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Muscle-directed gene therapy with adeno-associated viral (AAV) vectors is undergoing clinical development for treating
neuromuscular disorders and for systemic delivery of therapeutic proteins. Although these approaches show considerable
therapeutic benefits, they are also prone to induce potent immune responses against vector or transgene products owing to
the immunogenic nature of the intramuscular delivery route, or the high doses required for systemic delivery to muscle.
Major immunological concerns include antibody formation against viral capsid, complement activation, and cytotoxic
T cell responses against capsid or transgene products. They can negate therapy and even lead to life-threatening
immunotoxicities. Herein we review clinical observations and provide an outlook for how the field addresses these
problems through a combination of vector engineering and immune modulation.
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INTRODUCTION

GENE THERAPY DRUGS BASED ON adeno-associated viral

(AAV) vectors have received regulatory approval for treat-

ments of several genetic diseases by in vivo gene transfer,

including Leber’s congenital amaurosis, spinal muscular

atrophy (SMA), and hemophilia A and B.1,2 However,

immune responses against vector or therapeutic transgene

products continue to complicate AAV gene therapies,

despite this vector’s low innate immunogenicity compared

with many other delivery systems.3,4 Natural infection

with AAV creates pre-existing humoral and T cell immu-

nity in the human population. Multiple factors such as

vector dose and design, target organ, and route of admin-

istration determine the risk of B and T cell activation after

vector administration.

Skeletal muscle is an attractive target tissue for in vivo

gene transfer owing to ease of access, long life span of

muscle fibers, and the ability to secrete proteins into

circulation. In fact, the first target in clinical gene ther-

apy for hemophilia B was skeletal muscle, and the first

approved AAV gene therapy product, Glybera, to treat

lipoprotein lipase (LPL) deficiency, was also administered

intramuscularly.5 Moreover, skeletal muscles (especially

diaphragm), cardiac, and other muscles are critical targets

for correcting muscular dystrophies, certain lysosomal

storage diseases, and other neuromuscular disorders by

gene therapy including gene editing.

IMPACT OF ANTIBODIES AGAINST CAPSID
ON EFFICACY OF INTRAMUSCULAR AAV
ADMINISTRATION

One of the major hurdles to AAV-mediated gene aug-

mentation is the presence of pre-existing neutralizing

antibodies (NAbs) against the viral capsid.6 About 80%

of the human population develops such antibodies against
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various serotypes (starting during childhood), with prev-

alence varying substantially depending on capsid and

geography.7–9 One would expect high titers of pre-existing

NAbs to preclude patients from receiving gene therapy

with the respective serotype/capsid sequence. However,

the impact of NAbs on muscle gene transfer is less clear

as conflicting results have been reported from different

clinical studies.

For example, a clinical trial in hemophilia B pati-

ents showed that intramuscular administration of AAV2

encoding human factor 9 gene led to successful trans-

duction and transgene expression despite the presence of

pre-existing NAbs (titers ranging from 1:10 to 1:1,000).10

Similarly, in clinical trials with intramuscular injection of

alipogene tiparvovec (Glybera), more than half of patients

(15/26) had pre-existing antibodies to AAV1, yet most of

these patients achieved LPL expression.11

However, in one of the earliest phase I study in a1-

antitrypsin (AAT)-deficient patients, only 1 patient out

of 12 had transient and subtherapeutic levels of AAT in

serum.12 This was attributed to the presence of pre-

existing antibodies against AAV2 capsid in almost all of

the patients. In a follow-up clinical study, nine AAT-

deficient patients were treated with intramuscular injec-

tions of AAV1-AAT over a range of doses.13 Of note, four

patients had previously been injected with the AAV2-

AAT vector. Three of these patients received the same

vector dose of AAV1-AAT as AAV2-AAT, whereas a

fourth patient was given a higher dose.

In the intermediate group, two patients (previously

injected with AAV2-AAT) achieved subtherapeutic levels

of AAT in plasma that lasted up to 90 days in one patient

and up to a year in the other. In clinical trials for different

forms of limb-girdle muscular dystrophy (LGMD) using

AAV1 vector, patients with pre-existing AAV1 NAbs

nonetheless showed transgene expression in muscles

fibers.14–16 Subsequent treatment-emergent/increase of

NAb titers did not affect transgene expression.12,13,17

Although not entirely conclusive, a trend emerges that

pre-existing humoral immunity against AAV capsid is less

of an obstacle for gene transfer by direct intramuscular

injection. In contrast, NAbs that form after gene transfer

are likely to prevent readministration. Therefore, immune

suppression protocols are being explored to prevent NAb

formation upon initial gene transfer. For instance, B cell

depletion using anti-CD20 combined with mTOR inhibi-

tion with sirolimus (rapamycin) to target B and T cells is

being tested in patients with Pompe disease.18,19 Switch-

ing capsid sequence for readministration may be helpful

within limitations.

For example, in a preclinical study with nonhuman

primates, Greig et al. showed that readministration using

heterologous serotype is possible by intramuscular admin-

istration when NAb titers are below a certain level at the

time of second vector administration.20 In contrast, pre-

existing humoral immunity is more likely to negatively

impact AAV transduction after intravenous administration

of AAV vector, thereby complicating systemic vector

delivery to muscle.18

CAPSID-SPECIFIC CELLULAR RESPONSES
UPON INTRAMUSCULAR AAV
ADMINISTRATION

The first indication of a cytotoxic T cell response to

AAV gene therapy was observed in a clinical study of

AAV2-mediated liver gene transfer of human coagula-

tion factor IX in hemophilia B patients.21 In this study, a

patient in the high-dose cohort lost factor IX expres-

sion after initially achieving therapeutic levels. This was

accompanied by a transient and self-resolving increase

in transaminases. Further studies implemented a capsid-

specific CD8+ T cell response, which was not observed in

preclinical studies.22 Immune suppressive regimens (pro-

phylactic or on demand), primarily based on steroid

drugs, are now being employed and, to some extent, are

successful in controlling/preventing the elicitation of cel-

lular responses.23 CD8+ T cell responses against capsid

were also observed in muscle gene transfer.12–17

Although inflammatory responses and T cell infiltrates

were observed in muscle biopsies of patients treated with

AAV1-AAT, these did not severely affect transgene

expression long term and eventually diminished con-

comitant with the recruitment of FoxP3+ regulatory T cells

(Treg).13,17,24 Interestingly, Mueller et al. showed the per-

sistence of AAV capsids at the site of injection for up to

12 months after vector administration.24 The presence of

AAV capsids long after vector injection may mimic a state

of chronic viral infection. Cellular infiltrates were obser-

ved to express PD-1 and PD-L1, perhaps representing an

exhausted phenotype.

However, the potential for reactivation of such T cells

is unclear. Apoptosis of infiltrating mononuclear cells at

the site of vector administration was also observed in

clinical trials for LGMD.14,15 It should be pointed out,

however, that patients were given immunosuppressive

drugs before vector administration in these studies.

In LPL gene transfer, one of the patients had elevated

levels of creatine kinase in plasma 1 month after vector ad-

ministration, which corresponded with a decline in

transgene expression.25 High number of AAV capsid-

specific T cells as estimated by enzyme-linked immunosor-

bent spot (ELISpot) assay on the peripheral blood mononu-

clear cells of this patient suggested the rejection of AAV

transduced muscle fibers by T cells.25 Furthermore, this study

demonstrated a clear difference in the kinetics of activation of

AAV capsid-specific CD8+ T cells at low- and high-dose

cohorts wherein at low vector dose, activation of CD8+

T cells occurred at around 3 months and at high dose acti-

vation occurred around 1 month postvector administration.
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TRANSGENE-SPECIFIC ADAPTIVE IMMUNE
RESPONSES IN INTRAMUSCULAR AAV
ADMINISTRATION

Although not as frequent, transgene-specific cellular

immune responses are also a potential concern to the suc-

cess of AAV gene therapy. This is particularly the case

in treating Duchenne muscular dystrophy (DMD), where

progressive degeneration and wasting of muscle fibers

establish a proinflammatory environment in the muscle

architecture. In a phase I trial with AAV2.5 vector

encoding a truncated but functional version of the dys-

trophin protein, Mendell et al. found that two of the three

patients in the high dose (1 · 1011 vector genomes [vg]/kg)

cohort developed revertant dystrophin-specific T cell res-

ponses, whereas the third patient had a T cell response

against minidystrophin.26

One patient in the low-dose (2 · 1010 vg/kg) cohort also

had pre-existing cellular responses against revertant dys-

trophin that seemed to accelerate the development of T

cell response after gene transfer in this patient. Interest-

ingly, despite the presence of vg in all these patients,

muscle biopsies from only two patients (one in each co-

hort) had minidystrophin expression. Of these two pa-

tients, one (in the high-dose cohort) developed a delayed

(day 60 postinjection) T cell response.

T cell responses against dystrophin before gene trans-

fer may reflect the sporadic expression of dystrophin

epitopes in revertant fibers. Surveys of larger cohorts of

DMD patients indeed found such pre-existing T cell res-

ponses. These studies also indicated that the probabil-

ity of developing dystrophin-specific T cell response

increases with the age of DMD patients and early treat-

ment with glucocorticoids could have an immune modu-

latory effect.27,28

However, in a clinical trial of Becker muscular

dystrophy (BMD), patients in both dose cohorts (3 · 1011

vg/kg per leg, i.e., 6 · 1011 vg/kg; and 6 · 1011 vg/kg

per leg, i.e., 1.2 · 1012 vg/kg) developed transgene

(follistatin)-specific T cell responses.29 Immunosuppres-

sion was employed with only limited success, indicat-

ing that superior immune modulatory regimens should be

developed.

Perhaps not surprisingly, the underlying mutation of the

defective gene is a major determinant of antigen-specific

immune responses against the transgene product because it

will govern whether neoepitopes are being presented after

gene transfer. Hence, gene deletions, inversions, frame-

shift mutations, and early stop codons (nonsense muta-

tions) are more likely to predispose to immune responses

than missense mutations. Unexpectedly, however, rare

cases of CD8+ T cell responses against AAT in patients

with AAT deficiency resulting from a missense mutation

revealed the potential for polymorphic sequence differ-

ences between endogenous and transgene to be another

source of neoepitopes.30

The possibility of antibody formation that could clear a

secreted transgene product and thereby prevent therapy

was illustrated in a clinical trial that aimed to use AAV

gene transfer to skeletal muscle for systemic delivery of

an antibody against HIV.31 Even when using humanized

backbone sequences, such ‘‘anti-idiotypic antibodies’’

may form against the antigen-specific variable part of the

immunoglobulin. To prevent antibody formation against

factor IX in muscle-directed gene therapy for hemo-

philia B, only patients with F9 missense mutations were

included.10 This requirement was dropped in hepatic

gene transfer, which is more likely to result in immune

tolerance due to the immune regulatory pathways that are

active in the liver.3,21,32

IMMUNE RESPONSES UPON SYSTEMIC
DELIVERY OF AAV VECTORS TO MUSCLE

Treatment of DMD and other neuromuscular disorders

is only effective if the vector is delivered to multiple

muscle groups, which requires systemic administration of

large vector doses through a blood vessel. For instance,

multiple clinical trials attempt to treat DMD using this

approach.33 This route not only exposes the vector to pre-

existing NAbs but also creates a source of immuno-

toxicities. At vector doses ‡1014 vg/kg, complement

activation has been observed in multiple patients, which

was often associated with a decline in platelet counts and

thrombotic microangiopathy (TMA), causing kidney dam-

age (presumably from activation of endothelial cells) and

hemolysis.34

Hence, investigators started adapting monoclonal

antibody therapy against complement components (e.g.,

anti-C5, eculizumab) as a mitigation strategy to over-

come these events, which appear largely antibody

dependent. Thus, the classical pathway of complement

activation likely plays a critical role, although direct

binding of AAV capsid to components of the comple-

ment system, such as iC3b, may further increase the

response.34,35 Complement activation, TMA, and liver

toxicity have also been observed in systemic AAV9 gene

therapy for SMA.36–39

Primary and memory antibody responses may contrib-

ute to complement activation by AAV–antibody com-

plexes, which is unlikely serotype-specific. More work is

needed to define the potential role of capsid structure

in vivo, given that AAV capsids may differ in their kinetics

of clearance and biodistribution.40

Dystrophin-specific CD8+ T cell activation is another

major problem in systemic gene therapy for DMD. In

systemic AAV microdystrophin trials, it was found that

a region that is present in microdystrophin but absent

in DMD patients (due to deletion mutations) might have

induced T cell responses.26,34 Therefore, patients with

such mutations are currently excluded from clinical
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trials. This decision was made in part because of several

incidents of myocarditis in DMD patients after AAV gene

transfer, suspecting a T cell response to be the cause of

this cardiac pathology.41,42

A recent study in nonhuman primates receiving AAV9

vector (designed to treat the lysosomal storage disorder

Pompe disease, a disease that also severely affects muscle

function) demonstrated the potential for CD8+ T cell re-

sponses against a transgene product expressed in the heart

to result in myocarditis.43

These high-dose systemic deliveries also pose a risk for

severe liver toxicities as the liver functions as a sink for

vector. Accumulation of high vector loads in the liver may

trigger the targeting of hepatocytes by capsid-specific

CD8+ T cells or be associated with other toxicities through

yet undefined mechanisms. Importantly, both liver toxi-

cities and TMA (and other pathologies resulting from com-

plement activation) can be fatal for the patient.36,37,39,44,45

More detailed information on the incidence and outcome

of these toxicities is not yet available in peer-reviewed

publications but is expected to become available in the

future.

CONCLUSIONS AND OUTLOOK
Muscle-directed gene transfer is an important path

for treating various neuromuscular disorders and is also

attractive for systemic protein delivery. However, a ten-

dency to induce B and T cell responses against capsid and

transgene products and immunotoxicities associated with

high-dose systemic delivery to muscle pose serious hur-

dles. Novel capsids that are effective at lower doses and

are detargeted from the liver will hopefully help avoid the

latter complications.46,47 Although monoclonal antibody

treatments or other drugs targeting complement compo-

nents are being adopted as an adjunct therapy, the efficacy

of such modulators is yet to be discerned.

More mechanistic preclinical studies are needed to

guide the clinical development of vectors with reduced

risk of CD8+ T cell activation and to generate more effec-

tive transient immune suppression protocols. For example,

we know that innate immune signals are requisite for T cell

activation and may be derived from the activation of pat-

tern recognition receptors. Sensing of AAV genomes by

the endosomal DNA receptor TLR9 promotes CD8+ T cell

responses through induction of interferon type I (Fig. 1),48–51

Figure 1. Known immune response mechanisms in AAV muscle gene transfer. The immune response starts locally in the draining lymph nodes of transduced
muscle. TLR9 signaling in pDCs upon sensing vector genomes induces IFNa/b expression, which conditions cross-presenting cDCs. Combined with costi-
mulatory signals from CD4+ T helper cells, this leads to the priming of CD8+ T cells against AAV capsid or transgene products. These may infiltrate transduced
muscle and target muscle fibers that display peptides derived from capsid or transgene product through MHC I. Transport of the capsid or transgene product
to dendritic cells in the T–B cell border may lead to activation of Tfh cells, which promote B cell activation and germinal center formation, leading to antibody
formation, memory B cells, and plasma cells. moDCs activated by AAV or exogenous DNA enhance Tfh activation, thereby increasing antibody production.
Other innate and cytokine signaling pathways driving B and T cell responses likely exist. Treg can limit B and T cell responses. Preventing TLR9 signaling (e.g.,
through CpG depletion of vector genomes), eliminating transgene expression in dendritic cells (e.g., by incorporation of miRNA target sequences into
transcripts of the transgene), and blockade of cytokine signaling or costimulation represent some of the current and emerging approaches to prevent immune
responses. AAV, adeno-associated viral; cDCs, conventional dendritic cells; miRNA, microRNA; moDCs, monocyte-derived/inflammatory dendritic cells; pDCs,
plasmacytoid dendritic cells; Tfh, T follicular helper; Treg, regulatory T cells.
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which already prompted vector developers to eliminate

CpG motifs (which in their unmethylated form, such as in

viral DNA, are potent agonists for TLR9) from transgene

cassettes.3,4,52–56

Activation of monocyte-derived dendritic cells by

AAV or exogenous DNA enhances antibody formation

by increasing activation of T follicular helper cells, for

example, by induction of IL-6 (Fig. 1).57,58 Further basic

research should aim to identify other targetable innate and

cytokine signaling pathways that may be derived from the

vector (pathogen-associated molecular patterns) or tissue

damage (damage-associated molecular patterns) and pro-

mote B and/or T cell responses. Administration of steroid

drugs is a conventional treatment for DMD and is widely

used in clinical AAV gene therapy to prevent inflam-

matory and, more specifically, CD8+ T cell responses.

Regimens better tailored to AAV gene transfer, based on

mechanistic considerations and large animal studies, can

be developed.

Although AAV vectors are generally inefficient in

transducing professional antigen-presenting cells (APCs

such as dendritic cells), recent studies suggest that trans-

gene expression in APCs occurs at sufficient levels to

contribute to CD8+ T cell activation59–62 and that the use

of muscle cell-specific promoters is insufficient to pre-

vent this, especially at high vector doses.63–66 Inclusion of

microRNA target sites that result in the degradation of

the transgene messenger RNA in APCs has been shown to

be effective in murine models.60 Transient in vivo inacti-

vation of immunoglobulins or blockade of neonatal Fc

receptors represent potential avenues to overcome pre-

existing NAbs.60,67–69

Going forward, the field continues to face challenges

posed by the immune system. These are likely to extend

to AAV delivery of bacterial nucleases in gene editing

approaches.70,71 Nonetheless, several highly promising

avenues are being developed to manage the immunologi-

cal hurdle. These include the development of novel vectors

with improved efficacy and reduced accumulation in the

liver combined with the incorporation of features that

reduce innate immune signaling and antigen presentation

into vector design, and the development of more tailored

immune suppression regimens that are informed by mech-

anistic studies. Immune optimization of muscle gene ther-

apy will increase safety, and extend gene therapy to more

patients, even if they have unfavorable mutations.
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