Skip to main content
. 2023 May 11;17:1160034. doi: 10.3389/fnins.2023.1160034

Table 4.

Performance comparison on the MVSEC dataset (indoor sequences), showing per-sequence and total average end-point error in pixels per second.

Model indoor_flying1 indoor_flying2 indoor_flying3 AEE sum
EV-FlowNet (Zhu et al., 2018b) 1.03 1.72 1.53 4.28
Zhu et al. (2019) 0.58 1.02 0.87 2.47
Spike-FlowNet (Lee et al., 2020) 0.84 1.28 1.11 3.23
Back to Event BasicsEvf (Paredes-Vallés and de Croon, 2021) 0.79 1.40 1.18 3.37
Back to Event BasicsFire (Paredes-Vallés and de Croon, 2021) 0.97 1.67 1.43 4.07
XLIF-EV-FlowNet (Hagenaars et al., 2021) 0.73 1.45 1.17 3.35
XLIF-FireNet (Hagenaars et al., 2021) 0.98 1.82 1.54 4.34
Orchard et al. (2021) 0.83 1.22 0.97 3.02
Fusion-FlowNet (Lee et al., 2022) 0.56 0.95 0.76 2.27
Adaptive-SpikeNet (best ANN) (Kosta and Roy, 2022) 0.84 1.59 1.36 3.79
Adaptive-SpikeNet (best SNN) (Kosta and Roy, 2022) 0.79 1.37 1.11 3.27
FSFNFP (Apolinario et al., 2022) 0.82 1.21 1.07 3.10
FSFNHPADC (Apolinario et al., 2022) 0.85 1.29 1.13 3.27
Shiba et al. (2022) 0.42 0.60 0.50 1.52
Ours 0.58 0.72 0.67 1.97

Best result in bold, runner-up underlined. Starting from a model pre-trained on DSEC, we show state-of-the-art performance without modifying our pipeline.