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Abstract

Our capacity to measure diverse aspects of human biology has developed rapidly in the past 

decades, but the rate at which these techniques have generated insights into the biological 

correlates of psychopathology has lagged far behind. The slow progress is partly due to the poor 

sensitivity, specificity and replicability of many findings in the literature, which have in turn been 

attributed to small effect sizes, small sample sizes and inadequate statistical power. A commonly 

proposed solution is to focus on large, consortia-sized samples. Yet it is abundantly clear that 

increasing sample sizes will have a limited impact unless a more fundamental issue is addressed: 

the precision with which target behavioral phenotypes are measured. Here, we discuss challenges, 

outline several ways forward and provide worked examples to demonstrate key problems and 
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potential solutions. A precision phenotyping approach can enhance the discovery and replicability 

of associations between biology and psychopathology.

A comprehensive understanding of psychopathology requires a systematic investigation 

of functioning at multiple levels of analysis, from genes to brain to behavior1,2. The 

development and widespread use of new technologies—including magnetic resonance 

imaging (MRI) and inexpensive genetic assays—promised to transform our understanding of 

psychiatric disorders3 and lead to biomarkers that would enhance diagnosis, treatment and 

prognosis4. However, increasing technological advances and sophistication in the acquisition 

and analysis of these data have generally failed to produce consistent research findings with 

broad and significant clinical relevance to the diagnosis and treatment of mental disorders5. 

Biology–psychopathology associations are typically small6, often fail to replicate7 and 

generally lack diagnostic specificity8–10. In short, despite decades of work, thousands of 

studies and hundreds of millions of research dollars, modern neuroimaging and genetic tools 

have largely failed to uncover clinically actionable insights into psychopathology11,12.

Modest effects and poor replicability have prompted calls to establish consortia-sized 

samples to identify reproducible biology–psychopathology associations7, with theoretical 

and empirical studies indicating that problems of low power and replicability can be 

addressed with sample sizes ranging from the thousands to tens of thousands6,7. This 

approach has become standard in molecular genetics and has yielded reliable genetic 

‘hits’ for several psychiatric disorders12. Recent analyses suggest a similar approach may 

be necessary for neuroimaging studies6. Other investigators have focused on improving 

the validity and accuracy of neuroimaging measures, through the use of sophisticated 

data acquisition techniques13, improved denoising techniques14 and individually tailored 

analyses15. Similarly, in genetics, growing interest in moving beyond common genetic 

variation to study high-effect rare variants mandates an order of magnitude increase in 

sample size16.

In this Review, we suggest that such attempts will have limited success unless we 

develop more precise or statistically optimized psychiatric phenotypes (that is, observable 

characteristics or traits). We begin by briefly summarizing the adverse consequences of 

phenotypic imprecision for discovering reproducible biology–psychopathology associations 

and highlight some of the most common types of imprecision. We then provide concrete 

recommendations for precision phenotyping that will help overcome these challenges. 

Throughout the Review, we provide worked examples of key concepts, using genetic 

data obtained at the baseline wave (n = 2,218) and behavioral data obtained from the 

2-year follow-up wave (n = 5,820) of the Adolescent Brain Cognitive Development 

(ABCD) study (behavioral data, release 3.0; genetic data, release 2.0)17. These examples 

support the conclusion that phenotypic imprecision can thwart the consistent detection 

of potentially important biology–psychopathology associations. In each case, we describe 

countermeasures that can be deployed to bolster precision and reliability. Taken together, 

these strands of psychometric theory and empirical data suggest that the systematic adoption 

of precision phenotyping has the potential to substantially accelerate efforts to understand 
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the neurogenetic correlates of psychopathology and, ultimately, set the stage for developing 

more effective clinical tools.

Note that we focus on mental health measures in our manuscript because: (1) the limitations 

of such measures are rarely discussed in comparison with the extensive literature devoted to 

improving biological measures; (2) prevalent practices to measure behavior are sub-optimal; 

and (3) addressing these sub-optimal practices is arguably the most cost-effective and 

quickest way of improving current methodologies. It also merits comment that, while this 

Review is centered on psychiatric phenotypes, biological measures are also prone to error 

and may equally contribute to the problems of weak signal in biology–psychopathology 

association studies18. Thus, our proposals parallel considerable efforts devoted to improving 

the validity and accuracy of imaging-derived phenotypes13–15, which is sometimes also 

called precision phenotyping.

The effect of measurement imprecision on detecting and replicating 

associations between biology and psychopathology

An important step in understanding and treating psychiatric disorders is the identification 

of pathophysiological mechanisms. Doing so requires the discovery of robust associations 

between biology and psychiatric phenotypes, an endeavor that is fundamentally constrained 

by the validity and reliability of the measured phenotypes. Validity concerns the 

correspondence between a psychological measure and the construct it is designed to 

measure. If a psychological measure fails to measure a real entity, or changes in the 

state of that entity fail to produce systematic variations in the psychological measure, 

any analyses that rely on the psychological measure will be inaccurate. Reliability 

refers to the consistency of a measure across items, scales, occasions or raters; and is 

the inverse of measurement error. Lower reliability (higher error) contributes to noisy 

estimates and decreased accuracy of rank-ordering of individuals when measuring biology–

psychopathology associations19. In fact, reliability imposes an upper limit on the magnitude 

of linear associations that can be detected (that is, observed biology–psychopathology 

associations are inversely proportional to measurement reliability), mandating larger and 

more expensive samples for adequate power and reproducibility20 (Box 1). In sum, 

adequate validity and reliability are necessary for identifying robust and meaningful 

biology–psychopathology associations20,21.

It is noteworthy that phenotypic precision is a necessary, but not sufficient, condition for 

uncovering biology–behavior associations. For example, measurement of human intelligence 

is psychometrically well developed and yet our understanding of the neurobiology and 

genetics of intelligence is incomplete. The validity and reliability of psychiatric phenotypes 

can be compromised by a variety of factors, which we collectively refer to as phenotypic 

imprecision. In this section, we highlight common and pernicious causes of phenotypic 

imprecision.
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Sampling biases

Different research aims demand specific sampling strategies. For studies seeking to 

identify biology–psychopathology associations, it is important to have samples that are 

representative of the population of interest and that maximize statistical power for 

this research design. Sampling biases, non-representative samples and generalizability 

issues have been broadly discussed in the literature22, but several specific aspects of 

sampling bias are particularly relevant to the measurement of psychiatric phenotypes in 

biological association studies. As a primary example, most psychiatric neuroimaging and 

genetic research has focused on examining case–control differences defined by traditional 

diagnostic frameworks, such as the Diagnostic and Statistical Manual for Mental Disorders 

(DSM-5) and the International Classification of Diseases (ICD-11). These frameworks 

have questionable reliability and validity23, and likely show a limited correspondence with 

biological correlates (Box 2). Indeed, there is ample evidence that psychiatric phenotypes 

are dimensional23, indicating that distinctions between cases and controls based on arbitrary 

clinical cut-points can artificially reduce statistical power for detecting associations with 

biological measures; the so-called curse of the clinical cut-off’24 (but see ref. 25). The 

approach may also complicate attempts to identify at-risk individuals with subclinical/

subthreshold symptomatology26 and may result in only a subpopulation of the most severely 

affected individuals being sampled, leading to problems such as Berkson’s bias and the 

clinician’s illusion.

A further complication arises with the recruitment of appropriate control groups. 

Researchers often exclude controls who endorse past or current DSM-5 or ICD-11 diagnoses 

or other signs of morbidity, resulting in an unrepresentative ‘super control’ group. When 

compared with a group of patients meeting a diagnostic threshold, the resulting study 

design embodies an extreme-groups approach rather than a simple dichotomization of a 

dimensional variable. Such designs, when applied to the study of dimensional phenomena, 

are known to confer biased effect estimates27. We acknowledge that traditional approaches 

to clinical description and diagnosis of mental disorders have clinical utility26. However, in 

this Review, we explore the application and implications of refined approaches to studying 

the biological correlates of psychopathology in research rather than clinical contexts. 

The importance of ethnic and demographic diversity with respect to representativeness, 

ethnic matching of biological measures and generalizability of predictions of behavior 

from biology, has also been discussed in the literature28,29. Crucially, some cross-cultural 

initiatives in population neuroscience and genetics have been developed to meet this 

need29–31.

Minimal and inconsistent phenotyping

The sheer cost and practical challenges of large-scale recruitment and testing often 

mean that the time and resources available for psychiatric phenotyping are limited32. 

Minimal or ‘shallow’ phenotyping, is one of the more commonly encountered causes of 

phenotypic imprecision in biological studies of psychopathology32. Minimal phenotyping is 

one-shot assessment using single, and sometimes abbreviated, scales. This will increase the 

proportion of occasion-specific state variance (error) compared with averaging across two 

or more occasions, thereby attenuating biology–psychopathology associations. Furthermore, 
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minimal phenotyping may fail to capture important aspects of psychopathology that are 

associated with biological measures.

Aggregation of data in consortia is further complicated by substantive differences in 

phenotypic assessment across sites. Numerous scales and questionnaires are available for 

assessing common psychiatric conditions (for example, depression) and these measures vary 

greatly in their inclusion and emphasis of symptoms33. Minimal phenotyping exacerbates 

the heterogeneity problem34, because superficially similar cases—for instance, individuals 

self-reporting a lifetime history of depression in response to a single self-report probe

—likely diverge on important, but unmeasured characteristics, dampening effect sizes 

and power. For example, it has been demonstrated35 that increasing sample sizes for 

neuroimaging research of schizophrenia may result in samples that are more heterogeneous, 

which can lead to lower prediction accuracy in machine learning analyses. This aligns 

with evidence that people diagnosed with schizophrenia and other disorders often show 

considerable heterogeneity in biological phenotypes36. Similarly, large clinical cohorts 

forming the reference samples for genome-wide association studies (GWAS) may also 

be heterogeneous in terms of clinical phenomenology, which is not revealed by minimal 

phenotyping37. Thus, despite the advantages of large samples, counterintuitively, increasing 

sample sizes through consortia-like data pooling may result in decreased, rather than 

increased, signal-to-noise ratio. Therefore, the quest for ever-larger sample sizes, without 

consideration of precision phenotyping, is neither efficient nor economical, and will not, on 

its own, ensure the discovery and replicability of biology–psychopathology associations38.

Phenotypic complexity

The use of raw behavioral scores in simple bivariate correlational (or related) analyses 

with biological variables assumes a unifactorial and non-hierarchical structure of the target 

phenotype. However, psychiatric phenotypes often have a multidimensional and hierarchical 

structure (that is, phenotypic complexity). Collapsing complex, multidimensional psychiatric 

phenotypes (for example, depression) into unitary scores has the potential to obscure 

biologically and clinically important sources of variance (for example, anhedonia versus 

guilt)39. Binary diagnostic labels create similar problems. Apart from multidimensionality, 

psychiatric phenotypes may also exhibit a complex hierarchical structure40. An example 

of this hierarchical organization is the Hierarchical Taxonomy of Psychopathology 

(HiTOP) (Box 3 and Fig. 1). At the top of the hierarchy is the p-factor, a broad 

transdiagnostic liability to all forms of psychopathology41. Situated below the p-factor 

are narrower dimensions—internalizing, thought disorders, disinhibited externalizing and 

antagonistic externalizing—specific to particular domains of psychopathology42. Each of 

these dimensions, in turn, subsumes still narrower symptom dimensions (for example, fear, 

distress and substance abuse). Too often, simple summary scores ignore this structure, 

combining both broad and narrow sources of variance43, leading to attenuation of biology–

psychopathology associations.

We show in example 1 of the Supplementary Information how failing to differentiate 

these multidimensional and hierarchical sources of variance from each other can confound 

relations with biological parameters. We provide an illustration of these concepts using 
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Child Behavior Checklist (CBCL) data from the ABCD study, which exhibits both 

multidimensionality and hierarchical structure. The CBCL is a multidimensional instrument 

that measures eight empirical syndromes using eight distinct subscales. The CBCL has 

a hierarchical structure with variance attributable to three levels: (1) a p-factor; (2) 

internalizing and externalizing dimensions; and (3) the eight specific psychopathology 

syndromes. We used a bifactor model44 within a structural equation modeling (SEM) 

framework (Box 4 and Fig. 2) to separate these dimensions into three orthogonal (that 

is, uncor-related) variance components and examined how much variance was unique to 

each level. The CBCL has three composite scales: (1) total problems, which summarizes 

the scores across the eight syndrome scales; (2) internalizing problems, which summarizes 

scores across the three internalizing scales; and (3) externalizing problems, which 

summarizes scores across the two externalizing scales. Less than 49% of the total variance 

is common across the eight scales, such that collapsing measurement of psychopathology 

into the unidimensional total problems score misrepresents the data and would result 

in attenuation of biology–psychopathology associations unique to the p-factor by 30.2% 

(that is, rxx = 0.488), even assuming perfect reliability of the biological measure. This is 

despite the total problems score showing high reliability in terms of Cronbach’s alpha (α = 

0.949). Thus, it is possible for internal consistency reliability to be high in the presence of 

multidimensionality, meaning that reliability cannot be used as a unidimensionality statistic.

Results are worse for the other two composite scales, internalizing problems and 

externalizing problems, where variance uniquely attributable to these group dimensions 

is only 10.4% and 20.1%, resulting in a 67.8% and 55.2% attenuation of correlation 

coefficients with external variables, respectively (rxx = 0.104 and 0.201). We also 

demonstrate that high phenotypic complexity across the eight empirical syndrome scales due 

to the hierarchical organization of the CBCL dimensions leads to low internal consistency 

reliability for these individual scales (that is, an average of approximately 42% variance 

is unique to each scale). This low reliability results in substantial attenuation bias, with 

correlations between symptoms and biological criterion variables being reduced from 

between 15% (rxx = 0.721 for somatic complaints) to 48.2% (rxx = 0.232 for the anxious/

depressed scale).

Inadequate phenotypic resolution

The vast majority of biology–psychopathology association studies implicitly assume that 

measurement precision is uniform across the latent trait continuum, a concept referred 

to as phenotypic resolution40. Yet most measured psychiatric phenotypes lack sufficient 

coverage of the adaptive (low) end of the continuum, leading to differential phenotypic 

resolution across the range of the scale45. Consider anxiety. Low scores on a clinical 

scale are meant to represent the absence of pathological anxiety, but often there is little 

to no item content addressing the opposite end of the latent trait continuum. As a result, 

there will be high error at the low end of the scale, making it difficult to conduct robust 

individual differences research. This problem is known as a ‘multiplicative error-in-variable 

model’, in which the error is proportional to the distributional properties of the signal33. 

Attenuation bias will thus be present for participants who score at the lower end of the 

psychopathology continuum, which tends to be most individuals, particularly in studies of 
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community-dwelling, non-clinical populations. The multiplicative error-in-variable model 

also results in marked heteroscedasticity (that is, the distribution of the residuals or error 

terms in a regression analyses is unequal across different values of the measured values), 

which reduces statistical power46.

Phenotypic resolution can be examined using item response theory (IRT; Box 4). IRT 

provides total information functions, which plot the measurement precision of a phenotype 

as a function of the standardized latent trait distribution47. Typically, for unipolar 

psychiatric phenotypes, reliability is unacceptably low (rxx < 0.6) below the mean48. 

Because reliability places an upper bound on associations with other variables49, this 

decrease in measurement precision can markedly decrease signal-to-noise ratio in biology–

psychopathology association studies.

In example 2 of the Supplementary Information, we provide an illustrative example of poor 

phenotypic resolution using CBCL data from the ABCD study, with results demonstrating 

that only a small portion of the sample has reliable scores for most of the CBCL scales. 

Specifically, we find unacceptably low reliability, even for basic research purposes (rxx 

< 0.6), at or below one standard deviation below the mean for ten of the eleven scales 

(that is, all scales except the total problems scale). The average proportion across CBCL 

scales of the ABCD sample that would not have interpretable scores due to low phenotypic 

resolution was 37.2% and more than half of the sample had uninterpretable scores for three 

of the eleven CBCL scales. Thus, despite the promise of the ABCD study for providing 

a sample size sufficient to accurately assess biology–psychopathology associations, a large 

proportion of participants from the ABCD study have CBCL scores with unacceptably 

low reliability, which will have the unfortunate and counterproductive goal of attenuating 

biology–psychopathology associations.

Measurement non-invariance

Another challenge to the accurate assessment of biology–psychopathology associations is 

the assumption that a measure assesses a psychiatric construct similarly across groups and 

measurement occasions (that is, measurement invariance)50. Yet there is ample evidence 

that measurement properties can vary (that is, non-invariance) across demographic groups 

(for example, sex) or unobserved or latent classes (that is, homogeneous subpopulations 

or subgroups, clusters or mixtures, embedded within the sample)51. Non-invariance can 

substantially bias results, because raw scores do not have the same substantive interpretation 

across groups. For example, a raw score of 10 on a particular scale may not correspond to 

the same level of psychopathology in males and females.

Invariance testing provides a rigorous means of evaluating the equivalence of model 

parameters across groups by imposing a series of increasingly restrictive equality constraints 

on the model parameter estimates within a factor analytic framework50. Typically, three 

levels of invariance are evaluated: (1) weak invariance; (2) strong invariance; and (3) strict 

invariance (Supplementary Table 3 contains technical definitions)50. Unfortunately, only a 

small proportion of studies test for full measurement invariance50; thus, combining raw 

scores across discrete groups (for example, sex and ethnicity) for biology–psychopathology 

associations remains problematic. In example 3 of the Supplementary Information, we 
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provide a striking example of measurement non-invariance of the CBCL total problems 

scale (which is the most reliable scale of the CBCL)52 between male and female ABCD 

participants. Results demonstrate that CBCL raw scores are not comparable between male 

and female children at any point along the latent trait continuum. Thus, any study that pools 

the results on the CBCL total problems scale for male and female children and tests the 

association with biological variables will draw erroneous conclusions.

The heterogeneity problem

The heterogeneity problem is increasingly recognized as a key challenge for biological 

studies of psychiatric illness34. Heterogeneity can be described at person-centered and 

variable-centered levels34. Person-centered heterogeneity refers to the presence of clusters 

or subtypes within groups, such as a group of individuals diagnosed with major depression. 

To the extent that such clusters or subtypes are unrecognized and associated with distinct 

biological signatures, they will attenuate biology–psychopathology associations (that is, 

mixing apples and oranges). This problem is exacerbated in case–control research because 

traditional DSM and ICD diagnoses likely encompass phenomenologically, etiologically and 

biologically heterogeneous syndromes (Box 2). The result is the so-called ‘jingle fallacy’, in 

which divergent phenomena are arbitrarily equated, in this case because of the application 

of a common term53. Variable-centered heterogeneity describes admixtures of symptoms 

with divergent etiology, pathophysiology, course and/or treatment response54 or a failure to 

differentiate between narrower homogeneous and unidimensional symptom components.

Both person-centered and variable-centered heterogeneity have emerged as a critical issue 

in depression research. For example, an analysis of 3,703 participants in a clinical trial 

for the treatment of depression revealed a remarkable degree of person-centered disorder 

heterogeneity with 1,030 unique symptom profiles identified using the Quick Inventory 

of Depressive Symptoms (QIDS-16), 864 (83.9%) of which were endorsed by five or 

fewer participants and 501 (48.6%) were endorsed by only one participant55. Thus, 

methodologies that explicitly accommodate potential clinical sample heterogeneity are a 

promising way forward in psychiatric research56. There is also evidence of variable-centered 

heterogeneity in depression, which has a clear multifactorial structure despite often being 

treated as a unitary construct based on sum scores on inventories, such as the Hamilton 

Rating Scale for Depression57. Indeed, three distinct genetic factors were identified that 

explained the co-occurrence of distinct subsets of DSM criteria and symptoms: cognitive 

and psychomotor symptoms, and mood and neurovegetative symptoms58. Heterogeneity has 

also been identified across depression symptoms in terms of etiology, risk factors and impact 

on functioning57. These findings suggest that the analysis of narrower homogeneous and 

unidimensional symptom components or even individual symptoms is likely to be a more 

informative and productive avenue for future biology–psychopathology association studies.

Method bias

Method bias (sources of systematic measurement error stemming from the measurement 

process, such as method effects, for constructs) is a common, yet often neglected, potential 

source of measurement error in biology–psychopathology association studies. Sources of 

method bias include response styles commonly encountered in self-report, such as social 
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desirability (that is, responses attributable to the desire to appear socially acceptable), 

acquiescence (‘yea-saying’), disaquiescence (‘nay-saying’), extreme (selecting extreme 

response categories in Likert-type ordinal scales), and midpoint (selecting middle categories 

in Likert-type ordinal scales) response styles59. Method bias can distort dimensional 

structure, obscure true relationships between constructs and compromise validity60,. Method 

bias is caused by method factors, which describe sources of systematic measurement error 

that contribute to an individual’s observed score, thus attenuating subsequent analyses of 

association60. Indeed, method biases are one of the most important sources of measurement 

error59. Between one-fifth and one-third (18–32%) of the variance in self-report measures 

is attributable to method factors60. Method factors and the resulting method bias represent 

serious threats to study validity because, as systematic sources of error variance, they 

attenuate and otherwise distort the empirical relationship between variables of interest59.

Recommendations for precision psychiatric phenotyping

In this section, we outline some recommendations for enhancing the precision of psychiatric 

phenotyping and, ultimately, increasing the robustness and reproducibility of biology–

psychopathology association studies (Table 1 and Fig. 1).

Dimensional sampling and measurement

To overcome the limitations of categorical nosological systems, some have advocated for 

studying dimensional phenotypes that cut across traditional diagnostic categories, a view 

that closely aligns with the National Institute of Mental Health (NIMH) RDoC2 initiative. 

Psychometrically, mental disorders show a dimensional rather than a taxonomic structure61 

and dimensional measures of psychopathology exhibit greater reliability and validity than 

categorical diagnoses23. Indeed, the highly polygenic architecture of many psychopathology 

phenotypes implies that they are dimensionally distributed quantitative traits62. Greater 

statistical power can be further achieved in biological studies through a dimensional 

enhancement strategy, involving the recruitment of participants with subthreshold and non-

clinical levels of symptoms to leverage symptom variation across the full spectrum of 

severity63. The chances of sampling bias and clinical heterogeneity will be reduced, and 

effect size estimates will be less biased, with dimensional (versus case–control study) 

designs27. Dimensional sampling strategies are potentially more economical than case–

control sampling, as dimensional designs do not rely on thorough clinical pre-screening 

of participants prior to their inclusion in the study64. Dimensional sampling is also more 

likely to yield samples more representative of the population than case–control sampling, 

as dimensional sampling does not exclude individuals based on arbitrary clinical cut-offs 

and hierarchical exclusion rules43. However, to ensure sampling of the full spectrum of 

symptom or syndrome severity, participants likely to have elevated levels of the target 

psychopathology dimensions can be over-sampled (Fig. 3).

Deep phenotyping and use of standardized measures

Existing large-scale databases—such as the UK Biobank65—have a large number of 

participants who completed an array of measures. However, a limitation of these databases 

is minimal phenotyping of specific psychopathology phenotypes32. To address problems of 
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minimal and inconsistent phenotyping, we recommend comprehensive assessment using a 

deep phenotyping approach (comprehensive assessment of one or more phenotypes) with 

standardized psychopathology measures that can be widely adopted (for example, Box 3), 

and which are better suited for data pooling via established psychiatric research consortia 

(for example, ENIGMA and PGC)32. Broadband assessment of multiple dimensions of 

psychopathology should be undertaken due to the highly comorbid nature of mental 

health problems64. An advantage of deep phenotyping is that it enables the identification 

and accommodation of comorbidity, as well as person-centered and variable-centered 

heterogeneity. Deep phenotyping also facilitates greater comparability across studies and 

the potential harmonization of datasets. Examples of deep phenotyping can be found in 

existing cohorts30,31.

Use of homogeneous unidimensional scales and hierarchical modeling

Construct homogeneity (that is, the assumption or evidence that a construct reflects 

variance in a single phenotype) and unidimensionality (that is, the covariance amongst a 

homogenous item set is captured by one factor or latent variable, as opposed to two or 

more factors in the case of multidimensionality) are important qualities of scales used to 

assess psychopathology that enable researchers to isolate the specific sources of variance 

associated with biological measures66. Relatedly, owing to the potential empirical overlap 

of symptom components or empirical syndromes at low levels of the psychopathology 

hierarchy, it is important that the measures chosen assess homogeneous components 

with high discriminant validity to avoid redundancy43. We thus advocate for a ‘splitting’ 

approach in which psychopathological constructs are dissected into finer-grained, lower-

order homogeneous constructs to isolate specific variance while taking account of the 

hierarchical organization of these phenotypes67. A previous study68 provides an example 

of a splitting approach that identified significant associations between polygenic risk for 

schizophrenia and psychometric measures of schizotypy in a non-clinical sample that were 

otherwise obscured by the use of raw scores or a ‘lumping approach’. Unidimensionality 

of a construct can be evaluated using factor analysis within a structural equation modeling 

framework (Box 4).

Psychiatric symptoms are intrinsically hierarchical. Even homogeneous scales typically 

contain sources of variance spanning multiple levels of the hierarchy43. Failure to account 

for this structure leads to measurement contamination, and reduced reliability and validity 

for investigating biological associations (compare with example 1 of the Supplementary 

Information). Phenotypic complexity, multidimensionality, the heterogeneity problem, and 

the comorbidity problem can all be addressed via hierarchical modeling. There are two 

approaches to modeling the hierarchical structure of psychopathology: bottom up and top 

down. Bottom-up approaches leverage higher-order factor models and confirmatory factor 

analysis within an SEM framework (Box 4), with narrower psychiatric syndromes modeled 

at the first stage and broader spectra modeled at the second (for a tutorial, see ref. 69). 

Using a bifactor model, hierarchical sources of variance can be partitioned into a common 

factor (for example, p-factor) and orthogonal specific factors (for example, internalizing, 

externalizing; see example 1 of the Supplementary Information for a detailed illustration)44. 
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An alternative bottom-up approach uses hierarchical clustering, where questionnaire items or 

subscales are organized into homogeneous clusters based on shared features70.

The top-down approach is the bass-ackwards method71. The bass-ackwards method is 

useful for explicating complex hierarchical structures top down and involves extracting an 

increasing number of orthogonal principal components to represent the major dimensions of 

a multi-level hierarchy. The first unrotated principal component captures covariance amongst 

items or subscales from psychopathology questionnaires at the broadest level. In the second 

iteration of the method, two orthogonally rotated principal components are extracted; 

followed by three at the next iteration and so on. Component correlations are calculated 

between adjacent levels to evaluate continuity versus differentiation of psychopathology 

components. Proceeding further down the hierarchy, the covariance structure becomes 

differentiated into dimensions that are increasingly narrow conceptually and empirically, 

until distinct behavioral syndromes or symptom constellations are isolated. An example of 

the bass-ackwards method in the ABCD data is provided in ref. 72.

Increasing phenotypic resolution

To address the issue of low phenotypic resolution, items can be carefully selected within 

an iIRT framework (Box 5) so that they assay psychopathological severity across the full 

length of the latent-trait continuum, offering psychometric precision at all levels of the 

measured construct40. Alternatively, it is possible to select measures that have already been 

optimized within an IRT framework to increase measurement precision across the entire 

latent-trait continuum (for example, the computerized adaptive assessment of personality 

disorder; CAT-PD73). For unipolar traits, it is possible to bolster measurement precision with 

items from a related construct that represents the opposite (that is, adaptive) end of the 

continuum74. We demonstrate the utility of this approach in example 4 of the Supplementary 

Information, where we bolster the lower end of the CBCL attention problems latent 

trait continuum by pooling the items from this scale with items taken from the Early 

Adolescent Temperament Questionnaire – Revised (EATQ-R)17 effortful control subscale, 

which measures the adaptive end of the attentional control/attentional problems continuum.

Address measurement non-invariance

Measurement invariance should be thoroughly evaluated across groups, including sex/

gender, race/ethnicity and developmental stage. There are multiple resources for invariance 

testing, including analytic flow charts and checklists50. Differential item function (DIF) 

testing within an IRT framework provides a powerful approach to invariance testing, 

but requires larger sample sizes and involves more restrictive assumptions75. Where full 

invariance does not hold, partial invariance can be considered by freely estimating one or 

more model parameters in the comparison group76. Alternatively, researchers can utilize 

Bayesian approximate invariance testing, which is useful when there are many small, trivial 

differences between group parameters of no substantive interest, but which in combination 

result in poor model fit76. Groups or subsamples with partial non-invariance of their model 

parameters can still be meaningfully compared in some circumstances76.
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Measurement non-invariance can be accommodated in several ways. Groups or subsamples 

with fully non-invariant measurement parameters for psychiatric phenotypes should be 

analyzed separately. It is also possible to circumvent issues of measurement non-equivalence 

within both factor analytic and IRT frameworks by removing items identified as having 

non-invariant factor loadings or intercepts, or slope and threshold parameters, to ensure the 

equivalence of the latent variable across groups. However, in these instances researchers 

should be cautious of changing the substantive interpretation of the construct by narrowing 

its scope and breadth (that is, the attenuation paradox).

Mixture modeling

In contrast to situations where subgroups are easily identified and differentiated based 

on manifest, discrete characteristics such as sex and ethnicity, there are situations where 

subgroups embedded within the data are not directly observed, resulting in person-centered 

heterogeneity. Thus, prior to conducting biology–behavior association studies, it is important 

to verify that the psychiatric phenotypes can be treated as continuous dimensions in the 

sample. Mixture modeling provides a useful approach for investigating person-centered 

heterogeneity77. Mixture modeling is a particularly promising approach because it can 

identify latent classes or clinical subtypes, which often characterize psychopathology 

phenotypes77. Entropy provides a summary measure of the classification accuracy of 

participants based on the posterior probabilities of class membership within a mixture 

modeling analysis. It can range between 0 and 1.00, with higher entropy indicating better 

classification accuracy. When entropy is high (for example, ≥0.80) class membership can 

be used as a discrete categorical variable for subsequent analyses to compare results 

between classes. However, where entropy is low, classes must be compared using alternative 

analytic approaches that take into account the probabilistic nature of class membership. 

By identifying and analyzing subtypes, the confounding impact of sample heterogeneity 

on studies of the associations between biology and psychopathology can be reduced34. In 

example 5 of the Supplementary Information, we apply mixture modeling to the attention 

problems CBCL scale, using data from the ABCD 2-year follow-up. Results reveal evidence 

for two latent classes with different empirical distributions and item response profiles on the 

CBCL. These observations suggest that failure to account for the latent categorical structure 

of the attention problems scale could lead to erroneous results in biology–psychopathology 

association studies.

Multimethod assessment

A fundamental tenet of psychometrics is that measurement of a psychological attribute 

represents a trait–method unit, combining a person’s true score with systematic 

measurement error related to the assessment method66. Thus, at least two different 

assessment methods are required to differentiate the true score for a trait measure from 

method effects78. The recommended approach to circumventing issues of method bias is to 

use multimethod assessment and then implement statistical remedies to identify and exclude 

the method factors and decompose an observed score into true score, method variance 

(systematic error) and random measurement error60,78. The optimal statistical method for 

removing method variance is the trait method minus one [T(M-1)] model estimated within 

an SEM framework (Box 4)79.
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In example 6 of the Supplementary Information, we apply the T(M-1) method to the new 

composite scale we constructed in example 4, which combined CBCL attention problems 

scale items and the EATQ-R effortful control subscale items of the ABCD data. The 

purpose of applying the T(M-1) model was to control for method variance associated 

with subjective report by the primary caregivers and in doing so increase signal-to-noise 

ratio. To do so, we incorporated neurocognitive measures of the target attention problems 

construct; specifically, stop signal reaction time from the stop signal task and d-prime as 

an estimate of working memory from the n-back task, both of which are well-established 

endophenotypes of ADHD80,81. We were then able to specify the neurocognitive measures 

as the reference method, such that loadings from the CBCL and EATQ-R caregiver report 

items on the target attention problems factor captured only that variance shared with the 

neurocognitive measures. A methods factor captured the residual variance in subjective 

report by the primary caregivers that was unique to these measures79. We found that the 

attention problems factor was associated with polygenic risk for ADHD. By contrast, the 

methods factor that captured variance specific to caregiver-report measures of attention 

problems and attention control abilities was not significantly related to polygenic risk for 

ADHD (Supplementary Fig. 27). Thus, the T(M-1) model yielded a genetic association that 

was otherwise obscured by standard analyses.

Conclusions

It has been suggested that large, consortia-sized samples are necessary to discover 

robust and reproducible biology–psychopathology associations. Larger sample sizes are 

not sufficient to resolve the issues introduced by imprecise or otherwise suboptimal 

psychiatric phenotypes. As a field, we must first improve our measurement techniques. 

We recommended broadband, transdiagnostic assessment of hierarchically organized, 

unidimensional and homogeneous psychopathology dimensions across the full range of 

the severity spectrum. We encourage greater focus on deep phenotyping, measurement 

invariance, phenotypic resolution, and person-centered and variable-centered heterogeneity. 

A voluminous psychometrics literature—and the worked examples featured in this Review

—make clear that this multi-faceted strategy will increase validity, reliability, effect sizes, 

statistical power and, ultimately, replicability.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Box 1

The relationship between measurement reliability and observed effect size

The relationship between measurement reliability and the observed effect size20 is 

pertinent to many fields of research. Here, we discuss the issue in relation to psychiatric 

phenotypes in the context of associations with neurobiology and/or genetics. Constraints 

on the precision with which psychological attributes can be measured are captured by 

true score theory (also known as classical test theory), according to which, variance 

reflecting a psychological measurement includes a stable component that reflects a 

person’s ‘true score’ and measurement error82:

σobserved
2 = σtrue

2 + σerror
2 (1)

Thus, according to true score theory, all psychological measurement incorporates 

measurement error (that is, ‘error-in-variables model’49), some of which reflects: (1) 

systematic error attributable to other sources of variance that are not of substantive 

interest, for example method bias; and (2) random measurement error83. Measurement 

error attenuates associations between variables49. This bias is intuitively demonstrated 

with respect to the Pearson coefficient of product-moment correlation (r), which forms 

the basis of many analyses conducted in the literature on biology–psychopathology 

associations and can be used as an estimate of effect size. It has been demonstrated that 

the correlation coefficient, r, which is the sample realization of the population parameter 

rho (ρ), is always a biased estimate of the true association between two variables, x and 

y49:

rox,oy = rtx,ty rxxryy (2)

where rox,oy is the observed correlation, rtx,ty is the true correlation, and ryy and rxx are 

the reliability coefficients for variables x and y.

In most cases, the measurement error will be uncorrelated between the variables, 

resulting in greater dispersion in the data and an attenuation bias of the correlation 

coefficient and, by extension, smaller and less accurate effect sizes38,49. Relatedly, the 

standard error (s.e.) for the correlation coefficient increases as a function of smaller 

samples, n, and smaller effect sizes, r2, resulting in reduced efficiency of estimation84.

s . e .r = 1 − r2

n − 2 (3)

Since the probability value of the correlation coefficient is based on the distribution of 

Student’s t with n − 2 degrees of freedom t = r n − 2
1 − r2 , smaller effect sizes, as well as 

smaller samples, lead to lower statistical power. These issues are especially pertinent 

to measuring psychopathology phenotypes in biomarker research and, critically, will 

not be resolved simply by increasing sample sizes38. Assuming sample homogeneity, 

increased sample sizes will only reduce sampling variability ( n) but not proportionally 
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decrease measurement error. The estimates themselves will remain downwardly biased 

if measurement error is present. Finally, inasmuch as the resulting sample statistic fails 

to converge on the correct population parameter, it is less likely to be replicated in 

subsequent samples21.
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Box 2

Limitations of traditional approaches to psychiatric nosology

Existing diagnostic systems, such as DSM-5 and the ICD-11 have clinical utility, 

facilitating treatment and communication between mental health professionals and 

consumers of mental health services85. However, the psychopathological concepts 

invoked by modern nosology may have a tenuous relationship with biological 

correlates, undermining our attempts to link measurement of behavioral phenotypes 

with biomarkers3. The limitations of such nosological schemes for informing our 

understanding of the biology of mental disorders have long been recognized. Initially 

developed to capture psychiatric signs and symptoms without detailed consideration of 

etiology or pathophysiology3, diagnostic criteria have since been reified as reflecting, 

rather than merely indexing, the natural phenomenology of the proposed disease entities 

themselves, resulting in a conflation of diagnostic criteria with the proposed underlying 

disorder86. Philosophically, the field has fallen prey to the question-begging fallacy, in 

which diagnostic categories are investigated as if they are real entities without first asking 

whether the categories are valid in the first place.

The limitations of traditional nosologies introduce a substantial source of phenotypic 

imprecision due to questionable validity. Problematically, current diagnostic systems 

define mental disorders as polythetic-categorical constructs (that is, diagnoses defined 

by an established minimum number of criteria, not all of which are required for 

diagnosis). Prototypical symptoms occurring in pre-specified numbers and combinations 

are conceptualized as forming discrete taxa, underpinning binary diagnostic decisions. 

However, it is known that mental disorders have a dimensional rather than a taxonomic 

structure61, with the frequency and severity of symptoms extending as a continuum 

from the clinical to the subclinical and into the non-clinical range. A related issue is 

that individuals are generally diagnosed using hierarchical exclusion rules in diagnostic 

checklists, by which comorbid conditions may be ruled out based on meeting criteria 

for another disorder. These factors can lead to artificial ‘prototypical cases’ with 

elevated symptoms and no comorbidity, as well as distort the covariance structure 

of the data, which can impact subsequent analyses87. Additionally, focusing on a 

particular diagnostic category assumes homogeneity of symptoms and mechanisms (the 

homogeneity assumption—the assumption that different people with the same psychiatric 

diagnosis are phenotypically similar), but individuals with the same diagnosis may 

exhibit little to no overlap in symptoms (the heterogeneity problem—the grouping of 

cases with divergent symptom presentations into the same diagnostic category, or the 

grouping of symptoms with divergent etiology, pathophysiology, course and/or treatment 

response)34. Co-morbidity between putatively distinct disorders (that is, the comorbidity 

problem—psychiatric disorders co-occur in the same individuals more often than would 

be expected for independent entities, suggesting shared phenomenology and etiology)88, 

and issues of arbitrary clinical cut-offs and ignoring of the clinical significance of 

subthreshold symptomatology are well-documented limitations of current psychiatric 

Tiego et al. Page 21

Nat Ment Health. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



taxonomies89. These limitations obfuscate the search for the neurobiological correlates of 

psychiatric symptoms and constitute an impediment to future research in this domain90.
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Box 3

The Hierarchical Taxonomy of Psychopathology

The Hierarchical Taxonomy of Psychopathology (HiTOP) model is a potentially useful 

framework for precision psychiatric phenotyping. HiTOP is a data-driven approach 

to psychiatric nosology that organizes symptoms into homogeneous, hierarchically 

organized dimensions (Fig. 1)42. The problem of arbitrary diagnostic thresholds, 

subthreshold/subclinical symptomatology and low power is addressed by measuring 

psychopathology continuously with no artificial demarcation point designating health 

from disorder42. The comorbidity problem and heterogeneity problem are addressed by 

organizing co-occurring problems into homogeneous dimensions42. For example, the 

high comorbidity of major depressive disorder and generalized anxiety disorder are 

seen to reflect the operation of common etiological mechanisms, which are captured 

by the distress subfactor, which is situated under the broader internalizing spectrum 

within the HiTOP model. Thus, the broadest dimensions, reflecting common liabilities 

to psychopathology, are situated at the top of the hierarchy with the narrowest traits and 

symptom components situated at the bottom, reflecting liabilities to specific problems.

The development of an omnibus measure of the HiTOP modelis nearing completion and 

will be open-source and freely available for use without charge in both computerized 

and paper-and-pencil formats91. In the meantime, several existing instruments can be 

used to reliably assess HiTOP dimensions in youth and adults92. HiTOP-conformant 

measures enable broadband, transdiagnostic assessment of psychopathology at multiple 

levels of the hierarchy, from broad superspectra dysfunction and spectra to narrower 

subfactors and empirical syndromes. HiTOP-conformant measures focus on narrow 

homogneous and unidimensional constructs with high discriminant validity facilitating 

high reliability and valid inference43,66 for association studies with biology. At the lowest 

levels of the hierarchy, HiTOP encompasses even narrower symptom components (for 

example, anhedonia, insomnia) and maladaptive traits42. The latter provides a measure 

of the lower range and adaptive end of the psychopathology continuum. Combining 

measures of traits and psychopathology thus improves phenotypic resolution (that is, 

the reliability or precision of measurement of a phenotype along the full spectrum of 

the latent trait continuum). Notably, the higher order spectra of the HiTOP model are 

invariant across sexes and different age groups93. HiTOP dimensions, including the broad 

superspectra and spectra, as well as narrower subfactors and symptom components, can 

serve as phenotypic targets for neuroscience-informed Research Domain Criteria (RDoC) 

domains94.
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Box 4

Structural equation modeling

Hierarchical modeling, measurement invariance, mixture modeling and the T(M-1) 

model can be done within an SEM framework. SEM is a statistical technique that 

combines factor analysis, canonical correlation and multiple regression95. SEM can be 

used to extract the common variance from factor indicators of the construct of interest. 

The resulting factor, also known as a latent variable, is a purer measure of the construct 

of interest because only variance common to all variables that reflect the dimension 

of interest are included as shared variance95. In the common factor model estimated 

within the SEM framework, reflective latent variables (that is, an underlying factor is 

conceptualized as causing the covariance in the indicators) are estimated by decomposing 

observed variables into variance shared with the other factor indicators and variance 

that is unique to the variable (that is, variance attributable to a separate construct and 

measurement error). The formula is expressed as:

xi = ax + λxξi + θεi (4)

where xi is a measured variable (that is, observed or manifest variable), ax is an intercept, 

λx is a factor loading determining the influence of a factor ξi on the measured variable, 

and θεi is the unique variance or error of the measured variable that is not explained 

by the factor loading (Fig. 2). This model formalizes the following: (1) the target 

psychopathology phenotype is unobserved and must be inferred by one or more measured 

variables (for example, questionnaire items); (2) measured variables are imperfect indices 

of the target construct and incorporate measurement error; (3) factor indicators are not 

necessarily equally important measures of the target latent variable, as indicated by 

differences in the strength of the factor loadings (that is, λx).

In a structural regression model, SEM enables estimation of regression path coefficients 

between factors within the model. Thus, SEM estimates the empirical relationships 

between predictor variables and criterion variables with measurement error excluded 

from the final model95. An additional advantage of using SEM is that hypothesized 

multiple dependence relationships can be examined concurrently, along with complex 

interactions95. By contrast, some researchers use a two-step factor score regression 

technique in which factor scores estimates are derived from the latent variables as 

manifest variables and then incorporated into subsequent regression analyses. It is 

important to note that factor score estimates are not the same as latent variables due 

to factor score indeterminacy. In simple terms, factor score indeterminacy reflects the 

fact that an infinite set of factor scores can be estimated for the same analysis that will 

be equally consistent with the factor loadings. This is because the number of observed 

variables is less than the number of common and unique factors to be estimated96. The 

degree of factor score indeterminacy is related to the number of factor indicators and their 

communalities (that is, how much variance is explained in the variables by the factor) 

and is represented by a validity coefficient, which will vary between studies96. Factor 

score estimates can, therefore, misrepresent the rank ordering of individuals along the 

factor96. The degree to which factor score estimates preserve the correlations amongst 
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the factors in the analysis (that is, correlational accuracy) and are not contaminated by 

variance from orthogonal factors (that is, univocality) will also vary between studies96. 

The use of factor score estimates can also potentially bias the parameter estimates of the 

regression models97. Thus, we recommend against this approach in favor of SEM.

Ideally, biological measurements should be incorporated directly into latent models to 

capitalize on the increased measurement precision and statistical power that these models 

afford (for example, ref. 98). However, SEM generally requires sample sizes greater 

than 20099. Thus, it may not be feasible for many research studies examining biological 

variables. Several SEM packages are commercially available, such as Mplus (http://

www.statmodel.com/), and freely available as open-source software, such as lavaan in 

R (https://lavaan.ugent.be/). The HiTOP Consortium provided a primer for conducting 

SEM research in the context of dimensional hierarchical models of psychopathology69 

and there are several excellent entry-level texts for SEM, such as ref. 99.
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Box 5

Item response theory

IRT is a sophisticated approach to psychometric scale construction, evaluation and 

refinement and has been increasingly recommended for, and applied, in psychopathology 

research100. IRT encapsulates a set of measurement models and statistical methods 

that can be used to empirically model item level data100. The two-parameter logistic 

(2PL) model for dichotomous item response data and its extension for polytomous 

item response data, the graded response (GR) model, are the most commonly used 

models45,101. Two main parameters of interest are generated through IRT analysis: (1) a 

slope (also ‘discrimination’) parameter (α); and (2) a threshold (also severity or location) 

parameter (β). Slope parameters are akin to factor loadings and indicate how well an 

item measures the latent trait. They are measured in a logistic metric, generally ranging 

between ±2.8, with higher values indicating that an item is more discriminating between 

different levels of a latent trait100. Threshold parameters indicate the location on the 

latent trait continuum where an item is most sensitive to different levels of the latent trait. 

They are measured in a standardized metric (that is, M = 0, s.d. = 1) generally ranging 

between ±3, with more extreme values indicating that an item is sensitive to lower and 

higher levels of symptom severity100. These item-level parameters enable the amount of 

measurement precision, or ‘information’, to be quantified. Item information is additive 

and can be combined to represent the total measurement precision of items across the 

latent-trait continuum47. Information (I) can then be transformed into a standard metric 

of internal consistency reliability rxx = 1 − 1
I  (ref. 101). Items can thus be carefully 

selected to optimize measurement precision across the whole latent-trait continuum. 

Furthermore, items with high local dependence (that is, correlated residual variances) 

can be identified as redundant and removed. Despite the appeal of IRT for optimizing 

phenotypic precision in psychopathology research, it has not been utilized widely for 

identifying associations between psychometric constructs and biological measures.

Tiego et al. Page 26

Nat Ment Health. Author manuscript; available in PMC 2023 August 10.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1 |. The HiTOP model.
The broadest dimensions, reflecting common liabilities to psychopathology, are situated at 

the top of the hierarchy with the narrowest traits and symptom components situated at the 

bottom, reflecting liabilities to specific problems. Gray boxes with broken lines indicate 

hypothesized, but not yet confirmed, constructs. The broken single-headed arrows pointing 

to ‘Mania’ reflect preliminary relationships awaiting further confirmatory evidence.
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Fig. 2 |. The reflective latent variable model.
Reflective latent variable (common factor) model in which the unobserved psychobiological 

attribute (factor or latent construct; ξ), is conceptualized as explaining the variance/

covariance in the measured variables (x1,1–x1,4) via their factor loadings (λx1,1–λx1,4), 

which are linear regression coefficients. The indicator error variances (also residual 

variances or uniquenesses; θε1,1−θε1,4) capture the variance in each measured variable not 

explained by the factor (that is, variance not shared with the other indicator variables).
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Fig. 3 |. Precision psychiatric phenotyping.
Example workflow for a precision psychiatric phenotyping approach in the context of a 

biology–psychopathology association study.
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Table 1 |

Sources of imprecision in psychopathology phenotyping and proposed solutions

Problem Solution

Sampling bias Dimensional sampling and measurement

Minimal and inconsistent phenotyping Deep phenotyping and use of standardized measures

Phenotypic complexity Use of homogeneous unidimensional scales, test for multidimensionality and model hierarchical 
relations between dimensional constructs

Poor phenotypic resolution Increase phenotypic resolution by adding items assessing the adaptive end of the continuum

Measurement non-invariance Test for and accommodate measurement invariance

The heterogeneity problem

Person-centered heterogeneity Mixture modeling

Variable-centered heterogeneity Broadband assessment of psychopathology and hierarchical modeling

Method bias Multi-method assessment
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