determine whether
the mjn-SERAS artificial intelligence algorithm developed by MJN Neuroserveis, can detect seizures early
using patient-specific data to create a personalized mathematical model based on EEG training, defined
as the programmed recognition of oncoming seizures before they are primarily initiated, usually within
a period of a few minutes, in patients diagnosed of epilepsy. Retrospective, cross-sectional, observational,
multicenter study to determine the sensitivity and specificity of the artificial intelligence algorithm. We
searched the database of the Epilepsy Units of three Spanishmedical centers and selected 50 patients eval-
uated between January 2017 and February 2021, diagnosed with refractory focal epilepsy who underwent
video-EEGmonitoring recordings between 3 and 5 days, a minimum of 3 seizures per patient, lastingmore
than 5 s and the interval between each seizure was greater than 1 h. Exclusion criteria included age
<18 years, intracranial EEG monitoring, and severe psychiatric, neurological, or systemic disorders. The
algorithm identified pre-ictal and interictal patterns from EEG data using our learning algorithm and was
compared to a senior epileptologist’s evaluation as a gold standard. Individualmathematicalmodels of each
patientwere trained using this feature dataset. A total of 1963 h of 49 video-EEG recordingswere reviewed,
with an average of 39.26 h per patient. The video-EEG monitoring recorded 309 seizures as subsequently
analyzed by the epileptologists. The mjn-SERAS algorithm was trained on 119 seizures and split testing
was performed on 188 seizures. The statistical analysis includes the data from each model and reports
10 false negatives (no detection of episodes recorded by video-EEG) and 22 false positives (alert detected
without clinical correlation or abnormal EEG signal within 30 min). Specifically, the automated mjn-
SERAS AI algorithm achieved a sensitivity of 94.7% (95 %; CI 94.67–94.73), and an F-Score representing
specificity of 92.2% (95 %; CI 92.17–92.23) compared to the reference performance represented by a mean
(harmonicmean or average) and a positive predictive value of 91%,with a false positive rate of 0.55 per 24 h
in the patient-independent model.
This patient-specific AI algorithm for early seizure detection shows promising results in terms of sensi-

tivity and false positive rate. Although the algorithm requires high computational requirements on special-
ized servers cloud for training and computing, its computational load in real-time is low, allowing its
implementation on embedded devices for online seizure detection.
� 2023 The Authors. Published by Elsevier Inc. This is an open access article under theCCBY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. After searching for the 50 patients in the databases of the 3 centers, each
patient was analyzed.
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Introduction

The International League Against Epilepsy (ILAE) describes a sei-
zure as the transient occurrence of signs and/or symptoms due to
excessive and/or synchronous abnormal neuronal activity in the
brain; epilepsy is further definedas a disorder of thebrain character-
ized by an enduring predisposition to seizures and the neurobiolog-
ical, cognitive, psychological and social consequences of this
condition; a diagnosis of epilepsy requires the occurrence of at least
one epileptic seizure in a patient whose brain, for whatever reason,
demonstrates a pathological and enduring tendency to have recur-
rent seizures [1]. The World Health Organization estimated in
2019 that around50million peopleworldwidewere diagnosedwith
epilepsy, it develops at any age with a higher incidence in the very
young and the elderly, and carries an increased risk of premature
death of up to three times in patients compared to the general pop-
ulation [2], studies suggest that each year there are about 1.16 cases
of Sudden Unexpected Death in Epilepsy (SUDEP) for every 1000
people with epilepsy, although estimates vary.

Epilepsy is considered a multifactorial disease with a wide spec-
trum of characteristics and different predisposing factors for its
development, the consequences include not only the impact on
the patient’s health, but also all aspects (cultural, interpersonal,
and social) of a person’s life [3]. About 70% of patients with epilepsy
could live seizure-free despite accurate diagnosis and treatment.
Therefore, themainpurpose of epilepsy treatment is to diminish sei-
zures to a minimum level that allows patients to achieve the best
possible quality of life [4]. Although most patients remain seizure-
free with anti-seizure medication (ASM), more than 30% continue
to have seizures despite treatment [5,6], this situation is known as
drug-resistant epilepsy or refractory epilepsy and is associatedwith
a greater socioeconomic and psychosocial burden [7,8]. The random
and unpredictable nature of seizures is one of the principal factors
affecting the patient’s quality of life [9,10], along with associated
comorbidities, neuropsychiatric disorders, cognitive deficits, and
side effects of ASM [2]. Therefore, there is an urgent need to develop
reliable tools for accurate seizure prediction and early detection,
which is defined as the programmed recognition of oncoming sei-
zures, before they initiate primarily, usually within a period of a
few minutes [11]. In this regard, it is known that EEG is a valuable
non-invasive method of diagnosis in epilepsy that can display
abnormalities in brain activity, disrupted EEG features enable classi-
fication and localization, and rise the likelihood of seizure detection,
therefore, it could potentially assess seizure recurrence risk [12].
However, the diagnosis of epilepsy is also centered on clinical infor-
mation and the EEG should be considered as support but not an
exclusive diagnostic test [13],

On the other hand, prolonged video-EEG monitoring, by analyz-
ing both EEG and ictal semiology of seizures, often yields the con-
firmatory diagnosis [14,15]. Video-EEG monitoring remains the
gold standard of epilepsy for the detection and diagnostic evalua-
tion of seizures in clinical practice, however, this method has lim-
ited sensitivity, requires a long time for analysis, and is subject to
different interobserver and intraobserver biases [16]. Therefore,
there is a need to develop robust methods that allow for greater
sensitivity and prompt detection of seizures.

New computer-based technology has improved the quality of
EEG assessments [17] and opened a road for EEG machine
learning-based prediction. These algorithms can be trained to learn
patterns from a big database by processing it throughout a multi-
layer hierarchical architecture, allowing seizure detection and
might provide warnings to patients, allowing for acute treatment
at the time of seizure onset [18,19]. The main aim of our study
was to determine if the mjn-SERAS artificial intelligence algorithm
(developed by MJN Neuroserveis) shows an accurate detection of
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seizures in previously diagnosed drug-resistant epilepsy patients
using a video-EEG training set and whether it is appropriate for
real-time use. For this purpose, we create a system that integrates
artificial intelligence (AI) correlations, frequency analysis with
spectral segments, and other EEG features. Ultimately, this could
allow us to develop an effective medical device to help patients
to be warned of an impending seizure, consequently, decreasing
uncertainty about seizure onset, providing acute treatment, and
improving the patient’s quality of life.
Methods

Human subjects and ethical issues

We conducted a retrospective cross-sectional, observational,
multicenter study to determine the sensitivity and specificity of
the artificial intelligence algorithm. We performed a search in
the database of the Epilepsy Units of three Spanish medical centers
and selected 50 patients evaluated between January 2017 and
February 2021 diagnosed with refractory focal epilepsy with
video-EEG monitoring of 3 to 5 days duration, recording a mini-
mum of 3 seizures per patient that lasted more than 5 s and the
interval between each seizure was greater than 1 h. The exclusion
criteria included age <18 years, intracranial EEG monitoring, and
severe psychiatric, neurological, or systemic disorders (due to their
possible interference with the result interpretation) (Fig. 1).
Approval of the used protocols was obtained through the ethics
committees of the Regional Ethical Committee of Madrid.
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Video-EEG acquisition and electrode positioning

Video-EEG data were recorded using the Natus Seizure Advisory
System obtained with full scalp montage. All EEG data were 24
channel recordings using the 10–20 system. Portable EEG machi-
nes were used, with gold-plated disc electrodes and collodion
adhesive. EKG and video were also recorded. All electrode impe-
dances were maintained at <10 kilo-ohms at the start of the
recording. The EEG was acquired referentially at a 500-Hz sam-
pling rate, and visualization and inspection for neurologist seizure
detection were made with high-pass and low-pass filters set at
1 Hz and 35 Hz or 70 Hz, respectively. Sensitivity was set between
5 and 10 lV/mm. A 50-Hz notch filter was used in most of the
recordings. All patients received photic stimulation but not hyper-
ventilation during the first 30 min of the recording. Epilepsy mon-
itoring unit (EMU) nurses were trained to press the alarm button
and write notes for clinical seizures or other significant events.
The technicians kept the subjects alert to prevent drowsiness.
The selected channels have been using the approximation to the
mjn-SERAS device, so we have used the F7-T3 and T3-T5 or the
F8-T4 and T4-T6, depending on the laterally of focus.

Video-EEG analysis (EEG Pre-processing)

Before analysis, all EEG data were reviewed the day following
the recording by epilepsy-specialized neurologists and neurophys-
iologists with experience as electroencephalographers (JRU, GD)
using a Natus viewer and standard visual inspection, 10 s per page.
Clinical features included in this study were: the number of sei-
zures (determining the onset of seizure according to medical crite-
ria), duration, identification of lateralization of the epileptic focus,
and drug resistance. Specifically, the EEG recordings showed a
minimum of 3 seizures per patient, with each seizure lasting at
least 5 s and an inter-seizure interval of more than 1 h.

Algorithm

The seizure early detection method used during the study is
based on artificial intelligence techniques, specifically supervised
machine learning. The artificial intelligence algorithm developed
by MJN Neuroserveis, derived from the comprehensive analysis
of the data collected in this trial, analyzes the signals recorded
from each patient to create a customized mathematical model that
captures the complexity of individual brain dynamics. The infor-
mation was collected using the EEG technique and processed in a
sequential procedure, starting with the raw data and ending with
an alarm in case of seizure detection. We explain the process
below, the algorithm has three main operational blocks:

Pre-processing block: artifact removal
Raw data obtained from video-EEG recordings contain noise

and electrical interferences, which distort the recorded signals.
Artifacts in EEG recordings are disturbances in brain signals, which
are outlier measurements generated within the brain. External
artifacts are caused frequently by aberrant technology such as elec-
tromagnetic interference and disconnection of the electrode box
(for instance, displacement in the skin-electrode contact). Internal
artifacts can occur due to changes in the potential between elec-
trodes because of eye movement or muscular activity [20]. We
implemented a set of filters that allowed us to remove the electri-
cal interference at 50 Hz and the baseline drift at 0.5 Hz detecting
only the frequencies that are from brain activity. Furthermore, EEG
experts performed visual detection of these artifacts, and these
were automatically detected and rejected. Several methods have
been described for the automation of this process; we use the
amplitude thresholding method, which is calculated as three to
3

five times the standard deviation of the signal. Additionally, upon
completion of the pre-processing block, the remaining signal con-
tains brain waves, namely delta, theta, alpha, beta, and gamma.

Data formatting block: EEG feature extraction
We used powerful data mining techniques to extract informa-

tion from individual artifact-free time series of the 24-hour
video-EEG recordings, the signals were transformed into descrip-
tive statistical values and named features, and the data were seg-
mented into fixed-sized windows, which have a certain degree of
overlap between contiguous segments. Each of the windows was
labeled using a binary method, interictal segments were associated
with a zero value and preictal segments were labeled with a uni-
tary value. The windows were 60 s with a 50% overlap, the splits
were not done at the sample level, and they were designed as
ictal-interictal segment packets, which ensured that no training
information was sent to the test due to overlap. Every window
needed to be transformed in a single statistical value to be able
to enter a mathematical model but with this model, we can find
class imbalance, so we use undersampling and weighted scores
appropriate in each case. In total, over 150 features have been
implemented in the algorithm for different subbands. The imple-
mented features can be divided into the following main groups:

d Energies: They measure the degree of electrical activity for a
given range of frequencies. Such values are scaled to different
magnitudes to exploit the non-linear properties of the energies.

d Complexity measurements: These values describe the variabil-
ity of the signal, finding trends and calculating the degree of
predictability of such trends.

d Centrality measurements: Describe the values distribution of
the signal.

d Connectivity measurements: Calculate the degree of synchro-
nization between the two channels, analyzing the similarity of
the patterns.

Once this procedure was completed, the statistical descriptors
of each series of features (mean, quartiles, variability) were
extracted, leaving only the tendency values of all the features for
each patient. In total, approximately 5000 statistical EEG parame-
ters were extracted from video-EEG recording.

Training block

It is known that 4 distinctive states of brain activity exist in
epileptic patients: preictal (immediately prior to seizure), ictal
(during a seizure), postictal (immediately following a seizure),
and interictal (between seizures). The ictal state is easily identified
in EEG recording, thus, the important fact in seizure prediction
studies is to distinguish between interictal and preictal state
[21]. For that reason, it is important to have reliable features and
automated systems that correlate and allow for discrimination
between preictal and interictal states, respectively [22]. Addition-
ally, feature extraction techniques usually generate a lot of features
that could be redundant and difficult to apply due to an excess of
computational requests [23]. Hence, we labeled each EEG data seg-
ment as interictal or preictal one and we categorized these param-
eters of features to identify which of them better represents the
differences between interictal or preictal segments. Only relevant
information was collected and redundancies or information that
could affect the yield of the model were discarded. This identifica-
tion of preictal and interictal patterns from EEG data was per-
formed using our learning algorithm. Finally, mathematical
models of each patient were trained using these features’ data sets.
Each trained model was evaluated to maximize the sensitivity of
seizure detection with minimal false detections.
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The data is split into train and test groups. The first one was
used to train the algorithms, while the second one was used to
assess the performance of the model against unknown data. The
features that showed the greatest difference between interictal
and preictal segments were selected based on maximizing the sep-
aration between populations and minimizing the correlation
between them. This analysis and feature selection was performed
on the training data only, and the features were ‘‘fixed” for the rest
of the algorithm. This way the mathematical models were trained
with the top-ranked features. This operation was performed only
using the training dataset to avoid data leaking, which may lead
to overly optimistic performance.

The performance of the algorithm was assessed using the test
group and improved through fine-tuning of each of the hyperpa-
rameters of the model. This optimization technique allowed the
regulation of internal parameters of the model until finding the
subset that offered the greatest performance of the test split. We
have applied two different methods depending on the number of
seizures, less than or equal to 5 seizures, and we have applied a
leave-one-out method so that 100% of the seizures have been
trained and tested. For patients with more than 5 seizures, we have
applied a split ratio of 70–30 to 50–50, depending on the size of the
raw cost-effective seizure data, excluding artifacts, device discon-
nections, and other noise.

The system analyses 1500 statistical parameters that measure
different EEG features without visualizing or interpreting the dif-
ferent graphical elements and it can generate an alert of this event
(Table 1). As mentioned previously, EEG data were extracted, and
input data were obtained from the extraction machine learning
algorithm.

After the training and subsequent analysis by the mjn-SERAS
artificial intelligence algorithm, the number of seizures detected
by the algorithm was calculated and the corresponding alerts were
recorded. Subsequently, the calculation of false negatives (seizures
not detected by the algorithm) and false positives (alarms that do
not correspond to clinical seizures or registered in the video-EEG
recording) was performed (Table 2).

Statistical analysis

All statistical analyses were performed using SPSS version 23
(IBM SPSS Statistics). The study data were analyzed using
descriptive statistics. The chi-square test and/or the Yates and
Table 1
The system analyses 1500 statistical parameters that measure different EEG features
without visualizing or interpreting the different graphical elements and it can
generate an alert of this event, here are some of these.

Mean Delta band power
Normalized FFT Kurtosis
Covariance
Spectral Centroid
Zero Crossing
Cross-Correlation
Escort Tsallis Entropy
Mutual information
Relative Entropy
Tsallis Entropy
Shannon Entropy
Geometrical Mean
Harmonical Mean
Kolmogorov Complexity
Kurtosis
Skewness
Spectral Flatness
Epoch Based Entropy
Higuchi Fractal Dimension
Hurst Fractal Dimension
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Fisher correction were used to compare proportions and study
relationships. Comparisons between two quantitative variables
were made using the t-Student or Mann-Whitney U test for normal
distribution or non-normal distribution data, respectively. The sta-
tistical analysis was conducted using the scores of the results for
each patient; no statistical analysis of the features of the training
set was done. We used techniques to select those features that best
separated the classes and, at the same time, were not correlated
between them. We mainly used network component analysis
(NCA) and relief-based algorithms (RBA)”.

The dataset was determined to be sufficient for a proof-of-
concept study due to a small size as the size limited the machine
learning techniques that were able to be applied to this study.
Results

Fifty patients were included, and a total of 1963 h of 49 video-
EEG monitoring were recorded, with a mean per patient of 39.26 h.
One patient was excluded due to insufficient seizures. Video-EEG
monitoring registered 309 seizures according to the epileptolo-
gists’ analysis of each patient’s data. The mjn-SERAS algorithm
used 100% of the seizures collected by video-EEG monitoring,
where 119 seizures were used only to train the algorithms and
188 seizures were used for the split test. The statistical analysis
includes the data from each model and reports 10 false negatives
(no detection of episodes recorded by video-EEG) and 22 false pos-
itives (alert detected without clinical correlation or abnormal EEG
signal within 30 min). Specifically, the automated mjn-SERAS algo-
rithm achieved 94.7% (95 %; CI 94.67–94.73) sensitivity and 92.2%
(95 %; CI 92.17–92.23) specificity compared to the reference per-
formance represented by a mean (harmonic mean or average) F-
Score and a positive predictive value of 91% with 0.55 false positive
(FP/24-hour) detections in the patient-independent model. Table 1
shows a summary of the findings for each patient. Cases with high
false alarm rates were analyzed, most of which correlated with
inter-critical activity and some with electrical seizures that did
not correspond to selected clinical seizures in the video-EEG
recording, thus having no impact on the patient’s quality of life.
In a theoretical sub-analysis without this subgroup of 9 patients,
the PPV increased by 5.5% to 97%, and reduced the FAR from 0.55
to 0.12 false alarms per 24 h.

The early detection system based on the Artificial Intelligence
algorithm developed by MJN Neuroserveis enabled learning of
detection models targeting recognizing patterns in EEG activity
that were in the precise time window of the seizure. Fig. 2 shows
three cases of seizure early detection, one of them lasting up to
13 min. Next, it used advanced machine learning along with the
design and selection of accurate features from EEG signals to eluci-
date probability and class assignment of seizures.
Discussion

We found that for a validation set (test split) of 188 pre-
recorded epileptic seizures in 49 patients, our method was sensi-
tive and specific in detecting EEG segments to predict preictal
and interictal patterns. Epilepsy seizure AI detection has become
one of the most appealing fields that applies original solutions,
the seizure detection systems based on video-EEG recording are
characterized by the generation of high-dimensional spatiotempo-
ral features, which increasingly need to be processed using state-
of-the-art methods such as artificial intelligence and machine
learning to better forecast ongoing seizures. In 2019 Troung et al
published their analysis of a group of 56 patients, with 6.8 seizures
per patient with early 5-minute seizure detection, including
patients with intracranial electrodes. Haider et al. in 2017 included



Table 2
Results per patient.

Register
VideoEEG

Total Test False
Negative

False Positive Test Split Prediction Time
(minutes)

Number Sex Focus Hours Seizures Hours Seizures Alarms Pre-alarm <30 min TPR
Sensitivity

F-Score TNR
Specificity

PPV False Alarm Rate Average Min. Max.

011900001 F R 91 8 45,5 4 0 0 0 100 % 100 % 100 % 100 % 0,0 5 3 6
011900002 M L 108 9 60,0 5 0 1 1 100 % 91 % 92 % 83 % 0,4 9 2 15
011900003 M L 83 5 83,0 5 0 0 0 100 % 100 % 100 % 100 % 0,0 5 2 12
011900004 F R 66 7 18,9 2 0 0 0 100 % 100 % 100 % 100 % 0,0 14 12 15
011900005 M R 91 17 48,2 9 0 3 1 100 % 86 % 80 % 75 % 1,5 6 1 15
011900006 F R 85 9 28,3 3 0 0 0 100 % 100 % 100 % 100 % 0,0 11 4 15
011900007 F L 22 7 12,6 4 0 0 0 100 % 100 % 100 % 100 % 0,0 6 1 15
011900008 F L 45 16 22,5 8 0 0 0 100 % 100 % 100 % 100 % 0,0 2 1 4
011900009 M R 89 8 44,5 4 0 0 0 100 % 100 % 100 % 100 % 0,0 5 3 7
011900010 F L 65 8 32,5 4 0 0 0 100 % 100 % 100 % 100 % 0,0 12 8 15
011900011 F L 94 5 94,0 5 0 1 0 100 % 91 % 83 % 83 % 0,3 14 12 15
011900012 M R 19 6 9,5 3 0 0 0 100 % 100 % 100 % 100 % 0,0 6 4 10
011900013 F L 59 3 59,0 3 0 0 0 100 % 100 % 100 % 100 % 0,0 5 3 7
011900014 M R 88 4 88,0 4 0 0 0 100 % 100 % 100 % 100 % 0,0 11 3 15
011900015 M L 9 6 4,5 3 0 0 0 100 % 100 % 100 % 100 % 0,0 5 3 12
011900016 F L 20 4 20,0 4 1 1 2 75 % 75 % 79 % 75 % 1,2 13 9 15
011900017 M R 8 6 4,0 3 0 0 0 100 % 100 % 100 % 100 % 0,0 5 1 9
011900018 M R 19 4 19,0 4 1 1 1 75 % 75 % 86 % 75 % 1,3 11 6 15
011900019 M L 21 6 10,5 3 0 0 0 100 % 100 % 100 % 100 % 0,0 2 1 4
011900020 M R 51 6 25,5 3 0 0 1 100 % 100 % 99 % 100 % 0,0 9 4 15
011900021 M R 26 4 26,0 4 0 0 3 100 % 100 % 80 % 100 % 0,0 15 14 15
011900022 M L 22 4 22,0 4 1 2 0 75 % 67 % 99 % 60 % 2,2 5 1 10
011900023 M L 19 3 19,0 3 1 0 0 67 % 80 % 100 % 100 % 0,0 1 1 1
011900024 M L 20 3 20,0 3 0 0 0 100 % 100 % 100 % 100 % 0,0 2 1 4
011900025 M L 20 4 20,0 4 0 0 0 100 % 100 % 100 % 100 % 0,0 5 2 7
011900026 M L 18 3 18,0 3 0 2 0 100 % 75 % 94 % 60 % 2,7 12 3 15
011900027 M L 20 5 20,0 5 0 1 2 100 % 91 % 93 % 83 % 1,2 12 6 15
011900028 M R 47 5 47,0 5 1 1 2 80 % 80 % 95 % 80 % 0,5 9 3 12
011900029 F R 11 6 5,5 3 0 0 1 100 % 100 % 98 % 100 % 0,0 11 7 15
011900030 F R 58 4 58,0 4 0 0 0 100 % 100 % 100 % 100 % 0,0 10 3 15
012000031 F L 24 5 2,3 3 0 0 3 100 % 100 % 100 % 100 % 0,0 10 15 15
012000032 M R 40 8 11,0 4 0 1 1 100 % 89 % 99 % 80 % 2,2 15 15 15
012000033 M L 18 5 9,1 3 0 1 1 100 % 86 % 95 % 75 % 2,6 10 1 15
012000034 F R 15 3 15,0 3 0 0 1 100 % 100 % 100 % 100 % 0,0 9 6 15
012000035 M L 13 4 4,0 2 0 0 0 100 % 100 % 100 % 100 % 0,0 10 5 15
012000036 M L 16 7 6,9 3 0 0 0 100 % 100 % 100 % 100 % 0,0 5 1 7
012000037 F L 16 7 8,0 4 0 0 2 100 % 100 % 100 % 100 % 0,0 14 11 15
012000038 M R 21 3 21,0 3 0 0 0 100 % 100 % 100 % 100 % 0,0 10 2 9
012000039 F L 29 5 6,0 2 0 0 2 100 % 100 % 100 % 100 % 0,0 15 15 15
012000040 F L 8 3 8,0 3 0 0 0 100 % 100 % 100 % 100 % 0,0 5 2 7
012000041 F R 9 15 5,5 8 0 0 0 100 % 100 % 100 % 100 % 0,0 15 15 15
012000042 F R 38 14 8,6 7 1 1 0 86 % 86 % 98 % 86 % 2,8 12 2 15
012000043 M R 61 4 20,5 2 0 3 0 100 % 57 % 91 % 40 % 3,5 8 2 15
012000044 F L 63 6 20,5 3 0 2 0 100 % 75 % 95 % 60 % 2,3 7 2 15
012000045 M R 15 2 – – – – – – – – – – – – –
012000046 M R 41 5 22,0 3 1 0 2 67 % 80 % 100 % 100 % 0,0 15 15 15
012000047 F L 50 5 20,0 3 1 0 0 67 % 80 % 100 % 100 % 0,0 12 10 15
012000048 F L 46 6 17,4 3 0 0 1 100 % 100 % 100 % 100 % 0,0 12 7 15
012000049 M R 12 7 4,0 4 0 0 2 100 % 100 % 100 % 100 % 0,0 11 5 15
012000050 M R 34 10 10,3 4 2 1 2 50 % 57 % 97 % 67 % 2,3 8 2 15
TOTAL 1963 309 1205,5 188 10 22 31 94,7 % 92,2 % 97 % 91,5 % 0,55 9,0

Abbreviations: TPR, true positive rate; TNR, true negative rate; PPV, predictive positive value.
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Fig. 2. Selected spectrograms of three study subjects. The dotted line shows the time of alarm identified by AI and the solid line the onset of the seizure with the current
standard.
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47 patients to report a sensitivity of 87.8% with 0.142 false posi-
tives per hour. They reported up to 8 min warning without inclu-
sion of implanted patients.

Using patient-independent algorithms, it is more difficult to
build detection models due to EEG variability between individuals
[25]. The results for seizure detection are better and more accurate
than those previously reported because of detecting an upcoming
seizure is easier than predicting a seizure in advance [23,26]. How-
ever, compared to non-patient-specific classifiers [27], the accuracy
we achieved with our early detection model was higher. Although
we used a small sample cohort, our results showhigh quality results
with high accuracy and sensitivity of 95%, and a reduced false posi-
tive trend of 0.023 false alarms per hour. Our model showed high
performance, both in terms of sensitivity and specificity.

Our study sheds light on the use of machine learning algorithms
to detect drug-resistant seizures from patient-specific EEG record-
ings. We have used a patient-specific early seizure detection algo-
rithm, which is similar to most feature extraction algorithms, as
each patient has different EEG signals [24].

Each patient has unique brain activity and seizures, hence the
need for patient-specific models, as generic a global model is not
specific. This ML model has not been developed as a generic model
because with all the patient data there are 50 different personal-
ized models. The software architecture of the algorithm is unique,
the same for all patients, but we can select various parameters
such as features, weights, thresholds, and ML hyperparameters,
so it is a customized model, a patient-specific algorithm for early
6

seizure detection. Although to train the algorithm it needs to be
taught how to record a seizure, in the case of an out-of-hospital
algorithm, the digital patient record would be used.

However, these results should not be considered the best possi-
ble, as training of the algorithm leads to better results and shorter
warning times. In addition, our study had some other limitations,
the main one being the small number of previous studies focusing
on the performance of this mathematical algorithm as a predictive
method for seizure detection. Although we improved feature selec-
tion and subsequent analysis to improve seizure classification with
our system, another problem detected was the large inter-patient
variability. Therefore, we opted for individualization to improve
sensitivity and specificity. Because of this, there is still a need to
improve the overall detection models by choosing more accurate
features, the most advanced and appropriate classifier, and select-
ing a high-performance algorithm for non-specific patients [28].
Cross-validation is difficult in a customized model without
regrouping all seizures. As we have few seizures in several patients,
we have implemented a leave-one-out method with a version that
is a k-fold with k = number of seizures. However, we were unable
to do a k = 10 because many patients did not have 10 seizures in
the record to do the 10 folds. A single receiver operating character-
istic (ROC) curve for all models, useful in this type of analysis
because it represents the optimal compromise between sensitivity
and specificity, is not feasible as it is a customized mathematical
model. Thus, each individual model was optimized. Fig. 3 shows
an example of a ROC curve for two of the patients studied.



Fig. 3. Mjn-SERAS algorithm individualized roc curve for seizure detection in two patients. The red point represents the optimal compromise between sensitivity vs
specificity. roc, receiver operating characteristic; tnr, true negative rate.
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Therefore, seizure prediction remains a challenging task in epi-
lepsy research and requires further investigation. In this regard, a
recent study reveals that clinical seizure prediction is feasible in
a wider range of patients than previously thought, thanks to the
crowdsourcing of more than 10,000 algorithms worldwide [18].

In addition, algorithm training and new sample calculation are
computationally demanding on specialized cloud servers but have
a light real-time computational load allowing deployment on
embedded devices for early online seizure detection with sufficient
accuracy to minimize disruption to the patient’s life and with min-
imal false alarms [26].
Conclusions

In the present study, we demonstrate an artificial intelligence
(AI)-based system for early seizure detection using the mjn-
SERAS algorithm, which documents an accurate detection of pre-
ictal and interictal EEG segments in drug-resistant epilepsy
patients. Furthermore, the successful validation of our study in a
cohort of 49 patients allows for future research on the feasibility
of employing video-EEG monitoring and artificial intelligence to
detect seizures. Overall, we demonstrate that the use of artificial
intelligence together with engineering features can improve clini-
cal practice in epilepsy.

Furthermore, training the algorithm and computing new sam-
ples has a high computational requirement on specialized cloud
servers, but a light computational load in real-time, allowing its
deployment on embedded devices for online seizure detection.
This technology could be useful to develop customized hardware
(device) using this algorithm, which may be able to help patients
with epilepsy to identify seizures and warn relatives; or perhaps
anticipate their seizures, prevent the risk of injuries, accidents,
SUDEP or take appropriate safety precautions including rescue
medication. This would help this group of patients who have a type
of epilepsy that is not controllable with the resources we have
today.
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