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Abstract

Image reconstruction using deep learning algorithms offers improved reconstruction quality 

and lower reconstruction time than classical compressed sensing and model-based algorithms. 

Unfortunately, clean and fully sampled ground-truth data to train the deep networks is often 

unavailable in several applications, restricting the applicability of the above methods. We 

introduce a novel metric termed the ENsemble Stein’s Unbiased Risk Estimate (ENSURE) 

framework, which can be used to train deep image reconstruction algorithms without fully 

sampled and noise-free images. The proposed framework is the generalization of the classical 

SURE and GSURE formulation to the setting where the images are sampled by different 

measurement operators, chosen randomly from a set. We evaluate the expectation of the GSURE 

loss functions over the sampling patterns to obtain the ENSURE loss function. We show that this 

loss is an unbiased estimate for the true mean-square error, which offers a better alternative to 

GSURE, which only offers an unbiased estimate for the projected error. Our experiments show 

that the networks trained with this loss function can offer reconstructions comparable to the 

supervised setting. While we demonstrate this framework in the context of MR image recovery, 

the ENSURE framework is generally applicable to arbitrary inverse problems.
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I. Introduction

The recovery of images from a few of their noisy measurements is a classical inverse 

problem, which is central to several imaging modalities. For instance, the recovery of MR 

images from a few of their multi-channel k-space samples using compressed sensing (CS) 

[1]–[3] algorithms is a popular approach to speed up the scans. Deep learning methods have 

recently emerged as powerful alternatives to CS-based approaches. These methods rely on 
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convolutional neural network (CNN) models that offer reduced computational complexity 

and improved performance. These deep learning methods can be categorized as direct 

inversion schemes [4], [5]and model-based schemes [6]–[11]. The model-based methods 

account for the imaging physics using a numerical model along with a deep, learned prior. 

The CNN modules in the above algorithms have been trained in a supervised mode, where 

an extensive amount of fully sampled training data is required. While large multi-center 

datasets are emerging for common applications such as brain and knee imaging [12], similar 

datasets are not available for all settings. More importantly, it is often challenging to acquire 

fully sampled datasets in applications including dynamic and static MRI with high spatial 

and temporal resolution. Unsupervised methods that can learn the deep networks from 

undersampled data directly can significantly improve the applicability of these approaches.

The unsupervised optimization of the parameters of image reconstruction and denoising 

algorithms have a long history. Early approaches relied on L-curve [13] and generalized 

cross-validation [14] to optimize the regularization parameters in regularized image 

recovery. Another approach is to use Stein’s Unbiased Risk Estimate (SURE) [15] to 

determine the optimal parameters. The SURE loss is an unbiased estimate of the mean-

square-error (MSE) that only depends on the recovered image and the noisy measurements. 

For example, SURE-let- and PURE-let-based methods optimize the thresholds in wavelet-

based image denoising with Gaussian [16], [17] and Poisson noise[18]. Recently, SURE has 

been used to train deep image denoisers in [19]–[21]. The SURE approach was extended to 

inverse problems with a rank-deficient measurement operator, which is termed generalized 

SURE (GSURE) [22]. GSURE provides an unbiased estimate of the projected MSE, which 

is the expected error of the projections in the range space of the measurement operator. 

GSURE was recently used for inverse problems in [19]. Unfortunately, the experiments in 

[19] show that the GSURE-based projected MSE is a poor approximation of the actual MSE 

in the highly undersampled setting. To improve the performance, the authors trained the 

denoisers at each iteration in a message-passing algorithm in a layer-by-layer fashion using 

classical SURE, which is termed LDAMP-SURE [19]. A similar approach was used for 

MRI recovery in [21]. The GSURE metric was also used in a deep image prior framework 

recently [23]. In the supervised context, the end-to-end training of model-based algorithms 

[6]–[11] has been shown to be significantly more efficient than the layer-by-layer training 

strategies [19], [21].

Unsupervised strategies that do not use SURE have also been recently introduced. For 

instance, Noise2Noise [24] relies on a pair of noisy images to train a denoiser without the 

need for clean images. Noise2Void [25] is a blind spot method that excludes the central pixel 

from the network’s receptive field. A similar strategy was used in self-supervised learning 

using data undersampling (SSDU) [25] for the end-to-end training of unrolled algorithms. 

This approach partitions the acquired measurements into two disjoint sets. The first set is 

used for the data consistency and the remaining set is used to define the loss. These methods 

offer reasonable results in the denoising (full-sampled) and low undersampling setting. 

However, as the undersampling factor increases, the available measurements are limited, 

restricting performance.
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We introduce a novel loss function termed ensemble Stein’s Unbiased Risk Estimate 

(ENSURE) to train deep networks. We assume that the sampling operator for each image 

is randomly chosen from a set; we evaluate the expectation of the GSURE losses over 

the sampling patterns. We show that the resulting loss metric is an unbiased estimate of 

the true MSE, hence, is a superior loss function when compared to projected SURE [22]. 

We note that such a measurement scheme can be realized in practice, where a different 

sampling mask can be chosen from a lookup table for each image. Similar to classical SURE 

metrics [16], [22], the proposed ENSURE loss metric is the sum of data consistency and 

divergence terms. While the divergence term is similar to GSURE, the data consistency term 

in ENSURE is the sum of the weighted projected losses [22], where the weighting depends 

on the class of sampling operators. When the divergence term is not used, the proposed 

loss reduces to only the projection error, which is observed to offer poor performance. The 

divergence term serves as a network regularization that minimizes the over-fitting to the 

measurement noise. The experiments demonstrate that the proposed ENSURE approach can 

offer results comparable to supervised training.

The main focus of this paper is to introduce the ENSURE metric for unsupervised training 

of deep networks. The main contributions of the paper are as follows

• We propose to sample different images using different undersampling operators. 

We introduce an new metric involving the weighted average of projected mean-

square errors. We mathematically show that the expectation of this metric is 

essentially the true mean-square error.

• When fully sampled images are not available, we show that the weighted 

projected MSE can be approximated using the ENSURE metric, thus eliminating 

the need for fully sampled training datasets.

• We rigorously validate the proposed ENSURE metric in multiple datasets, 

undersampling patterns, and with different deep image reconstruction algorithms. 

We also compare the proposed framework against state-of-the-art unsupervised 

methods.

II. Background

In this section, we briefly review the background to make the paper self-contained.

A. Inverse Problems & Supervised Learning

We consider the acquisition of the complex-valued image ρ ∈ ℂN using the multichannel 

measurement operator As as

ys = As ρ + n . (1)

We assume the noise n to be complex-valued Gaussian distributed with zero mean and 

covariance matrix C such that n ∼ N 0, C . We note that the probability distribution function 

(PDF) of ys is given by p ys ∣ s = N Asρ, C .
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In this work, we assume the measurement operator As to be randomly chosen and 

parameterized by a random vector s that is independent of n, drawn from a set S. For 

example, As can be viewed as a Fourier transform followed by multiplication with a k-space 

sampling mask parameterized by s in the single-channel MRI setting. The binary mask s is 

chosen at random, where the probability of a specific value being one is pre-specified. In the 

multi-channel setting, As corresponds to multiplying ρ with the coil sensitivities to obtain 

multiple sensitivity weighted images, followed by the undersampled Fourier transform of 

each of the images. The goal of the image reconstruction scheme is to recover ρ from ys. The 

inverse problem in (1) gets simplified to the image denoising model when As = ℐ.

Supervised deep learning methods learn to recover the fully sampled image ρ only from 

noisy and undersampled measurements ys. Let

u = As
HC−1ys (2)

We note that u is a random variable because of the additive noise in (1). In that case, the 

recovery using a deep neural network fΦ with trainable parameters Φ is represented as

ρ = fΦ u . (3)

Here fΦ can be a direct inversion or a model-based deep neural network. Supervised 

approaches often rely on the loss function:

Sup‐Loss = ∑
i = 1

Ntrain

ρi − ρi 2
2

(4)

to train the network using Ntrain  number of images.

B. Unsupervised Learning of Denoisers

When noise-free training data is unavailable, denoising approaches such as Noise2Noise 

[24] and blind-spot methods [25]–[27] have been introduced for unsupervised learning of the 

network parameters Φ. Assuming the additive noise n to be Gaussian distributed, the SURE 

[15] approach uses the loss function

SURE(ρ, u) = ∥ ρ − u ∥2
2 + 2σ2∇u ⋅ fΦ(u) − Nσ2, (5)

which is an unbiased estimate of the true mean-square error, denoted by

MSE = Eu ∥ ρ − ρ ∥2 (6)

Note that the expression in (5) does not depend on the noise-free images ρ; it only depends 

on the noisy images u and the estimates ρ. In (5), ∇u ⋅ fΦ u  represents network divergence, 

which is often estimated using Monte Carlo simulations [28]. Several researchers have 

adapted SURE as a loss function for the unsupervised training of deep image denoisers [19], 

[21] with performance approaching that of supervised methods.

Aggarwal et al. Page 4

IEEE Trans Med Imaging. Author manuscript; available in PMC 2024 April 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



C. Unsupervised training with rank deficient A
The unsupervised training of deep networks for image recovery is significantly more 

challenging than the denoising setting when A is rank deficient. In particular, the 

measurement model only acquires partial information about the images, in addition to the 

additive noise. The Deep Image Prior (DIP) [29] approach exploits the structural bias of 

CNNs towards natural images; they optimize the network parameters such that the loss 

∥ Asρ − ys ∥2
2 is minimized. Since this approach requires the network to be trained for each 

image, the computational complexity is high during inference. In addition, the quality of the 

recovered images is often inferior to the ones obtained from supervised training. Another 

challenge is the need for manual early stopping of the algorithm to minimize the over-fitting 

to noise.

One may use the generalization of a DIP approach for an ensemble of images, which we 

term as measurement domain (k-space in MRI) MSE loss:

K‐MSE = ∑
i = 1

Ntrain

Asiρi − ysi 2
2 . (7)

This K-MSE approach is prone to overfitting the reconstructed image to the noisy 

measurements [26]. The SSDU approach [26] was introduced to minimize this over-fitting 

[26]. SSDU, which may be viewed as an extension of blind-spot methods (e.g., [25]), 

suggests partitioning the available k-space into two disjoint groups for the data-consistency 

step and loss function estimation, respectively. The partitioning of k-space, along with the 

use of different sampling masks for different images, is observed to provide improved results 

when compared to (7).

The projected GSURE approach was used to train model-based deep learning algorithms in 

the unsupervised setting in [19]. Specifically, the GSURE loss is an unbiased estimate of the 

projected MSE

MSEs = Eρ ∼ ℳ∥ Ps ρ − ρ ∥2, (8)

where Ps = As
H(AsAs

H)−1As is the projection operator to the range space of As
H and ℳ is 

the set of images. The authors of [19] noted that MSEs is a poor approximation of MSE 

in the highly undersampled setting. Hence, instead of directly using GSURE, the LDAMP 

algorithm instead relies on layer-by-layer training of deep learned denoisers [19] using the 

SURE loss discussed in Section II-B. This scheme implicitly assumes that the alias artifacts 

at each iteration are Gaussian distributed, which is not a realistic assumption. In addition, the 

end-to-end training of model-based algorithms [6]–[9] often offers improved performance 

compared to the above layer-by-layer strategies.

III. Ensemble SURE (ENSURE) framework

The training of the deep network fΦ in (3) using only the measurements ys in (1) is 

challenging when the sampling operator As is rank deficient. More specifically, ys carries 
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only partial information about the images ρ, in addition to being noisy. To improve the 

training in the setting without fully sampled images, we consider the sampling of each image 

using a different sampling pattern. In the MRI context, we assume the k-space sampling 

mask s to be a random vector drawn from the distribution S. We note that this acquisition 

scheme is realistic and can be implemented in many applications. For instance, it may be 

difficult to acquire a specific image in a fully sampled fashion due to time constraints. 

However, one could use a different undersampling mask for each image ρ ∼ ℳ. The main 

theoretical contribution of this work is that the expectation of the weighted SURE metrics 

over the sampling patterns is equal to the true MSE, which offers a better metric than 

GSURE, which approximates the projected MSE.

In the next section, we consider the expectation of the projected MSE over the sampling 

patterns, which involve the ground truth images. We show that averaging the projected MSE 

values will not approximate the true MSE, but a weighted version of the MSE. We thus 

define a projected and weighted error, which when averaged over the sampling patterns 

will approximate the true MSE. In Section III-B, we introduce the ENSURE metric, which 

evaluates the projected and weighted error metric without using the ground truth images; we 

show that the expectation of ENSURE yields the true MSE.

A. Averaging the projected error over sampling patterns

We consider a specific image ρ and consider the projected error ∥ Psρ − Psρ ∥2. In the 

noiseless setting, we compute Psρ, which depends on the sampling pattern s. In a noisy 

setting, this measure cannot be directly computed. We now compute the expectation of the 

projected errors over an ensemble of measurement operators:

Q u = Eu Es ∼ S ∥ Ps ρ̂ − ρ ∥2 . (9)

The following result shows that the above measure only gives a weighted version of the true 

MSE in (6).

Lemma 1: The expected loss Q in (9) is equal to the weighted MSE:

Q = Eu ∥ W (ρ − ρ) ∥2
(10)

where W is a weighting matrix that is dependent on the set of measurement operators.

Proof: Denoting the error e = ρ − ρ and ignoring its dependence on s, we obtain

Q = Eu Es ∥ Pse ∥2
(11a)

≈ Eu eTEs Ps e = Eu eTQe (11b)
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We used the symmetry of the projection operators and P2 = P in the above step. Here, Q
is the ensemble of projection operator. We denote the matrix square root of Q by W (i.e., 

W2 = Q) to obtain

Q = Eu eTWTWe (11c)

= Eu ∥ W(ρ − ρ) ∥2
2 , (11d)

Note that Q corresponds to the average of the projection operators. Depending on the 

sampling operators, the weighting by W amounts to weighting some aspects of the images 

more heavily than other features.

We will now illustrate the above result in the special case of single-channel MRI when 

As = SF ∈ ℂn × m, where F ∈ ℂm × m is the Fourier matrix and S ∈ ℝn × m; n < m is the 

sampling matrix. The projection Ps gets simplified as Ps = As
H(AsAs

H)−1As = FHMsF. Here, 

Ms = STS ∈ ℂm × m is a diagonal matrix. The diagonal entries are one if the specific sample is 

acquired and zero otherwise.

We now consider the diagonal entries to be drawn from a Bernoulli distribution with a 

probability that depends on the spatial frequency location. Note that variable-density masks 

are routinely used in CS settings. We thus obtain Q = FHdiag(d)F, which translates to

W = FHdiag( d)F (12)

The weighted loss Q is equivalent to the MSE if the sampling density is uniform. However, 

most sampling operators rely on variable-density masks with higher density in the k-space 

center. In this case, the training of the networks using Q will translate to reduced weighting 

for higher Fourier samples, resulting in reduced high-frequency details.

B. ENSURE: Unbiased Estimate of MSE

To compensate for this weighting, we consider the weighted version of the projected 

error and compute the expectation over the set of sampling patterns S and the images, 

or equivalently u:

ℒ = Eu Es ∼ S ∥ Rs ρ − ρ ∥2
2 , (13)

where Rs = W−1Ps is the weighted projection operator. We note that Rsρ still lives in the 

range space of A. Using a similar argument in Lemma 1, we can show that ℒ = MSE.

We note that the loss function (13) depends on the fully sampled ground truth images 

ρi; i = 1, …N. Hence, it is impossible to directly compute it in an unsupervised setting. We 

hence use the SURE approach to evaluate it without requiring the ground truth images. We 

expand (13) as
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ℒ = EuEs ∥ Rsρ̂ ∥2
2 + EuEs ∥ Rsρ ∥2

2

− 2EuEs ρ̂TRs
TRsρ
D

(14)

We note that the estimate ρ = fΦ u  in our setting is provided by a deep network f, whose 

weights are denoted by Φ and hose input is

u = As
HC−1y (15)

Our goal is to train the network fΦ or equivalently minimize the above expression with 

respect to ρ.

We note that the first term in (14) is independent of ρ and can be computed. The second term 

is a constant that does not depend on ρ. The third term, which includes both ρ and ρ. We 

show in the Appendix that this term can be computed using SURE as

EuEs ρ̂TRs
TRsρ = EuEs ρ̂TDρLS − ∇u ⋅ Dρ̂ (16)

Here, ρLS is the least-squares solution specified by

ρLS = As
HC−1As

†As
HC−1ys . (17)

The term ∇u ⋅ DfΦ u  represents the divergence of the network fΦ with respect to its input u.

Combining (14) and (16), we obtain

ℒ = EuEs ∥ Rsρ̂ ∥2
2 + ∥ Rsρ ∥2

2 − 2 Rsρ̂ TRsρLS

+ 2EuEs ∇u ⋅ Dρ̂
(18)

= EuEs ∥ Rs ρ̂ − ρLS ∥2
2 + 2∇u ⋅ (Dρ̂) + κ (19)

We combined the first and third terms in (14) and completed the square to obtain the 

ENSURE loss as (19).

Here,

κ = EuEs ∥ Rsρ ∥2
2 − ∥ RsρLS ∥2

2
(20)

is a constant that is independent of the network.

In practice, we approximate the expectation by a summation

ENSURE = 1
N ∑

i = 1

N
Rsiρi − ρLS,i 2

2

dataterm
+ 2∇ui ⋅ DfΦ ui

divergence
(21)
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where we ignore the constant κ. Here, ui are the zero-filled reconstructions (see Section 

(III-B.1) for details) of the ith image. We assume that each image ρi is sampled by the 

corresponding sampling pattern si.

The loss function in (21) is an unbiased estimate for the true MSE, specified by (6), up to a 

constant. Since this loss function does not require the fully sampled reference images, it can 

be used to train a deep learning image reconstruction algorithm in an unsupervised fashion. 

The data term in (21) involves the average of the weighted projected losses evaluated over 

the N training examples. The divergence term is computed over all the data and serves as a 

regularization term to account for the impact of noise.

We now focus on some special cases in the context of MRI.

1) Single-channel setting with C = σ2I: In many cases, we assume that C = σ2I, 
when we obtain

ρLS = As
HAs

†As
Hys = As

H AsAs
H −1ys . (22)

In the single-channel setting, AsAs
H = ℐn × n because of the orthogonality of Fourier 

exponentials. Thus ρLS simplifies to

v = As
Hys, (23)

which is often termed as the zero-filled reconstruction. In this case, the data term 

involves the comparison of the projection of the reconstructed image and the zero-filled 

reconstructions.

2) Multichannel case with C = σ2I: : In the multichannel setting, AsAs
H ≠ ℐ, and 

hence the least-square solution is not equal to the zero-filled reconstruction v. Many deep 

learning algorithms use the zero-filled image v as the input to the deep networks rather than 

its scaled version u = σ2v; we now express the divergence term in (21) in terms of v. We 

consider a network gϕ, whose input is v rather than u:gϕ v = fϕ u . We thus have

∇ui ⋅ fΦ ui = ∇ui ⋅ gΦ vi = ∇vi ⋅ gΦ vi dvi/dui

σ2 (24)

In this case, the ENSURE loss in (21) can be rewritten as

ENSURE = 1
N ∑

i = 1

N
Rsi ρi − ρLS,i 2

2

dataterm
+ 2σ2∇vi ⋅ gΦ vi

divergence
(25)

Here, we ignored the constant term κ. We note that this form is similar to (5), especially 

when Rs = I.

We note that the divergence term in (23) is scaled by σ2. The divergence serves as a 

regularization term on the deep network, making the learned network more robust to input 
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noise/perturbations. The balance between the data consistency term and the divergence term 

in (25) is controlled by 2σ2; more regularization is applied when the input is more noisy. 

When σ 0, the divergence term disappears, when the ENSURE based approach simplifies 

to a loss-function that only involves k-space losses. In this work, we do not consider any 

additional tuning parameter to the divergence term; our loss function is specified by (25).

C. Implementation details

We compute the least-squares solution as

ρLS = arg min
ρ

∥ Asρ − ys ∥2 + λ ∥ ρ ∥2
(26)

= (As
HAs + λℐ)−1As

Hys (27)

with λ 0. When λ = 0, the above equation can be shown to be equivalent to As
H(AsAs

H)−1ys. 

In the parallel MRI setting, the least-square solution ρLS, s in (22) is often called the SENSE 

[30] solution. We solve (26) using the conjugate gradients algorithm.

We compute the projection operator Ps as Ps = (As
HAs)†(As

HAs) in (9) and (21). We note that 

the projection can be obtained by replacing ys in (26) with ys = Asρ. We thus have:

Psρ = arg min
ζ

∥ Asζ − Asρ ∥2 + λ ∥ ζ ∥2
(28)

with λ 0; in the MRI setting, this corresponds to the SENSE recovery from Ase. When the 

weighting is also included, we compute

Rse = arg min
ζ

∥ DsAs ζ − e ∥2 + λ ∥ ζ ∥2 , (29)

where Ds = diag ds
− 1

2 , where ds corresponds to the density at the sampling locations.

Combining (26) and (29), the computational structure of the data term is shown in Fig. 

1(a). In particular, we compare the recovered images with their CG-SENSE reconstructions 

specified by ρLS. Note that the CG-SENSE solutions may have residual aliasing components. 

To make the data consistency term insensitive to these errors, the error e = ρ − ρLS is 

projected to the range space of As. An additional weighting is used to compensate for the 

non-uniform density of the sampling patterns in k-space, which is implemented as in (29).

The divergence term in (21) is computed using Monte-Carlo simulations [28] as in Fig. 

1(b). Specifically, noise perturbations are added to the input to the network, and the 

corresponding perturbations in the output of the network are estimated. The divergence 

term is approximated as
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divu fΦ u = lim
ϵ 0

1
ϵ En nT fΦ us + ϵ n − fΦ us .

Here n is the standard Gaussian. As in [28], we observe that the expectation can be 

approximated by a Monte-Carlo approach involving different noise realizations. In practice, 

one noise realization per image per epoch is sufficient to obtain a good approximation as 

observed in [28]. Note that the use of the data term alone will result in over-fitting, similar 

to observations in DIP methods as the number of epochs increases. The divergence term may 

be viewed as a network regularization, which serves to minimize noise amplification.

In this work, we estimate the W matrix by evaluating multiple sampling matrices and by 

computing their average.

In this work, we have assumed the Cartesian sampling mask, where each entry is a Bernoulli 

random variable whose probability at each spatial frequency location to be given by a 

Gaussian function; the probability of the samples is higher in the k-space center and lower at 

higher frequencies. We do not fully sample the k-space center. Algorithm I summarizes the 

steps of the proposed ENSURE loss for performing unsupervised training.

Algorithm 1

ENSURE loss function calculation.

Input:
ys
, 
As

Output: ENSURE loss

1: Estimate the zero-filled reconstruction 
u = As

Hys
.

2: Estimate the least square solution 
ρLS
by solving Eq. (22).

3: Estimate the network prediction 
ρ
using 
fΦ
.

4: find the error as 
e = ρ − ρLS
.

5: Solve Eq. (29) to apply weighted projected 
ℛs
on 
e
.

6: Take the L2-norm of 
ℛse
to get the data-term.

7: Find divergence term of Eq. (25) as in Fig.1 (b).
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8: Estimate the ENSURE loss as the average of data-term and scaled divergence term as in Eq. (25).

D. Deep network architectures

We used the model-based deep learning architecture, as shown in Fig. 2 for the initial 

comparisons. The CNN had five layers, each with 3 × 3 convolution, batch normalization, 

and ReLU non-linearity. Fig. 2 also shows the number of feature maps on top of each layer. 

The network had shared parameters in three unrolling steps. We trained the network for a 

total of 50 epochs with a fixed learning rate of 10−3. The data-consistency (DC) step utilized 

the complex data, whereas the CNN used the real and imaginary components of the complex 

data as channels.

IV. Results

We consider publicly available [6] parallel MRI brain data acquired using a 3-D T2 CUBE 

sequence with Cartesian readouts using a 12-channel head coil at the University of Iowa 

on a 3T GE MR750w scanner. The Institutional Review Board at the University of Iowa 

approved the data acquisition, and written consent was obtained from the subjects. The 

matrix dimensions were 256 × 232 × 208 with a 1 mm isotropic resolution. Fully sampled 

multi-channel brain images of nine volunteers were collected, out of which data from five 

subjects were used for training. The data from two subjects were used for testing and the 

remaining two for validation.

The validation data was used to terminate the training process. We utilized the ESPiRiT 

algorithm [31] to estimate the coil sensitivity maps.

We also used a subset of the fast-MRI [12] knee dataset, consisting of 100 subjects, to 

demonstrate the utility of ENSURE on multiple unrolled architectures. The data from 43 

subjects were used for training, two for validation, and the rest for testing.

A. Comparison with state-of-the-art methods

We compare the proposed ENSURE approach with the following supervised and 

unsupervised methods.

Two supervised learning algorithms—E-to-E-Sup and L-by-L-Sup: The E-to-E-Sup 

approach refers to the end-to-end supervised training approach [6]. To make it consistent 

with the rest of the experiments, we use multiple sampling patterns during training. The 

L-by-L-Sup uses a similar acquisition and reconstruction architecture but relies on the 

supervised training of the CNNs in each layer. Both approaches use the loss function in (4) 

for training. We note that the number of free parameters in L-by-L-Sup is threefold higher 

than E-to-E-Sup, where the CNN parameters are shared across iterations.

GSURE-based unsupervised learning: The GSURE loss, which is an unbiased 

estimate of projected MSE in (8), was originally introduced for regularization parameter 

selection. We consider the direct use of GSURE to train deep image reconstruction 
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algorithms. Here, the sampling operator is assumed to be the same for all training images as 

considered in [19].

Unsupervised learning with different sampling patterns: We compare the 

proposed scheme against K-MSE, SSDU [26], and LDAMP-SURE [19]. The measurement 

operators are randomly chosen for each image in all of these approaches, but are assumed to 

be fixed for each image; we do not vary them during iterations. The K-MSE (7) loss function 

involves the square of the error between measured and predicted k-space. As discussed 

previously, the K-MSE approach is vulnerable to over-fitting to noise. To minimize over-

fitting, SSDU partitions the measured k-space samples into two disjoint groups: one group 

is used to reconstruct the images, while the second is used to evaluate the loss function. 

The 80–20 partition of k-space offered the best PSNR in our experimental setup. The 

LDAMP-SURE algorithm relies on layer-by-layer training. The five-layer CNN at each 

layer is independently trained as a denoiser using the SURE loss function.

We consider the recovery from 2-D random sampled multi-channel data in Table I. The 

PSNR and SSIM [32] for two different acceleration factors of 4x and 6x are reported in 

the first and last columns. To study the impact of measurement noise on the algorithms, we 

also consider a setting with additional Gaussian noise of standard deviation σ = 0.03 added 

to the undersampled k-space data at 4x acceleration; these results are shown in the second 

column of Table I. The top two rows consider the supervised setting, while the remaining 

rows denote the unsupervised methods discussed above.

Fig. 3 visually compares the reconstruction quality of different unsupervised learning 

techniques with E-2-E-Sup learning at the 4x acceleration factor. In this low-noise setting, 

K-MSE offers nearly the same reconstruction quality as SSDU, which is also seen in Table I. 

The zoomed region shows that LDAMP-SURE, K-MSE, and SSDU have visible artifacts in 

the reconstructions compared to GSURE and ENSURE. The image quality of GSURE and 

ENSURE are comparable in this setting.

Fig 4 shows reconstruction results at a higher acceleration factor of 6x. We note that 

the performance of the ENSURE approach is comparable to that of the supervised 

approach at this high acceleration rate. By contrast, we observe that GSURE, K-MSE, 

and LDAMP-SURE exhibit more noise-like artifacts along with blurring. A green rectangle 

in the zoomed images shows a hallucinated feature in the LDAMP-SURE because of layer-

by-layer training of individual networks instead of end-to-end training in the proposed 

ENSURE approach. The SSDU approach offers less-noisy reconstructions compared to 

these approaches. However, the PSNR is around 0.5 dB lower than ENSURE. An arrow in 

the zoomed cerebellum region points to a feature that is well preserved by ENSURE while 

blurred by SSDU.

B. Performance in high-noise setting

As described previously, the divergence serves as a regularization term on the deep network, 

making the learned network more robust to input noise/perturbations. In the low noise 

setting σ 0 , the weight for the divergence term in (25) tends to zero. In this case, 

ENSURE simplifies to the DC term, which is a weighted version of the K-MSE loss. The 
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difference of ENSURE with this simple strategy is higher at high noise settings, which 

might happen at low-field or FLAIR acquisitions. To study the benefit of the proposed 

formulation in high noise settings, Gaussian noise of standard deviation σ = 0.03 was added 

to the measured k-space data at 4x acceleration. The comparison of the methods is shown in 

Fig. 5, which can also be seen in the second column of Table I. In this setting, we observe 

that E-to-E-Sup and L-to-L-Sup have nearly the same mean PSNR values. We observe that 

the LDAMP-SURE approach performs better than the GSURE approach in this high noise 

setting, as reported in [19]. In particular, the projected MSE is a poor approximation for 

the MSE, which translates to poor reconstructions in the presence of noise. The improved 

performance of SSDU over KMSE shows that the partitioning strategy used in SSDU 

can reduce the over-fitting to noise. The ENSURE approach offers the best PSNR out of 

the unsupervised strategies and is comparable in PSNR and image quality to E-to-E-Sup. 

We observe that ENSURE is robust to increased noise variance when compared to other 

algorithms that do not use the divergence term. While GSURE also uses the divergence 

term, the data consistency term is very different from ENSURE, which causes an imbalance 

between the two terms; we attribute the lower performance of GSURE in this setting to the 

imbalance.

C. Impact of different loss terms: ablation study

The ENSURE approach has two key differences from the GSURE framework: (a) the use 

of an ensemble of sampling patterns, and (b) the use of additional weighting within the DC 

term. We now study the impact of these components on performance.

1) Need for using an ensemble of measurement operators: We compare the 

GSURE framework, which uses a single sampling pattern for all the images, with 

the ENSURE formulation, which uses multiple sampling operators in Figure 6. A one-

dimensional Cartesian sampling at 2x acceleration with an additional Gaussian noise of 

σ = 0.02 was used. We note that aliasing artifacts and blurring are visible in the GSURE 

approach. In contrast, the ENSURE approach offers comparable performance to the E-to-E-

Sup-MSE. A major source of the improved performance is the use of the ensemble of 

measurement operators, which makes ENSURE closely approximate the true MSE. By 

contrast, the GSURE approach is only approximating the projected MSE, which is inferior 

in the undersampled setting, as discussed in [19].

2) Impact of the weighting: This experiment compares the impact of the proposed 

weighting strategy in (13) at 4x acceleration using a 2D random variable-density sampling 

pattern. We trained two networks with experimental setups that are similar except for the 

loss function. When we set the weights W to identity in (21), it results in a network trained 

with the ENSURE loss without weighting. The reconstruction quality and error maps in 

Fig. 7 demonstrate that the proposed weighting scheme improves the reconstruction quality 

significantly.

D. Applicability to other deep image recovery algorithms

We demonstrate the applicability of the proposed loss function to other deep image recovery 

algorithms at 2x acceleration in Table II; the reconstructed images are not shown in this 
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case because there are no substantial differences between them. Here, we use a subset of 

100 datasets from fastMRI [12]. The noise variance was estimated from one fully-sampled 

dataset, which was used for the rest of the datasets. The first four columns in Table II 

correspond to different algorithms trained using fully sampled ground truth and ENSURE, 

respectively. A uniform density sampling pattern with the fully sampled center for coil 

sensitivity estimation, provided by fastMRI challenge [12], was used in these experiments. 

In each column, we report the PSNR (top) and the SSIM (bottom) values. The comparisons 

show that all of the algorithms (ADMMnet, FISTAnet, and MoDL) offer somewhat similar 

performance on this dataset when trained with MSE. The results also show that ENSURE is 

capable of offering comparable reconstructions for these algorithms.

We also study the impact of ENSURE under different sampling conditions in the last three 

columns on Table II. MoDL-MS refers to ENSURE implementation, where a different 

random undersampled mask is used at each epoch. We note that such an approach is not 

feasible in settings where only the undersampled data is available. This experiment is to 

determine the impact of mask shuffling on image quality. We note that the results in this 

setting are compared to MoDL without mask shuffling. This shows that the approximation 

of the expectation over the sampling pattern in (13) is accurate, even when only one 

sampling pattern per image is considered (MoDL setting, without mask, shuffling). The 

last two columns, SENSE-VD and MoDL-VD, consider 2x variable-density sampling, using 

masks similar to the brain experiments. We note that the higher density in the center of 

k-space translates to improved performance. However, the gap between MSE and ENSURE 

remains almost the same, indicating that the specific choice of sampling patterns have less 

impact on the ENSURE approximation.

V. Discussion

We observe from Table I, as well as the figures, that the proposed unsupervised learning 

using the ENSURE loss function offers PSNR and SSIM values that are comparable to those 

of E-to-E-Sup. The experiments in Section IV-C show that the ensemble of measurement 

operators and the weighted loss function enabled the ENSURE loss to closely approximate 

the true MSE when fully sampled and noise-free images are not available.

We note that the performance of the L-by-L-Sup approach, which has threefold more 

parameters, is only marginally worse than the E-to-E-Sup approach in all the settings. We 

note that the LDAMP-SURE approach, which relies on layer-by-layer training, is worse than 

ENSURE. This deterioration in performance may be attributed to the non-Gaussianity of 

the alias artifacts at each iteration, which is the key assumption used in LDAMP-SURE. 

We observe that the K-MSE scheme offers low performance, especially at high-noise and 

highly accelerated settings. This is caused by the over-fitting of the network to the noise 

within the measurements. The partitioning strategy used in SSDU is observed to offer 

improved performance over K-MSE, especially in the high-noise setting. Similarly, the 

performance improvement of ENSURE over GSURE is more significant in the high-noise 

and highly accelerated setting. We trained the networks for each setting independently. 

The experiments with additional synthetic noise involved both training and testing the 

networks at the high noise setting. We note that all model-based algorithms (e.g. SENSE 
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that combines information from multiple channels and compressed sensing) simultaneously 

perform reconstruction and denoising; the reconstructed signal is not data-consistent in any 

of these cases.

The ENSURE and GSURE techniques depend on the estimation of noise variance in the 

measured data. In the experiments in Table II, we estimate the noise variance from one 

fully sampled complex coil combined image. Since the image is complex, the noise will 

still be Gaussian distributed. We threshold the reconstructed image to identify the image 

support. The variance of the image in the background region is used as the noise variance. 

We estimate the noise variance for LDAMP-SURE [19], [21] as suggested in [21].

We used the network architecture in Fig. 2 for the comparisons of loss functions. However, 

any direct-inversion or model-based network architecture can use the proposed ENSURE 

loss function. Unlike LDAMP-SURE, our proposed method does not depend on the 

unrolling of any specific algorithm.

The SSDU method [26] suggests partitioning the measured k-space such that 60% is used 

in the DC step and 40% in the loss function estimation. With our dataset and network 

architecture, we experimented with several different partitions of the k-space, including the 

suggested 60–40 split, and found that an 80–20 division performed best.

The main focus of this work is on how to train a network without fully sampled reference 

images. We note that there are several practical considerations, including dependence of the 

trained network on the specific field of view and contrasts, which are non-trivial issues. As 

shown in earlier work [6], [33], the training strategy may be modified to make the network 

relatively less sensitive to these changes. However, these problems are shared between 

supervised and unsupervised methods. To keep the paper focused, we do not address these 

aspects in this work. In this work, we train different networks for different undersampling 

ratios. As shown in [6], [33], the proposed work may be extended to make the trained 

network insensitive to the specific sampling ratio. However, we leave this potential extension 

for future work to keep the paper brief. In this work, we assume that the average weight 

matrix W is invertible. In the single channel setting, this will not be true if some Fourier 

samples are not included or acquired by any of the sampling patterns. In this case, it will 

be impossible to realize an unbiased estimate for the true MSE. One may come up with a 

projected MSE onto the observed samples. We leave this potential extension for future work, 

with the focus on keeping the paper brief.

We note that there is a gap between the supervised MSE training and the ENSURE 

results. We note that ENSURE is only an unbiased estimate for the MSE, which is an 

approximation. The approximation becomes exact only when the expectation is taken over 

the sampling patterns. In our implementation, we assume that each image is sampled with a 

specific sampling pattern that is fixed during the training process. We also note that the gap 

in performance of ENSURE and MSE is comparatively higher in the fastMRI setting than in 

our earlier experiments. We attribute this to the larger variability in image quality between 

the datasets in fastMRI (likely acquired on different scanners and coils) and the inaccuracy 
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in the noise estimation. We will consider the estimation of noise variance for each subject in 

the future to close the gap.

The main focus of this paper is to establish the theory and validate it with datasets where 

fully sampled images are available. We note that this approach is most useful in dynamic 

MRI and high-resolution static MRI, where the acquisition of fully sampled ground-truth 

images is not feasible. We will consider the application of ENSURE to these settings in our 

future work; this is beyond the scope of this preliminary publication.

We note that SURE-based approaches have been recently used in MRI [34]. The main focus 

of the above paper is on uncertainty quantification using variational auto-encoders, while 

the authors also use SURE to approximate the MSE loss. By contrast, the main focus of 

this work is to introduce the ENSURE metric and to elaborately compare it with MSE 

and state-of-the-art unsupervised methods under different undersampling and noise settings. 

In addition, the authors approximate the MSE by SURE, assuming the density-weighted 

undersampling noise to be Gaussian [34]; while the mean of the density-weighted noise term 

is shown to be zero in [34], it is not sufficient to guarantee that the undersampling-induced 

noise is Gaussian. By contrast, we define a new metric in (13) which is the average of the 

errors over datasets and sampling patterns, which is well approximated by the ENSURE 

metric.

VI. Conclusions

We introduced a novel loss function for the unsupervised training of deep-learning-based 

image reconstruction algorithms when fully sampled training data is not available. The 

proposed approach is the extension of the generalized SURE (GSURE) approach. The key 

distinction of the framework from GSURE is the assumption that different images are 

measured by different sampling operators. We evaluate the expectation of the GSURE losses 

over the sampling patterns to obtain the ENSURE loss function, which is an unbiased 

estimate for the true MSE. Our theoretical results show that the proposed ENSURE loss 

function closely approximates the true MSE without requiring the fully sampled images. 

More specifically, the use of the different sampling operators enables us to obtain a better 

approximation of the loss than GSURE, which approximates the projected MSE; the MSE 

of the projections of the images to the range space of the measurement operator is a poor 

approximation of the true MSE, especially in highly undersampled settings. The experiments 

confirm that the deep learning networks trained using the ENSURE approach without 

fully sampled training data closely resemble the networks trained using a supervised loss 

function. While our focus in this work was on an MRI reconstruction problem, this approach 

is broadly applicable to general inverse problems, including deblurring and tomography.
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Appendix

From (1), we note that u = As
HC−1ys is Gaussian distributed with mean As

HC−1Asρ and 

covariance matrix As
HC−1As, i.e.,

p(u ∣ ρ) = N (As
HC−1Asρ, As

HC−1As) (30)

= q u exp ρTu − g ρ . (31)

Here, q u  is independent of ρ. Similarly, g ρ  is dependent on ρ, which is not often available, 

and is independent of u :

q(u) = K exp − 1
2uH As

HC−1As
†u (32)

g(ρ) = 1
2ρHAs

HC−1Asρ (33)

Here, K is a constant. We consider the third term in (14). Denoting D = Ws TWs, we obtain

Eu ρ̂TDρ =

−∞

+∞

ρ̂TDρ q(u)exp ρTu − g ρ
ℎ u

p u
du

Let ℎ u = exp ρTu − g ρ , then ∇uℎ(u) = ρ ℎ(u). Substituting for ρ ℎ (u), we obtain

Eu ρ̂TDρ =
−∞

+∞
ρTDq(u)∇uℎ(u)du

= q u Dρ, ∇uℎ u
= − ℎ u , ∇u ⋅ q u Dρ̂

Expanding the second term in the inner-product using the chain rule, we obtain

∇u ⋅ [q(u)Dρ] = q(u)∇u ⋅ Dρ + Dρ ⋅ ∇uq(u)
= q(u) ∇u ⋅ Dρ̂ + Dρ ⋅ ∇uq u

q u

= q(u) ∇u ⋅ Dρ̂ + Dρ ⋅ ∇ulnq u
−ρLS

In the last step, we used the property

− ∇uln q(u) = As
HC−1As

†As
HC−1ys = ρLS (34)

Because q u ℎ u = p u , we obtain
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Eu ρ̂TDρ = − Eu ∇u ⋅ Dρ̂ + Eu ρ̂TDρLS
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Fig. 1. 
Visual representation of the computation of the data and divergence terms in the proposed 

ENSURE estimate in (21). Here, ⊕ and ⊗ represent the addition and inner product, 

respectively.
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Fig. 2. 
The specific network architecture used in the experiments. The CNN is a five-layer model 

that takes complex data as input. Each of the middle layers has 64 feature maps. It 

concatenates real and imaginary components as channels in the first layer. Similarly, the 

last layer output is converted to the complex type before it enters the DC step.
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Fig. 3. 
This figure compares reconstruction results at 4x acceleration on a test slice. We can 

observe from the zoomed region that the proposed ENSURE approach results in comparable 

reconstruction quality to that of supervised training with MSE (Sup-MSE). Here, LDAMP 

refers to the LDAMP-SURE algorithm.
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Fig. 4. 
Reconstruction results at a higher acceleration factor of 6x. We observe that, even at 

this high acceleration, the proposed ENSURE approach results in similar quantitative and 

qualitative reconstruction quality to that of supervised MSE training. The arrow in the 

zoomed region points to a feature well captured using ENSURE as compared to SSDU.
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Fig. 5. 
Reconstruction results at 4x acceleration with added Gaussian noise of σ = 0.03 in the 

measurements. The bottom row shows the corresponding error maps. The magnitude of error 

images is multiplied by four for visualization purposes.
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Fig. 6. 
This example demonstrates the benefit of sampling an image with multiple measurement 

operators in the one-dimensional sampling case at a 2X acceleration factor with added 

Gaussian noise of σ = 0.02. The numbers in the sub-captions show PSNR (dB) values.
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Fig. 7. 
This figure shows the benefit of the proposed weighting strategy. It visually compares the 

reconstruction quality of ENSURE with and without the proposed weighting scheme. The 

magnitude of error images is multiplied by four for visualization purposes. (b) and (c) refers 

to the case when no simulated noise is added to the measurements. (d) and (e) refers to the 

experimental setup when we added Gaussian noise of σ = 0.03 to the measurements.
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TABLE I

Quantitative comparison ofpeak signal-to-noise ratio (PSNR) (dB) and structural similarity index (SSIM) 

values. Each value shows mean ± std.

Peak Signal to Noise Ratio (PSNR)

acceleration 4x 4x, σ = 0.03 6x

E-to-E-Sup
L-by-L-Sup

37.71 ± 0.97
36.64 ± 1.07

35.34 ± 0.70
35.29 ± 1.29

35.39 ± 0.92
35.26 ± 0.99

GSURE
K-MSE
SSDU
LDAMP-SURE
ENSURE

36.80 ± 1.04
35.29 ± 1.12
35.46 ± 1.03
34.97 ± 1.23
37.36 ± 0.92

31.10 ± 1.40
31.67 ± 0.76
33.48 ± 0.71
33.56 ± 1.39
34.13 ± 0.90

33.68 ± 1.04
33.16 ± 1.04
33.92 ± 1.15
32.87 ± 1.43
34.98 ± 0.93

Structural Similarity Index (SSIM)

E-to-E-Sup
L-by-L- Sup

0.97 ± 0.00
0.95 ± 0.00

0.95 ± 0.01
0.95 ± 0.00

0.94 ± 0.01
0.94 ± 0.00

GSURE
K-MSE
SSDU
LDAMP-SURE
ENSURE

0.93 ± 0.01
0.95 ± 0.01
0.93 ± 0.02
0.96 ± 0.00
0.97 ± 0.00

0.91 ± 0.01
0.86 ± 0.02
0.88 ± 0.04
0.94 ± 0.01
0.93 ± 0.01

0.92 ± 0.02
0.93 ± 0.01
0.92 ± 0.01
0.93 ± 0.01
0.94 ± 0.01
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