Skip to main content
. 2023 May 10;11:e44597. doi: 10.2196/44597

Table 4.

Performance comparison of ensemble models on the Yidu-S4K and self-annotated data sets.

Data set and model Precision (%) Recall (%) F1-score (%)
Yidu-S4K

BiLSTM-CRFa [64] 69.43 72.58 70.97

ACNNb [69] 83.07 87.29 85.13

ELMoc-lattice-LSTM-CRF [70] 84.69 85.35 85.02

ELMo-BiLSTM-CRF [41] d 85.16

ELMo-ETe-CRF [71] 82.08 86.12 85.59

MSD_DT_NERf [72] 86.09 87.29 86.69

Our model 90.37 88.22 89.28
Self-annotated

BiLSTM-CRF 81.98 77.10 79.47

Our model 84.24 84.99 84.61

aBiLSTM-CRF: Bidirectional Long Short-Term Memory-conditional random fields.

bACNN: all convolutional neural network.

cELMo: Embeddings from Language Models.

dNot available.

eET: encoder from transformer.

fMSD_DT_NER: multigranularity semantic dictionary and multimodal named entity recognition.