Skip to main content
. 2023 May 25;14:3009. doi: 10.1038/s41467-023-38851-5

Table 3.

Evaluation of single-step retrosynthetic models on different train-test splits of USPTO-50k dataset

Data split Model Top-k accuracy (%)
k = 1 3 5 10
Original random split MEGAN 48.1 70.7 78.4 86.1
GraphRetro 53.7 68.3 72.2 75.5
Graph2Edits (D-MPNN) 55.1 77.3 83.4 89.4
Tanimoto similarity <0.6 MEGANa 47.0 69.2 76.2 83.6
GraphRetroa 49.1 63.2 66.9 69.1
Graph2Edits (D-MPNN) 52.0 75.6 83.2 89.4
Tanimoto similarity <0.4 MEGANa 45.4 68.4 76.9 84.6
GraphRetroa 44.2 56.2 58.7 59.6
Graph2Edits (D-MPNN) 47.5 71.7 80.1 88.0

Graph2Edits (D-MPNN) uses the directed message passing neural network (D-MPNN) as graph encoder.

aDenotes that the result is implemented by the open-source code with well-tuned hyperparameters.