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Abstract

With the biological relevance of the whole cells, low cost compared with animal experiments, a wide

variety of cell-based screening platforms (cell-based assay, cell-based microfluidics, cell-based bio-
sensor, cell-based chromatography) have been developed to address the challenges of drug discovery.
In this review, we conclude the current advances in cell-based screening and summary the pros and
cons of the platforms for different applications. Challenges and improvement strategies associated with

cell-based methods are also discussed.
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INTRODUCTION

Traditional drug discovery involves a serial stage for
the development of the new drug. It is expensive and
can take 10-15 years. Mostly, high-throughput
screening (HTS) is carried out after target confirmation,
following with optimization of the compound structure,
animal testing, and finally clinical trials (Fig.1).
However, it remains a high failure rate in drug
discovery, which causes the tendency to discover new
targets for drug repurposing for more diseases
(Moridani and Harirforoosh 2014; Parvathaneni et al.
2019; Wang 2018). And the critical issue is the
appropriate target (druggability of the target) that
should provide an unambiguous, therapeutically
significant response to improve the drug discovery
(Jorgensen 2012; Roy 2019).

Actually, a more important reason is the lack of
biological context during the screening process. In
Arduino’s study, cryopreserved mitochondria isolated
from yeast strain were engineered with functional
protein and then were employed as a ready-to-use
screening reagent. The reduced false discovery rate was
carried out by energizing mitochondria with D-lactate
in a mannitol/sucrose-based medium, which indicates
the significance of bionic and in vivo environment
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(Arduino et al. 2021). Besides, among the anti-cancer
drugs, sorafenib and regorafenib show significant
differences in activity, but only one difference in
structure for the non-hydrogen atom (i.e., a fluorine). So
there is no sufficient resolution in current methods to
distinguish compounds with subtle structural changes
except for animal or cell assays (Schlessinger et al
2017). It means new tools and techniques that can
better reflect the in vivo environment are required
during the drug discovery process.

Currently, the demand of cell-based functional assays
in HTS is increasing. One obvious advantage is that cell-
based assays present more physiologically relevant
systems for the screening of compounds (Fursov et al.
2005). It indicates that cell-based screening has more
potential for development (Szabo et al 2017). For
example, at the beginning of the genomic era, enzyme-
based biochemical screens were focused during the
antibacterial drug development to replace the
traditional cell-based phenotypic screens. However,
after a long period of HTS practice, it was discovered
that the required drugs could not be successfully
provided. Thereafter, the focus in the antibiotic drug
discovery field has shifted back to whole cell-based
phenotypic screens directly (Yuan et al. 2021). Kumar
found that the result of screening against PanC which is
considered a druggable target had no significant cellular
activity in a variety of biochemical screens. In contrast,
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Fig. 1 Lead generation with HTS screening

traditional whole-cell screening has proven more
successful. The reason may be multiple new targets can
be implemented on the whole cell (Kumar et al. 2017).
The discovery of antibiotics is mainly through cell-based
screens, as the inhibit activity of identified novel
inhibitors based on essential enzymes targets was not as
expected (Datta 2021). Screening in whole cells can
reveal a great deal more about the targets and action
mechanism of compounds compared to in vitro
screening based on enzyme or protein targets (Adamson
etal 2021).

Given the importance of biological context, preclinical
models are widely used in drug discovery, including in
vitro models (cell culture), ex vivo models, and in vivo
models (artificial, transgenic, non-transgenic and
induced) (Shietal 2019; Xu et al. 2021). However, more
than 20,000 molecules were screened using different
animal models for Alzheimer’s disease drug
development during the past two decades, only
Aducanumab was approved by FDA (Cacabelos et al
2021). The challenge is that no single model faithfully
reproduces all the features of human disease. So, drug
discovery can integrate different important attributes in
a multisystem model, which can be achieved by cell-
based models (Cacabelos et al. 2021; Kumar et al. 2017;
Szabo et al. 2017).

Cell-based screening in drug discovery is usually two-
dimensional (2D) screening, due to that 2D cell culture
models remain the accepted standard for drug
screening in vitro. 2D cell culture model can provide
valuable insights into biological processes and effects of
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new drugs with low cost and efficient workflows, which
is widely used in various screening methods (Amelian et
al. 2017; Thippabhotla et al. 2019). However, growing
evidence indicates that 2D cell culture models often fail
to represent the underlying biology of cells, such as in
vivo extracellular matrix microenvironment, and
therefore cannot accurately predict the in vivo drug
response (Belfiore et al. 2021; Godugu and Singh 2016).
This review will summarize the current state relating to
different cell-based screening technologies containing
2D and 3D models. It will also provide recent
perspectives about the cell-based HTS from natural
herbs in drug discovery.

CELL-BASED ASSAY

The cell-based assay is usually combined with HTS, and
the distinction between a cell-based assay and an in
vitro screening is that the cell-based assay utilizes live
cells seeded onto the floor of the well (Rajalingham
2016). Usually, cellular screening relies on different
strategies ranging from reporter gene technology to
protein fragment complementation assays. In order to
reduce the response time, the monitoring of its first
activation step can be treated as alternative approach
by using fluorescence and bioluminescence resonance
energy transfer (Michelini et al. 2010). Cell-based
assays are used to identify the best drug candidate
(Capula et al. 2019), measure proliferation (Adan et al.
2016), toxicity (Li et al. 2006), motility (Sanookpan et
al. 2021), analyze cell signaling pathways (Pathe-
Neuschafer-Rube et al 2021), and changes in
morphology (Rajalingham 2016). Among the cell-based
assays, 2D versus 3D culture might also contribute to
the results obtained.

2D screening of cell-based assay

A promising tool to bridge between species or from
health to disease is in vitro cell culture. The simplest 2D
models include monolayer cell -culture, adding
molecules or molecular libraries to the culture medium,
and measuring the output with a microplate reader or
microscope (Foster et al. 2021). Although they lack the
sophisticated  tissue structures or biophysical
stimulation present in vivo, the way in which monolayer
culture responds to chemical or genetic stress is largely
consistent with clinical observations or primary cell
data (Tu et al. 2021). In addition, a key advantage of a
2D model is the compatibility with high-throughput
analysis. So, a simple 2D in vitro model may serve as a
preliminary screening tool. Of course, the drawbacks of
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animal experiments such as extremely time-consuming
and cost-intensive, a significant discrepancy between
animal toxicity and human toxicity, are an aspect that
promotes the development of cell-based assay (Doke
and Dhawale 2015; Madden et al. 2020).

Conventionally, 2D models are performed in dishes,
tubes, or well plates. The aim is to confirm the effect of
the different concentrations of the candidate on cellular
growth and function (Hamon et al 2013; Hu et al
2015). For the most widespread cell viability or
cytotoxicity assays in drug discovery, 96, 384, or even
1,536 microtiter plates are most commonly used with
colorimetric readouts of cell supernatants (Riss 2005;
Wegener 2015). Radnai et al. presented a simple cell-
based method for the discovery of novel cytokinesis
inhibitors. The assay was performed in a 96-well plate
format in 48 h. Then, living cells, nuclei and nuclei of
dead cells are identified by a single staining step using
three fluorescent dyes, followed by rapid live cell
imaging (Radnai et al. 2020). Scaling up of screening
systems, with the use of multiwell plates and
multichannel pipettes (or even robotic liquid handling
systems) is fairly commonplace. It should be noted that
when using a multiwell plate, the number of cells per
well and equilibration period before the assay will
affect the responsiveness to compounds (Riss 2005).
Heinzman et al. developed a liquid handler equipped
with a 1000-pL capacity 96-tip tool for cell plating
automate to minimize human error while increasing
accuracy, precision, and efficiency (Heinzman et al.
2010). Soman et al. used plates that seeded with
disialoganglioside (GD2) — expressing cell lines to bind
and screen the anti-GD2 molecules and quantify the
GD2-specific binding activities. They found that the cell-
based assay showed more consistent and reproducible
comparing with microtiter plate coated with purified
GD2 (Soman et al. 2011). Thomas et al. developed a
rotatable disc microfabricated with multichannel for
performing cell growth and cell-based assays in a liquid
medium. The apparatus and methods can be used to
measure a variety of biochemical processes and
products. Combining with non-invasive techniques
does not compromise the integrity or viability of cells
(Thomas 2011).

In terms of detection on cell-based assays,
improvements in various detection techniques are also
promoting the development of cell-based methods. A
new plate reader (Nanotaurus) was developed by
Edinburgh Instruments, which has the principal
features of a confocal microscope and acquires data by
the technique of time correlated single photon
counting. This instrument demonstrates the advantages
of biochemical assays and shows strong promise for
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cell-based assays (Nather et al. 2006). The microscopic
imaging technique is the necessary detection method
for many cell-based assays, but due to the cost of
equipment, it is not in general widely adopted for
primary screening. So Olson et al. used enzyme
complementation to provide an analytical method that
uses substrates to generate luminescent signals. The
principal advantage of this method is amenable to HTS
using microtiter plate protocols (Olson and Eglen
2007). Mohiuddin et al. stably co-expressed target
fragments tagged with luminescence probes in HEK-
293FT cells and identify five compounds as lead
compounds (Mohiuddin et al 2021). Fluorescent
imaging often requires the removal of background
fluorescent signals to obtain robust measurements,
which is challenging for high-density microplates. In
view of this problem, a wash-free cell-based
fluorescence assay method was proposed, which uses a
laser scanning fluorescence plate cytometer. This work
shows that sensitivity and efficiency are increasing
while assay artifacts are reduced, and results in the
development of broadly applicable cell-based
fluorescence imaging assays for drug screening
(Gorshkov et al. 2020).

Mainly primary animal cells, tissue specimens, and
immortalized as well as tumor cell lines have been used
in cell-based assays (Fritsche et al. 2021). Most cell-
based screening is often engineered to overexpress
targets or reporter constructs, due to that the
immortalized cell lines are easy to culture and expand,
which is quite suitable for HTS. For example, Spodoptera
frugiperda insect cell expressed hCOX-1 and hCOX-2
proteins was used to identify the selective inhibitors of
hCOX-1 and/or hCOX-2 (Zhang et al. 2004). However,
the generation of cell lines involves the cell clones by
proliferating ex vivo which is different from the in vivo
counterparts. Its experimental condition may alter
growth characteristics and signal transduction
pathways. By contrast, primary cells are more closely
reflect cell behaviors in human tissues and more
physiologically relevant to human biology (Berg 2019;
Berg et al. 2014). Tumor cell lines are another type of
primary cells, and more closely reflect the genetic and
clonal heterogeneity of the native tumor in vitro model
system, thus providing a more accurate pre-clinical
platform (Corallo et al. 2020). Wang et al. found human
lactate dehydrogenase A (hLDHA) is overexpressed in
osteosarcoma cells as compared to a human normal cell.
So they used a cell-based phenotypic screening assay to
solve the highly polar nature of hLDHA, and discovered
three cellular active inhibitors (Wang et al. 2020a).

Simple 2D cell-based assays have limitations, partly
due to their plate format. So a wall-less plate technology
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was present, which takes advantage of hydrophobic and
hydrophilic surface properties of the unique liquid. This
technology showed an obvious advantage when
suspension cells were used in multistep experimental
procedures (Quinones et al. 2013). Some groups sought
to introduce an extra level of complexity to increase the
physiological relevance of their 2D screening systems.
Another mean was to introduce an extracellular matrix
to mimic chemical and mechanical properties, which
was designed for the screening models of tissue types
(Foster et al. 2021). Zhang et al. first described the
differentiation of hESCs into a mixed culture of neurons,
astrocytes, and oligodendrocytes (Zhang et al. 2001).
From 2D cell culture-based monolayers, multilayer to
co-culture models, their aims were to promote
physiological characters, reproducibility and mimic
characteristic functionalities of disease modeling
(Kutlehria and Sachdeva 2021). In order to develop in
vitro models, many factors need to be considered, such
as cell line type, cell culture medium, substrate
roughness and stiffness. They affect the final outcome of
the in vitro assay through the significantly effect of the
microenvironment. Advanced technologies based on 3D
models have allowed the development of more complex
structures, bridging the gap between in vitro and in vivo
models (Yuste et al. 2021).

Limitations of 2D format

Although simple models are easier to create and faster
to reproduce, their systems present a number of
limitations. Some candidate molecules often fail to
perform in vivo. One reason is that the 2D models lack
microenvironments, such as complex geometrical
architecture, paracrine signals from neighboring cells,
mechanical properties, nutrition and oxygen, to mimic
the native tissue. This microenvironment will strongly
influence cellular behavior and functionalities
containing proliferation, differentiation and
metabolism (Berg 2019; Davoudi et al. 2021; Rimann
and Graf-Hausner 2012; Wollrab et al. 2016). On the
other hand, enhanced drug sensitivities are proved in
2D conditions and require lower dosage ranges,
resulting in ineffective in vivo (Foster et al. 2021). In
cell-based assays, a main hurdle is to design a
sufficiently powerful detection method with adequate
signal to noise while maintaining the inherent
physiology of the cells (Halim 2020).

3D screening model
Improving the success rate in the early stages of drug

development requires disease models with high
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biological relevance for biomarker discovery and drug
development. In cell-based experiments, the rapid
increase in 3D cell culture technologies more closely
mimics in vivo physiology, which is considered a
promising step to improve the success rate of drug
discovery (Langhans 2021). Especially for tumor
models, 3D format is similar to in vivo tumors, which
can recapitulate the complexity of the tumor
microenvironment, and therefore bridge the gap
between 2D monolayers and animal models (Fontana et
al. 2021). The 3D cell culture models either rely on the
self-organizing properties of mammalian cells or use
bioengineered constructs to arrange cells like the
organ. A self-assembling 3D multicellular brain model
is used to mimic the complex in vivo cytoarchitecture of
the brain. The data showed that the combination of 3D
cell culture and bioengineering can improve
reproducibility and tissue architecture (Hattori 2014;
Lancaster et al. 2017). Additionally, some studies create
simple 3D co-culture models by using a mixture of cell
types present in the tissue microenvironment to
observe the responses in vivo (Belfiore et al. 2021;
Lazzari et al. 2018).

The 3D cell models include spheroids, hanging drops,
scaffolds, cell sheets, hydrogels, bioreactors, and
microfluidic chips (Bialkowska et al. 2020; Yuste et al.
2021). The scaffold-free 3D cell models including
multicellular tumor spheroid models are better in
terms of in vivo context simulation compared to 2D cell
models, but they are lack of extracellular matrix
recapitulation that limits their applicability in relevant
drug testing (Cavo et al. 2016). Scaffolds are widely
used to create 3D models, such as collagen scaffold,
chitosan-alginate scaffold, nanofiber scaffold and
hydrogel scaffold (Leung et al. 2010; Liu et al. 2018b;
Yang and Zhao 2011). The advanced technologies such
as microfluidics, biosensor and chromatography will be
described later.

Successes from cell-based assay

Cell-based assays are suit to screen targets that are
refractory to biochemical purification and can
characterize compounds with unknown targets (Fig. 2).
In physiologically relevant settings, intracellular signals
can be transmitted so that agonists and antagonists can
be identified. Meanwhile, different binding sites of the
same receptor, especially allosteric sites, can be
screened for diverse pharmacological effects of
compounds (An and Tolliday 2010; Drewe and Cai
2010; Berg et al. 2014; Zaman et al. 2007).

In the present study, some of the same compounds
screened by different cell-based assays show different
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Fig. 2 Scope of application for cell-based assay. A Unknown targets can use the whole cells for screening. B GPCRs as target that is diffi-
cult for purification. C Cell-based ligand-screening system for inhibitor or allosteric inhibitor (Ueda et al. 2020)

pharmacological activities. For example, brefeldin A can
inhibit the cytotoxic effects of ricin (Wahome et al
2010) and can also inhibit the growth of two pairs of
parental and Pgp-overexpressing multidrug-resistant
cell lines (Zahra et al. 2020). Apigenin stimulates hair
growth through downregulation of the TGF-f1 gene
(Huh et al 2009) and is also identified as potent
activators of PXR-mediated CYP3A4 promoter
activation (Dong et al 2010), activators of the
JAK/STAT pathway (Tai et al. 2012). Quercetin can
inhibit ABCG2 activity (Henrich et al 2006) and
prevent H. pylori adhesion and infection (Sekiguchi et
al. 2008), also can be a potential [IFN mimic or adjuvant
in new antiviral drugs (Tai et al. 2012). Luteolin can
prevent H. pylori adhesion and infection (Sekiguchi et
al. 2008) and is also identified as ANO1 inhibitors as
potential anticancer therapeutic agents for prostate
cancer (Seo et al. 2017), besides, it is also identified as a
potential IFN mimic or adjuvant in new antiviral drugs
(Tai et al. 2012). In addition, Table 1 shows the active
compounds screened by cell-based assay in the past
five years that may be developed into promising drug
candidates.

ADVANCED CELL-BASED SCREENING
TECHNOLOGIES

Microfluidics technologies for drug screening
Microfluidics is also known as Lab-on-a-chip,

represents a technology that can precisely control and
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manipulate sub-millimetre scale fluids in geometry. In
the last decades, microfluidic devices have gradually
been used as a multi-functional tool for many types of
cell-based analysis, such as in drug screening and
discovery, cell culture, cell separation, intracellular
signaling, toxicity and so on (Gupta et al 2016).
Microfluidic devices offer some benefits including rapid
analysis, high sensitivity and reproducibility. Its key
advantage is microscale dimensions that match with
the cellular structures and microenvironments like the
human body. Because of its nanoliter volumes samples
and reagents, microfluidic technology is very cost
effective. As with cell-based assay, microfluidic
technology also can simulate the in vivo response.
Especially, the miniaturization of microfluidics is
suitable for HTS, compared with some cell-based assays
(Caruso et al. 2020; Hattori et al. 2013).

In the application of high-throughput screening,
three major complementary modes can be used to
manipulate microfluidic. Perfusion flow mode requires
a series of components to introduce reagents and
samples, transferring and mixing fluids in the
microchannel network. This mode manipulates the
liquid flows continuously by external mechanical
pumps or the capillary forces combined with electro-
kinetic form (Coliaie et al. 2021; Hao et al. 2020). The
liquid flows also can be driven by vacuum-driven
pressure or gas-generating chemical reactions (Park et
al. 2020). Gao et al. carried out one-step cell seeding
and anti-cancer drug testing by a microfluidic channel
combined with vacuum actuated chambers (Gao et al
2013). Guler et al developed a self-powered
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Table 1 Cell-based screening assay for candidate drugs

Cell type(s)

Model

Active compounds

References

MCF-7 Cells/ OR6M1-
expressing cell lines

DNA-PKcs and OCT4 -
expressing HEK-
293FT cells/ MK2 and
0CT4 expressing NCI-
H82 cells

Vero E6 cells

HeLa cells

COS7 cells

COS-7 cells

HEK293:FLP-InT-REx-
BiFC#20 cells

Vero E6/A549/Huh7/
LN-18 cells

HEp-2/ A549/293T cells

Human embryonic stem
cells/ Fibroblasts from
healthy donors and
patients

HpeG2/ HelLa cells

HeLa cells

MEFs

HeLa cells

MDA-MB-231 breast
cancer cells/ HUVECs

HepG2 ARE reporter
cells

MC3T3-E1-0SE cells

SPR chip immobilized cells. A modified
carboxymethyl dextran sensor chip

384-well plate. Two-step method.
Exogenously expressing proteins
in cancer cells as first step

96-well plates. Transfected 2-E plasmids
after compounds pre-incubated

24-well plates. Treated with compounds
followed by labeling of the intracellular
Hsp90. Analysis with in-gel fluorescence
after cell lysis

Clean glass. Single-protein tracking in a
living cell. Effects are evaluated by
diffusion coefficient shift using
fluorescence microscopy

96-well plates. Cells seeded in monolayer
and molecules added to the medium

384-well clear-bottom, black-walled
microplate. Cells seeded in monolayer
and molecules added to the medium

6-well plate format and 96-well plate. Cells
infected viral dilutions. Cells seeded in
monolayer and antivirals in infection
medium added to cells

96-well plate. Cells seeded in monolayer and
molecules and virus added to the medium

384-well plates. Cells seeded in monolayer
and molecules added to the medium

Culture chamber. 3D electric cell/matrigel-
substrate impedance sensing chip. Cells
seeded in prechilled matrigel solution
and generated 3D structure

96-well plates and 384-well plates. Cells
seeded in monolayer and molecules
added to the medium followed with
added viral solution

96-well plates. Cells seeded in monolayer
and molecules added to the medium

384-well clear-bottomed black plates. Cells
seeded in monolayer and molecules
added to the medium

96-well plates. Cells seeded in monolayer
and extracts added to the medium

384 well pate format. Cells seeded in
monolayer and molecules added to the
medium

96-well plates. Cells seeded in monolayer
and molecules added to the medium

Anthraquinone, rutin

A cardioglycoside and an
isocarbostyril alkaloid, cholesterol-
based structures (three
compounds)

34 hits with cell protection activity

157 compounds. Morin

Hyperoside for EGFR and ErbB2.
DiAB-141 and 2”-0-acetylvitexin
for ErbB3

Blebbistatin, para-aminoblebbistatin,
para-nitroblebbistatin,
jasplakinolide, cytochalasin D,
swinholide A

6 compounds. Isocotoin

Sofosbuvir and ribavirin

Laby A1/A2

CUDC-907

Taxol, cisplatin, sorafenib

11 compounds. Gemcitabine

Cantharidin, Nifedipine

18 compounds

Cirsimaritin, Cirsium japonicum
extract, cirsimaritin

AZ-628, PHA-767491, SL-327, PAC-1,
pifithrin-a, vitamin B12

4 compounds. T63

Choi et al. 2021

Mohiuddin et al.
2021

Wang et al 2021

Ueda et al 2020

Kim et al. 2021

Radnai et al. 2020

Xuetal 2020

Vicenti et al. 2020

Blockus et al. 2020

Kase et al. 2021

Panetal 2019

Zhangetal 2017

Semenova et al.
2017

Hajjar et al. 2017

Yeon Park et al.
2017

Liuetal 2018a

Zhao et al. 2017
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Cell type(s) Model Active compounds References

ARPE-19 cells

96-well plate. Cells seeded in monolayer
and molecules added to the medium

47 compounds Maruyama et al.

2018

42 compounds Wang et al. 2020a

MG-63 cells 96-well plate. Cells seeded in monolayer
and molecules added to the medium
A549 cells 384-well plates. Cells seeded in monolayer

(S)-29 Kounde et al. 2017

and infected with DENV1-4, and treated

immediately with compounds

SPR: surface plasmon resonance; MEFs: NF1-deficient mouse embryonic fibroblasts

microfluidic device. The key part is a 3D-printed
effervescent pump for CO, generation from a chemical
reaction. When the coagulation starts, an acid-base
reaction is triggered for the gas generation that drives
the fluids within the channels (Guler et al. 2018). Using
gravity driven flow is another possible solution. Zhu et
al. presented a gravity driven pumping system using
arrays of horizontally-oriented mini-reservoirs to
generate a constant flow rate across microfluidic
channels (Zhu et al 2004). The advantage of
continuous-flow is easy implementation, which makes
it to be the most widely accepted microfluidic platform
for simple biomedical applications. However, there are
some limits in the perfusion flow mode. The use of
microchannels for continuous fluid delivery tends to
result in higher reagent consumption. Moreover, when
applied to large-scale drug screening, chip structures
are often complex, involving multiple channels, liquid-
controlled pump and valve designs (Liang et al. 2021).
Droplet mode always uses water-in-oil emulsion
droplets to compartmentalize reagents into nanoliter to
picoliter volumes. It will create unavoidable interface
fluctuation during emulsification. It can encapsulate
biomolecules into discrete droplets and uses the
generated units for analysis. The droplets are usually
generated by pressure-driven flow (Shembekar et al
2016), containing hydrodynamics and pneumatic
pressure. Electrowetting can generate droplets by
surface tension drive (Lian 2019; Liu et al 2021).
Gravity-driven overflow microfluidic system can infuse
fluids steadily and continuously, which requires less
manual power (Gao et al. 2019). The hanging-drop
platform used in the tissue model enables continuous
inter tissue communication, constant medium turnover,
and immediate exchange of metabolites by gravity-
driven flow through the network (Boos et al. 2019).
Droplets encapsulation can exclude sample loss on the
surface wall by preventing the contact between the
sample and the droplet wall. Comparing with
continuous microfluidics, droplet-based microfluidic
overcomes complex fluidic control, does not require
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separated channels for each sample, and minimizes
dilution and contamination issues (Damiati et al. 2018).
Its key characteristics are using a few microliters of
samples and requiring few cells. Furthermore, a high
degree of automation and ease of integration with HTS
makes it very promising in drug discovery (Shembekar
et al. 2016; Wang et al. 2020b). When droplet-based
microfluidics is used to generate microcarriers, they
exhibit the advantages of high drug loading and
relatively long drug release. However, the formation of
monodispersed carriers is not constant or repeatable
due to the solvent evaporation and droplet
solidification step. In particular, the formation of nano-
sized carriers is limited by droplet-based microfluidic
systems. Moreover, mechanical stirring will destroy the
shape, morphology, size uniformity and loading
efficiency of the droplets (Damiati et al. 2018).

Cell microarrays mode has been well established for
cellular phenotypes investigation and offers invaluable
advantages of HTS. This screening mode needs the
generation of cell microarrays on a 2D solid substrate,
and then applies drug combinations or drug libraries to
those arrays (Li et al. 2018). Arrays can be composed of
single cells, cell monolayers, aggregates or spheroids.
Microarrays can screen for thousands of different
samples simultaneously in one single experiment with
low reagent consumption and high-content readouts.
Although effective, their high cost and the requirement
of specialized equipment for their manufacture limit
their scope of application. Besides, cells cultured on the
microarray can cause neighboring effects and cross-
contamination (Du et al 2016; Jonczyk et al. 2016;
Zhang et al. 2016).

Microfluidic technology is an effective tool for the
enhancement of drug discovery. But single cell analysis
is mostly used for cell function research. The
heterogeneous responses from individual cells can
provide information at both the individual and
population levels (Seah et al. 2018; Yin and Marshall
2012). As mentioned before, the 2D monolayer cell lacks
the microenvironment, leading to the ineffective for

© The Author(s) 2021



Cell-based screening methods in drug discovery

REVIEW

disease. So, the combination of microfluidic technology
with the 3D cell culture offers great potential for drug
discovery (Liu et al. 2019). A microfluidic platform was
developed for anticancer compound screening by using
multicellular spheroids as a 3D model derived from
tumor biopsies. The characters of this lab-on-a-chip
platform  are self-generating nutrients, drug
concentration gradients perfusion and equipment-free
(Mulholland et al. 2018). The supporting matrix or
carrier for the 3D cell culture is an important factor in
microdevices. It can be summed up as gel-supported 3D
cell culture, gel-free 3D cell culture and gel-coated 3D
cell culture. Gel-supported 3D cell culture allows the
encapsulation of cells into the hydrogel, and permits
oxygen permeability and nutrient transport. In order to
mimic in vivo microenvironment, native extracellular
matrix proteins are always used as the basis of hydrogel
scaffolding, such as collagen, fibrin, fibronectin,
hyaluronic acid, matrigel, agarose, poly(ethylene glycol)
diacrylate, or a mixture of both. While for gel-free 3D cell
culture, intercellular polymeric linker polyethylenimine-
hydrazide, microwells, suspension or spheroids model
can be selected to supplement the gel-supported 3D cell
culture (Li et al. 2012).

Cell-based sensor for drug screening

Cell-based biosensor systems consist of three
components. The sensing unit contains cells for target
identification. A transducer is used for converting
biological reactions to chemical/electrical/optical
signals, and the output system can amplify and readout
signals (Zhou et al. 2011). It plays an outstanding role
in drug discovery, cancer research and immunology.
Cell-based biosensor systems that use whole cells as a
living model have an obvious advantage, which is
responding in a manner that can offer insight into the
physiological effect of an analyte. The advantages
include the detection of unknown compounds and
toxins, readily coupling with HTS for drug candidates
screening, and reducing the need for animal testing
(Ozsoylu et al. 2021). In cell-based sensor detection, the
key factors of cell function affected by the analytes can
be singled-out without being disturbed by more
complex, whole organism or whole organ responses.
Cells grown in a thin layer have advantages in cell-
based sensors, that is, they can be observed under a
microscope or other optical equipment. Different cell
types of cell-based sensors also show different
advantages. For example, microorganism cells can be
cultured easily and grow rapidly. It is less expensive to
culture compared with mammalian cells. However, the
mammalian cells can provide bioavailability and
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physiologic responses relevant to humans (Banerjee et
al. 2010).

Since the cell-based biosensor uses living cells, its
limitations are stability and robustness. On the one
hand, researchers are trying to develop label-free
biosensor technologies, which monitor the behavior of
cells without stains damage or photobleaching effects
(Shamah and Cunningham 2011). Due to the non-
invasive nature of this technology, living cells can be
continuously investigated, so real-time Kkinetic
measurement can be achieved (Ona and Shibata 2010;
Xi et al. 2008). Cryopreservation is another solution to
maintain certain vital parameters of cells inside the
sensor system. Ozsoylu et al. proposed an on-sensor
cryopreservation strategy with the modified chip
surface. It can be effective for keeping cells viable on a
biosensor chip (Ozsoylu et al. 2021). Due to the demand
for high-throughput cellular assays, miniaturization of
cell-based biosensors needs to be achieved by
preparing cell microarrays. Flat substrates (positioning
arrays) or particles (solution or suspension arrays) are
used to immobilize different cells using various
microfabrication technologies to achieve multiplexing
and high-throughput cell-based sensing (Hong et al
2017).

Despite the advantages of cell-based biosensors,
some limitations are associated with the existing
systems. Most cells used in the sensor are cultured on
hard 2D glass or plastic matrix, which cannot mimic in
vivo counterparts. Its weak cell-substrate attachment
greatly shortens the effectiveness and life of cell-based
biosensors (Mao and Kisaalita 2004). Advances in novel
biomaterials and nano/micro engineering technologies
have enabled to immobilize cells using scaffold-free 3D
methods. So it is promising to address the limitation of
2D cell-based biosensors (Zhou et al. 2011). Dipeptide-
derived hydrogel matrix was employed to encapsulate
cells and enzymes that are used as sensing elements.
This method is based on the self-assembly function of a
small molecular hydrogel. An established 3D culture
model based cellular biosensing system is useful for
cellular function and drug discovery (Lian et al. 2017).

Cell-based chromatography for drug screening

The technologies mentioned are not suitable for the
HTS of complex systems like natural herbs. Natural
products can be used to treat various diseases. For
many years, plant-derived products have been
recognized as sources of therapeutic agents and
structural diversity (Chopra and Dhingra 2021).
Nevertheless, natural products also present challenges
for drug discovery, now we will introduce several
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improved analytical tools to open up the new
opportunity  (Atanasov et al  2021). The
chromatographic methods established by adsorbing
cell membrane on the surface of silica gel to screen
bioactive compounds from traditional medicines are
lack of stability. So a new strategy was designed for
attaching cells onto amino microspheres. The
microspheres were prepared by coating poly (oligo
(ethylene glycol) methacrylate) with RGD peptide using
atom transfer radical polymerization. Then the cells
were immobilized to the microspheres based on the
specific affinity between integrin on the cells and the
RGD peptide. This method can increase the density of
cells in the stationary phase at the same time. As a
result, three bioactive compounds were screened from
Ligusticum chuanxiong using the established cell
column (Li et al. 2015). Liu et al. developed a novel
hollow fiber cell fishing procedure with high-
performance liquid chromatography. These methods
were used for rapid screening, fishing, and analysis of
bioactive compounds from traditional Chinese
medicines. Firstly, the cells were seeded on the internal
surface of the fibers, followed by inserting into the
extracts of herbs. The active compounds can be
screened by cells inside the fibers. Finally, the active
compounds were dissociated and analyzed using
HPLC/MS (Liu et al. 2014). Although the screening
process approximates the interaction between the
bioactive component and the cells in vivo, the stationary
phase cannot be reused due to the sensitivity of live
cells inoculated on the fiber. Recently, we reported an
innovative cell-based microcarrier chromatography to
simulate in vivo drug-receptor interaction. Cells firstly
grow on the microcarriers, then the attachment can be
improved using paraformaldehyde. The success of
paraformaldehyde fixation is based on a layer of
denatured collagen on the surface of the microcarrier.
Due to the use of microcarriers for 3D cell culture, the
stationary phase loaded into the column also presents
3D characteristics. Combing with HPLC/MS, active
compounds can be bionically screened and identified
successfully (Wei et al. 2021). Although cell-based
chromatography can more likely screen active lead
drugs, it lacks the function of predicting cellular effects
after screening and identification, and needs to
combine with the cell-based assay for further activity
verification.

CONCLUSIONS

The need to increase clinically available drugs while
reducing development costs is continuing to drive the
development of cell-based screening methods. Each
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platform described in this review for drug discovery
has associated strengths and limitations. In general,
cell-based screening methods can build a bridge
between animal experiments and human diseases. They
are suitable to screen targets that are refractory to
biochemical purification and characterize compounds
with unknown targets. The screening results can be
more physiologically relevant. Compared with animal
experiments, cell-based screening methods are more
efficient and less expensive. In addition, among these
screening platforms, 3D models have more potential for
drug development compared to 2D cell-based screening
methods. Although numerous approaches exist today, it
is very likely that a new strategy can combine several
advantages of each approach in the future.
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