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Duchenne muscular dystrophy (DMD) is a debilitating genetic disorder that results in progressive muscle degeneration
and premature death. DMD is caused by mutations in the gene encoding dystrophin protein, a membrane-associated
protein required for maintenance of muscle structure and function. Although the genetic mutations causing the disease
are well known, no curative therapies have been developed to date. The advent of genome-editing technologies provides
new opportunities to correct the underlying mutations responsible for DMD. These mutations have been successfully
corrected in human cells, mice, and large animal models through different strategies based on CRISPR-Cas9 gene
editing. Ideally, CRISPR-editing could offer a one-time treatment for DMD by correcting the genetic mutations and
enabling normal expression of the repaired gene. However, numerous challenges remain to be addressed, including
optimization of gene editing, delivery of gene-editing components to all the muscles of the body, and the suppression of
possible immune responses to the CRISPR-editing therapy. This review provides an overview of the recent advances
toward CRISPR-editing therapy for DMD and discusses the opportunities and the remaining challenges in the path to
clinical translation.
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INTRODUCTION
DUCHENNE MUSCULAR DYSTROPHY (DMD) IS a X-linked re-

cessive disease that affects 1 in 5,000 male births.1 DMD

patients exhibit progressive muscle degeneration that re-

sults in muscle weakness and loss of ambulation, and de-

spite advances in cardiac and respiratory care, almost all

DMD patients succumb to premature death before the age

of 30 years.2

It has been known for over 35 years that mutations in

the DMD gene cause the disease.3 The DMD gene is lo-

cated on the X chromosome, and it is one of the largest

genes of the genome. It consists of 79 exons that encode

the dystrophin protein that is located beneath the sarco-

lemma and connects the cytoskeleton of muscle fibers with

the extracellular matrix.4 Dystrophin functions as a shock

absorber, reducing the mechanical stress induced by

muscle contraction, thereby maintaining sarcolemmal in-

tegrity and supporting muscle function.5

Due to the extensive length of the DMD gene, more

than 7,000 mutations causing DMD have been identified.6

Approximately 70% of DMD patients harbor a large de-

letion ( = or >1 exon) in the DMD gene, and the other 30%

of mutations include duplications, point mutations, or

small insertions or deletions (INDELs). Most of the exon

deletion or duplication mutations cluster into two hotspot

regions spanning between exons 6 and 7, and exons 43 and

53, whereas other small mutations occur randomly

through the DMD gene.6 Mutations in the DMD gene

generally result in a shift in the open reading frame

(ORF), rending the DMD gene out-of-frame, and ultimately
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introducing a premature stop codon that leads to the ab-

sence of functional dystrophin protein in skeletal muscle

myofibers and in cardiomyocytes.

While the amino- (N) and carboxyl- (C) termini of the

protein are essential regions, deletions in the rod-like do-

mains of the central region that preserve the correct dys-

trophin ORF are tolerated and result in a Becker muscular

dystrophy (BMD) phenotype that can be a relatively be-

nign muscular dystrophy compared to DMD.7

Unfortunately, at present, there is no curative therapy

for this lethal disease. Corticosteroid treatments are

available for the mitigation of the secondary symptoms of

DMD, such as inflammation, fibrosis, impaired angio-

genesis, altered calcium homeostasis, and mitochondrial

dysfunction.8,9 However, long-term use of corticosteroids

causes many adverse effects, despite minimal ameliora-

tion of the DMD phenotype. An efficient strategy to treat

DMD could be to express a semifunctional dystrophin to

mimic the BMD-like phenotype. Truncated dystrophin

lacking exons encoding the central rod domains can fit the

limited packaging capacity of adeno-associated virus

(AAV) for systemic delivery, and this led to the devel-

opment of a wide range of mini- and microdystrophin

variations for therapeutic use.10

Currently, the utilization of these truncated dystrophins

is under evaluation in several clinical trials.11 Other phar-

macological approaches focus on the restoration of the

disrupted DMD ORF using antisense technology. Ete-

plirsen is the first drug specific for DMD approved by the

U.S. Food and Drug Administration (FDA). It is an anti-

sense oligonucleotide that induces the skipping of exon 51

of the DMD gene resulting in the expression of a semi-

functional dystrophin and BMD-like mild symptoms in a

small cohort of DMD patients.12 Two other oligonucleo-

tides (golodirsen and viltolarsen) are under evaluation for

treating DMD patients that could be therapeutically bene-

ficial by promoting skipping of exon 53.13,14 However, all

these approaches have shown only minimal clinical bene-

fit, and none removes the underlying genetic cause of the

disease to enable lifelong expression of dystrophin.

GENE-EDITING THERAPEUTIC STRATEGIES

Gene editing with CRISPR-Cas9 has the potential of

permanently correcting mutations causing DMD and

ameliorating the pathology of the disease. The CRISPR-

Cas9 system was originally discovered in bacteria as an

adaptive defense system against viruses and has been en-

gineered for the editing of the genome of eukaryotic

cells.15–17 The Cas9 endonuclease can be directed to a

specific DNA sequence of the genome, using a short guide

RNA (sgRNA). The target sequence is specified by the

complementary of a region of 20 nucleotides of the

sgRNA called the protospacer. The most studied and used

Cas9 is derived from the CRISPR system of Streptococcus

pyogenes (SpCas9). The SpCas9 endonuclease recognizes

a protospacer adjacent motif (PAM) in DNA consisting of

the sequence 5¢-NGG-3¢ and cuts the target DNA 3 base

pairs (bp) upstream of the PAM, generating a DNA

double-stranded break (DSB).

The actual gene editing can occur in two ways: (1) in

the presence of a DNA donor template, homology-direct

repair (HDR) can introduce the desired modification in the

target locus. However, the HDR mechanism is only active

in proliferative cells, with limited efficiency in postmitotic

cells, such as myofibers and cardiomyocytes; (2) alterna-

tively, nonhomologous end joining (NHEJ) works in both

quiescent and proliferating cells and can imprecisely re-

pair the DNA generating short INDELs at the site of the

DNA DSB. In recent years, CRISPR-Cas9 has shown great

potential for gene editing of mutations causing DMD. We

use the term ‘‘myoediting’’ to refer to CRISPR-mediated

gene editing in muscle to permanently correct genetic

mutations causing DMD and restore muscle function, and

here, we describe different myoediting strategies devel-

oped for treatment of DMD (Fig. 1, ‘‘Gene-editing

strategies’’).18–20

Double-cut myoediting
Deletion of one or more exons can be used to restore the

ORF of DMD. In the double-cut strategy, removal of a

target exon(s) is accomplished using two sgRNAs to si-

multaneously target the introns flanking the exon(s) to be

deleted. This approach was extensively applied to restore

the DMD ORF in human induced pluripotent stem cells

(hiPSCs) from patients and human myoblasts harboring

different mutations.21–28 Exon deletion is especially suit-

able to correct exon duplication mutations, as it can restore

full-length dystrophin.25,29–31 Moreover, as a general ap-

proach, double-cut myoediting can excise a multiexonic

genomic region, deleting the mutational hotspot of the

central rod domain (exons 45–55) and producing a trun-

cated but functional form of dystrophin.21,32

However, the deletion of numerous exons can impact

dystrophin function, and when two sgRNAs are used, exon

deletions can generate diverse and unpredictable genome

modifications, including exogenous DNA integration or

aberrant splicing at the DSB cut sites.33 Another weakness

of the double-cut strategy is the low editing efficiency, due

to the necessity of simultaneous cutting using two sgRNAs

and the subsequent joining of distant free DNA ends. Two

sgRNAs also increases the probability of additional off-

target effects.33

Single-cut myoediting
Limitations of the double-cut myoediting approach can

be partially overcome by single-cut gene editing. In this

strategy, only one sgRNA generates a single DSB in the

proximity of the splice site of the target exon. Repair of

the DSB through the NHEJ pathway generates INDELs in
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the target locus and reconstitution of the correct ORF can

occur: (1) by exon skipping if the INDELs destroy the

splice consensus site of the exon to be skipped, or (2) by

exon reframing if the appropriate number of INDELs oc-

curs in the exonic region. Based on the Leiden DMD

mutation database, almost 80% of the DMD patients could

benefit from exon skipping, so designing a relatively small

number of optimized sgRNA allows efficient correction of

most DMD mutations.34

Indeed, several studies demonstrated high editing effi-

ciency using the single-cut myoediting strategy to restore

dystrophin expression in muscle cells derived from hiPSC

of DMD patients.25,35–39 Another advantage of the single-

cut approach is that it decreases the likelihood of off-target

mutations since only one sgRNA is used. However, this

strategy relies on the endonuclease activity of the Cas9,

and generation of DNA DSBs has been shown to be del-

eterious to cells and can lead to integration events in the

genome, if AAV is used as a delivery vector.33,40–43

Base editing myoediting
Base editing allows the permanent and precise modi-

fication of the genome, without generating a DNA DSB.44

At the moment, two major classes of base editors are

available: cytosine base editors that convert DNA C�G
base pairs to T�A base pairs, and adenine base editors

(ABEs) that convert DNA A�T base pairs to G�C base

pairs.45,46 Base editors can be used to correct not only

point mutations in the DMD gene, but also to induce

beneficial exon skipping via an approach termed ‘‘single-

swap’’ editing of splice sites.47–49 Importantly, while

moderate bystander editing is an inherent downside of

base editing, this is negated in the single-swap approach as

the bystander edits occur in the intron or to-be-skipped

exon and not in the mature transcript.

However, as discussed further below, a current major

weakness of base editors is their large size that impinges

on the limited cargo capacity of the AAV vectors com-

monly used as delivery systems for myoediting strategies.

Prime editing reframing myoediting
Another nucleotide editing technology, prime editing,

can permanently modify the genome without cutting

DNA.50 It consists of a Cas9 nickase fused with an en-

gineered reverse transcriptase. This, in combination with a

prime editing guide RNA, can perform targeted and pre-

cise small insertions, deletions, or base changing. This

technology has been used to correct point mutations in

myoblasts of DMD patients.51,52 In a more general ap-

proach, prime editing was recently used to precisely insert

the correct number of nucleotides to reframe the DMD

ORF in human cardiomyocytes harboring an exon deletion

mutation in the DMD gene and restoring dystrophin ex-

pression.48 However, despite the great potential of prime

editing to correct DMD causing mutations, up to now,

there is no report of its applicability in vivo.

IN VIVO DYSTROPHIN RESTORATION
BY GENE EDITING

To test the therapeutic potential of DMD gene editing

in vivo, several DMD mouse models representing the most

commonly deleted exons in DMD patients (including de-

letion of exon 43, 44, 45, 50, 51, or 52) were generated by

CRISPR technology.36,37,48,53 These animal models per-

mitted validation of the myoediting strategies initially

described in quiescent cells. Plus, they provided an esti-

mate of the in vivo recovery of dystrophin, as well as,

evaluation of the safety of gene editing, and optimization

of delivery of the gene-editing components.

Figure 1. Overview of strategy to correct DMD by myoediting. DMD mutations are identified in DMD patients. Different gene-editing strategies and delivery
systems are tested in vitro (in human hiPSCs from patients) and in vivo (in DMD mouse models) to assess myoediting by restoration of dystrophin. Efficacy and
safety of myoediting is tested in the appropriate preclinical models with the goal of proposing a therapeutic approach for DMD patients. DMD, Duchenne
muscular dystrophy; hiPSCs, human induced pluripotent stem cells.
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Inarguably, one of the major challenges of postnatal

myoediting is the efficient delivery of the CRISPR editor

and the sgRNA to the target tissues: the skeletal and cardiac

muscles. Both viral and nonviral delivery systems have

been developed for this aim (Fig. 1, ‘‘Delivery strategies’’).

Among the viral systems, AAV is the most commonly used

vector for myoediting as it has the following features: (1)

low pathogenicity, (2) low immunogenicity, and (3) several

serotypes that show tropism for skeletal and cardiac mus-

cles (serotypes1, 6, 8, 9, rh10, rh74).54 However, AAVs

have a packaging cargo size limitation (<4.7 kb) close to the

SpCas9 cDNA size (*4.2 kb). Several groups used a dual-

AAV system (one encoding the Cas, the other the sgRNAs),

or a single-AAV system with a smaller Cas9 (i.e., Staphy-

lococcus aureus Cas9, SaCas9, or Campylobacter jejuni

Cas9, CjCas9) to restore dystrophin expression in different

DMD mouse models by double- or single-cut myoediting

strategies.36–39,53,55–62

Importantly, AAV delivery permits the utilization of

specific promoters (e.g., muscle creatine kinase promoter)

to direct the expression of Cas9 only in muscle cells, adding

an additional level of cell-specificity editing in addition to

viral tropism.53 One major disadvantage of AAV delivery is

the high dosage of the AAV vector(s) necessary for efficient

gene myoediting. As an optimization strategy to reduce

viral dose, utilization of a self-complementary AAV has

been used for expression of the sgRNAs, providing a 20-

fold reduction of dose, compared to single-stranded AAV,

to achieve efficient gene editing.63,64

Despite their large size, base editors have been used

effectively to restore dystrophin expression in different

DMD mouse models.48,65–67 To correct nonsense point

mutations, ABEs were split into two trans-splicing AAV

vectors to overcome the packaging limitation of AAV and

then delivered into muscle, or systemically, demonstrating

the therapeutic potential of base editing in adult DMD

animal models.65,67 The same packaging strategy was used

to demonstrate the efficient recovery of dystrophin in vivo

by single-swap base editing of splice sites.48 In another

study, the utilization of the small SaCas9 permitted

packaging of a functional base editor in a single AAV and

sgRNAs in another AAV (similarly described for the dual-

AAV system for single- and double-cut myoediting

strategies).66 However, the development and utilization of

an efficient single AAV delivery solution for expression of

both base editor and sgRNA (‘‘all-in-one’’) is desirable for

meaningful and consequential preclinical studies.

As a nonviral delivery system, lipid nanoparticles

(LNPs) were used to deliver in vivo gene-editing compo-

nents to muscle cells to correct DMD causing mutations.

Ribonucleoprotein complexes of CRISPR editing com-

ponents for single-cut editing were encapsulated into

LNPs and delivered to skeletal muscle, showing effective,

although less efficient, gene editing to restore dystrophin

expression.68 Importantly, it was demonstrated that LNP

delivery shows low immunogenicity, allowing repeated

local administration into skeletal muscles to induce stable

genomic exon skipping and restore dystrophin protein in

DMD mice.69 However, systemic gene-editing correction

in skeletal muscles and heart of DMD mice using LNPs

has not yet been demonstrated.

FUTURE CHALLENGES

CRISPR gene-editing technologies provide powerful

tools for treating genomic mutations of DMD patients that

cause the disease, theoretically enabling permanent res-

toration of dystrophin expression and function of muscle

cells. Unlike replacement gene therapy approaches, the

gene myoediting strategies enable endogenous regulation

of dystrophin, thereby expressing appropriate amounts of

protein in the correct tissues. Although myoediting strat-

egies have been successfully applied in human iPSCs and

animal models, there are several key obstacles that need to

be overcome before considering clinical application.

These issues include the following: (1) developing new

editing strategies to improve efficiency and reduce dose;

(2) affirming safety features of the gene-editing compo-

nents; and (3) providing testing of myoediting in mean-

ingful preclinical models.

New gene-editing strategies
With the exception of correcting point or duplication

DMD mutations, all gene-editing strategies attempt to

restore a functional, although truncated, form of dystro-

phin. These myoediting approaches result in converting a

DMD lethal phenotype to a milder Becker phenotype of

muscle cells. Fortuitously, in vitro studies report similar

protein stability between full-length dystrophin and all in-

frame exon-skipped isoforms in the mutational hotspot

regions encoding the central rod domain.70 However,

when designing new exon skipping strategies for DMD,

the functionality of the resulting Becker-type isoform must

be taken into consideration.

Other gene-editing strategies for DMD target over-

expression of utrophin, a paralog of dystrophin that can

compensate for its functional deficiency.71,72 In a recent

study, a double-cut gene-editing strategy was applied to

delete several microRNA binding sites of utrophin in

DMD stem cells, thereby inducing overexpression of

utrophin to compensate dystrophin deficiency.73 The main

advantage of this approach is that it is applicable to all

DMD mutations. However, the level of utrophin over-

expression has not been measured in vivo, and due to se-

quence differences between dystrophin and utrophin, this

strategy may lead to a mild Becker phenotype.74

In the future, gene-editing strategies that can efficiently

and effectively restore full-length dystrophin are desir-

able. Homology-independent targeted integration (HITI)

and single homology arm donor mediated intron-targeting
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integration (SATI) strategies were developed to perform

robust DNA knock-in, in proliferating and quiescent cells

both for in vitro and in vivo applications.75,76 HITI tech-

nology was shown to edit the genome and restore full-

length dystrophin protein in a DMD mouse model with an

exon deletion mutation.77 However, the efficiency was

low, and minimal total dystrophin recovery was

reported.77

In addition, several groups have developed new tools

and approaches for integration of large DNA fragments

into the genome without introducing DNA DSBs, such as

CRISPR-associated transposase, insert transposable ele-

ments by guide RNA-assisted targeting, twin prime editor,

and programmable addition via site-specific targeting el-

ements.78–81 Future developments of these technologies to

improve their gene-editing efficiency and efficacy in vivo

could lead to new potential therapies that restore the full-

length dystrophin protein.

Safety
Up to now, the biggest obstacle of translating gene-

editing therapies for DMD to the clinic is efficient and safe

delivery of the gene-editing components to muscles. AAV

has provided the most effective means of systemic deliv-

ery of gene-editing components; however, it is crucial to

further examine the safety features of this viral vector for

application of CRISPR for clinical application for DMD

patients. In fact, a high dose of AAV is required for editing

all the muscles of the human body. However, high dose of

AAV can trigger adverse events in multiple organs, such

as liver toxicity.82 To lower viral dose, new AAV capsid

variants with enhanced muscle tropism, such as AAV-

MYO and MyoAAV, are being developed. These AAV

variants have the potential to lower the viral dose by at

least 10-fold, offering a safer therapeutic dose.83–85

Moreover, as previously described, the dual-AAV

system, which is the most popular method for in vivo de-

livery of the gene-editing components, necessitates using a

high dose of AAV for efficient gene editing.36,37,39,53,55–60,62

The development of new ‘‘all-in-one’’ AAV vectors that

combine small Cas9 variants and sgRNAs in the same

vector would not only reduce the amount of viral dose but

would also address the problem related to manufacturing

different clinical-grade AAV vectors in high quantity.38,61

However, several studies with the dual-AAV system have

demonstrated that efficient systemic editing requires

higher amounts of the AAV encoding the sgRNAs, and

this ratio difference can only be achieved with the dual-

AAV approach.36,86,87

Besides AAV vectors, virus-like particles (VLPs) have

recently been created to deliver mRNA of gene-editing

components to correct mutations causing DMD in vivo.88

The possibility of modifying the viral envelope to target

specific cell types will allow further development of new

delivery strategies based on VLPs.89,90 However, due to

the limited publications using this new delivery strategy,

more studies are necessary to assess its safety.

Concerns over the immune response of humans to

CRISPR gene-editing therapy components remain a safety

issue. An immune response can be evoked not only by the

AAV vectors but also by the Cas proteins. Cas9 is a bac-

terial protein and the presence of Cas9-specific antibodies

has been detected in human plasma.91 It was also reported

that sgRNA may trigger an innate immune response within

human cells in vitro, but it has not been demonstrated

whether sgRNAs induce an immune response in vivo.92,93

Furthermore, more studies are needed to assess specific

post-transcriptional modifications of sgRNAs that were

administered systemically to determine if these modifi-

cations could induce an immune response in vivo.93 Im-

portantly, an immune response against AAV and Cas9 has

not been detected in neonatal mice, suggesting that an

immune response may be avoided by treating humans at

early ages.33

Another safety concern of gene-editing therapy is the

potential of off-target activity. Different bioinformatic

investigative methods have been developed to detect off-

target effects, such as Digenome-seq, GUIDE-seq, and

CIRCLE-seq.94–96 Although off-target activity has been

observed with gene editing in proliferating cells in tissue

culture, it is documented to be minimal in animal models

by in vivo studies, especially in postmitotic muscle cells.97

Nonetheless, off-target activity by CRISPR gene editing

can be further reduced using high fidelity Cas9 or by op-

timization of the sgRNA.98–105

Preclinical animal models
Generating and using appropriate preclinical DMD

animal models will allow optimization of gene-editing

strategies by assessing delivery of the gene-editing com-

ponents, and evaluating the outcome of DMD myoediting

in vivo (Fig. 1, ‘‘Preclinical DMD models’’).

Mouse and human dystrophin proteins are highly con-

served in exon composition and amino acid sequence.

However, the mouse and human dystrophin genes vary at

the genomic level and the differences in nucleotide se-

quence impede testing of human-specific sgRNAs in

DMD mouse models. Creation of humanized DMD mouse

models allows for preclinical trials to evaluate the effi-

ciency of genome editing of human-specific sgRNAs in an

animal model for eventual use of the sgRNA in clinical

trials. A humanized mouse was generated, in which the

entire human DMD sequence was integrated into mouse

chromosome 5 and subsequently mutations were intro-

duced to recapitulate the dystrophic phenotype.60,106,107

However, a recent study revealed that this humanized

DMD mouse model carries two copies of the human DMD

transgene at the integration locus.108

A new generation of humanized DMD mouse models

were generated in which mouse exon(s) were replaced by
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human ortholog(s) within the endogenous genomic loca-

tion on the X chromosome.39,69,109 These chimeric mouse

models containing human DMD genome sequence allow

testing of gene-editing efficiency of human-specific

sgRNAs for single-cut or base editing correction strate-

gies.39,69,109 In the future, it would be useful for preclinical

studies to establish additional humanized DMD mouse

models by substituting all the therapeutically relevant

exons with human sequence.

DMD mouse models are helpful tools to test gene-

editing strategies as they mimic the pathological features of

the diseases. However, due to the compensatory effects of

utrophin and muscle regeneration, they do not fully reca-

pitulate the phenotype of DMD patients.110 For this reason,

therapeutic (and also delivery) strategies need to be opti-

mized in larger animals and more pathologically severe

DMD mammalian models, before clinical application.111

Although one study suggested that Cas9 immunity was

induced by AAV delivery vectors in large mammals, en-

couragingly two other large animal applications of gene

editing, one in a DMD dog model and another in an in-

duced DMD pig model, efficiently restored dystrophin

protein after systemic administration of AAV9, validating

therapeutic gene editing in large animals.27,112,113

Another important variable to consider before moving

DMD gene myoediting into the clinic is the timing of

gene-editing correction. All in vivo DMD editing studies

that show efficient dystrophin restoration have been per-

formed by administering the editing components to young

animals, suggesting that early intervention is effective and

most likely better than delivery of AAV CRISPR to older

animals. In fact, administration of AAV CRISPR to

younger patients is preferable because (1) a lower amount

of AAV CRISPR is needed for younger animals due to the

smaller size; (2) young patients are less likely to have pre-

existing immunity against AAV9; and (3) younger mus-

cles are better preserved, showing minimal pathological

features of dystrophic muscles. Following administration,

the durability and longevity of the gene-editing correction

has to be monitored.

Long-term studies after double-cut gene editing

showed skeletal muscle editing at 12 or 18 months after

editing.33,86 Recently, a study using single-cut myoediting

reported lifelong expression of dystrophin in myoedited

mice and corrected skeletal muscle was highly resistant to

necrosis and fibrosis, plus showed sustained dystrophin

expression in response to chronic injury.114

Due to the high turnover rate of DMD muscles, the

ability to deliver the gene-editing components to satellite

cells, the muscle stem cells, would likely improve and

sustain dystrophin expression in myoedited muscle. In this

regard, AAV infectivity of satellite cells has been con-

troversial and needs further investigation and develop-

ment.56,115–118 Encouragingly, MyoAAV transduces

satellite cells with about three times higher efficiency

compared to AAV9, and in the future, the utilization of a

satellite cell-specific promoter to drive the gene-editing

components could improve and advance gene editing of

DMD.84

CONCLUDING REMARKS

Different CRISPR myoediting strategies have been

successfully applied in DMD human iPSCs and DMD

animal models, providing new, promising, effective

treatments for DMD. The efficacy of gene-editing tech-

nologies is no longer an obstacle for the treatment of DMD

in clinical applications. Considering all the recent pre-

clinical successes obtained with CRISPR systems, it seems

reasonable that the remaining safety and delivery chal-

lenges will be overcome in the next few years.
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