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Abstract

Social psychological theory posits entities and mechanisms that attempt to explain observable 

differences in behavior. For example, dual process theory suggests that an agent’s behavior is 

influenced by intentional (arising from reasoning involving attitudes and perceived norms) and 

unintentional (i.e., habitual) processes. In order to pass the generative sufficiency test as an 

explanation of alcohol use, we argue that the theory should be able to explain notable patterns 

in alcohol use that exist in the population, e.g., the distinct differences in drinking prevalence 

and average quantities consumed by males and females. In this study, we further develop and 

apply inverse generative social science (iGSS) methods to an existing agent-based model of dual 

process theory of alcohol use. Using iGSS, implemented within a multi-objective grammar-based 

genetic program, we search through the space of model structures to identify whether a single 

parsimonious model can best explain both male and female drinking, or whether separate and 

more complex models are needed. Focusing on alcohol use trends in New York State, we identify 

an interpretable model structure that achieves high goodness-of-fit for both male and female 

drinking patterns simultaneously, and which also validates successfully against reserved trend 

data. This structure offers a novel interpretation of the role of norms in formulating drinking 

intentions, but the structure’s theoretical validity is questioned by its suggestion that individuals 

with low autonomy would act against perceived descriptive norms. Improved evidence on the 

distribution of autonomy in the population is needed to understand whether this finding is 

substantive or is a modeling artefact.
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Introduction

Motivation

Alcohol use is a major risk factor for non-communicable disease, contributing to 3 million 

premature deaths per year globally (World Health Organization 2018). The risks from 

alcohol use are not confined to people with alcohol use disorders (e.g., those ‘addicted’ to 

alcohol) but arise from even moderate levels of consumption. The epidemiology of alcohol 

is also complicated by the apparent protective effects of moderate consumption for some 

health conditions (e.g., coronary heart disease (Roerecke & Rehm 2010)) and also time lags 

between exposure and harm that can span multiple decades (Holmes et al. 2012). Monitoring 

and projecting how alcohol use is changing over time in a society is important for estimating 

how the consequent burden of harm to people’s health and healthcare services is likely to 

change, and to provide an impetus for policy action to try to reduce consumption levels and 

reduce harms.

In an evidence-based policy making environment, policy designers often make use of logic 
models to capture hypothesized causal pathways by which interventions are anticipated to 

have their effects. These pathways are scrutinized post-implementation in the evaluation 

phase (Craig et al. 2008). In the pre-implementation appraisal phase, computer modeling 

is increasingly used to estimate the impacts of alternative intervention options (Stewart & 

Smith 2015). To be compatible with the logic models, these computer models should encode 

transparent explanations for how interventions lead to changes in alcohol use in society—

i.e., they should define structural assumptions about the social mechanisms driving change 

and stasis in alcohol use. Mechanism-based modeling generally, and agent-based modeling 

(ABM) specifically, is therefore well placed to make an effective contribution to alcohol 

policy appraisal and evaluation (McGill et al. 2021; Purshouse et al. 2021).

Using a generative approach (Epstein 1999, 2007), we can design and implement an ABM 

of candidate mechanisms and run the simulation to see if it can reproduce historical 

trends in population alcohol use—i.e., the so-called generative test. If the model passes 

the generative test then the mechanisms it encodes remain a candidate explanation that 

can, subsequently, be coupled to a logic model to forecast the impact of new interventions 

that are intertwined with the identified mechanisms. However, this result does not preclude 

other models being found that can also pass the generative test. In theory, there could 

be a multiplicity of surviving candidate models—a type of equifinality in the sense of 

multiple system processes, and multiple model structures and parameterizations, being able 

to reproduce the observed phenomenon to a similar degree (Beven 1993). Ideally, when 

making forecasts of policy effects, we would use an ensemble of such surviving models 

to provide the most robust estimates possible. In particular, if some models produce policy 

estimates with qualitatively different outcomes to others (i.e., more alcohol use, rather than 

less) then this would be important information for policy makers.

While modelers could in theory produce a number of different computational models for a 

given policy problem, due to practical constraints they tend to produce only one (although 

this may be subjected to sensitivity analysis around structural assumptions). However, 

machine learning methods open up the possibility of computational exploration of a space of 
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ABMs and at least semi-automatic identification of a family of alternative models, including 

those not envisaged by a human modeler. Imagining such a concept in 1983, within a 

general modeling context, Openshaw (1983) described this model discovery approach as 

“model crunching”. Within an ABM context, Epstein (1999) discussed the possibility of 

searching across the space of agent rules, highlighting evolutionary computation as a 

promising means of efficiently searching the rule space. With machine learning methods 

now becoming more prominent, Epstein has led calls for a new era of model discovery 

for complex social simulations—what he has labelled as “inverse generative social science” 
(iGSS) (Epstein 2019)—and has now set out a manifesto for this nascent science (Epstein 

2023).

Research aims

In earlier work, Buckley et al. (2022b) developed a hybrid theory-based model of alcohol 

use behaviors. The model aims to capture a dual process representation of agent cognition, 

where agent behaviors can be either intentional or habitual. The intentional process is 

based on the reasoned action theory known as the Theory of Planned Behavior (Ajzen 

1991), which is a popular choice for social psychology experimental studies of alcohol use 

behaviors (Cooke et al. 2016). Buckley et al. (2022b) combined this cognitive model with 

norm theory—a sociological theory of how people both respond to and shape social norms, 

which has also been a focus for empirical studies in the alcohol use field (Keyes et al. 2012). 

The parameters of this hybrid model were then calibrated to a specific spatio-temporal 

setting: the US from the mid-1980s (the beginning of representative surveys capturing 

alcohol use in US society) to the mid-2010s. Six empirical time series targets were used for 

the calibration process: prevalence of alcohol use, mean frequency of alcohol use (drinking 

days per month), and mean quantity of alcohol use (grams of ethanol per day), with 

each measure split by sex (since drinking trends and risks of alcohol-related harm differ 

substantially for men and women). The best calibrated model was able to reproduce the 

prevalence and frequency targets successfully (including in an unseen portion of the time 

series used for validation), but struggled to provide a good fit to quantity targets—particular 

for men.

In the present study, within an iGSS framework, we explore whether alternative versions 

of Buckley et al. (2022b) model can provide an improved fit to the target data. Given that 

US-level alcohol use trends are relatively stable over the calibration window, we change to a 

setting with more interesting trend dynamics—the state of New York (Figure 1). New York 

has some of richest dynamics seen in per capita consumption, in comparison to other states. 

Motivated by a desire to understand deficiencies in the hybrid theory, we also investigate 

whether isolating the male and female targets produces different best-fitting candidate model 

structures. Since both dual process theory and norm theory are both intended to ‘explain 

away’ any variation in behavior by sex (or other variable-centric ‘determinants’ of alcohol 

use), differences in model structures between the sexes would indicate, and may help to 

identify the cause of, deficiencies in model design. In summary, the paper aims to address 

the following questions:
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• Can a computational model drawing from dual process theory and norm theory 

generate the long-term alcohol use trends in New York from the mid-1980s to 

mid-2010s?

• Is there a single model that passes the generative test for both male and female 

trends simultaneously?

• What are the implications of the iGSS findings for computational modeling of 

health behaviors that draws on dual process theory and norm theory?

Background

Existing works in inverse generative social science

In pattern-oriented modeling (POM), multiple candidate ABM structures (each perhaps 

derived from alternative theories or representing different mechanisms) are tested for their 

ability to generate emergent phenomena (Grimm et al. 2005). The number of candidate 

models is typically small and constructed by hand. For example, in a recent POM study, 

Ge and colleagues enumerated 16 different model configurations that exhaustively tested 

combinations of including or excluding four different mechanisms driving trends in Scottish 

farming (Ge et al. 2018). In its standard form, POM does not consider any procedure for 

refinement or evolution of model structures; however Cottineau and colleagues introduced 

an incremental approach to ABM structural development, known as evaluation-based 
incremental modeling method (EBIMM), where mechanisms are gradually added and 

refined by the modeler in order to generate the target emergent phenomenon (Cottineau 

et al. 2015).

Where iGSS differs from POM and EBIMM is in the automation of ABM model structure 

construction and generative testing, enabling a systematized process that can explore the 

space of possible structures at a scale not feasible for a human modeler. All the existing 

approaches to iGSS, described below, use evolutionary algorithms to operationalize the 

search process. To our knowledge, the earliest study that could be recognized as an 

iGSS process is by Smith (2008), who used a genetic algorithm to evolve behavioral 

rules in an ABM of empirical association patterns in flocks of birds. The rules were 

classifier systems of fixed complexity, where the genotype of a candidate rule was a binary 

chromosome corresponding to different if-then options. Following Smith’s work, in the 

first study of a human social system, Zhong et al. (2014) identified discrete choice utility 

functions for pedestrians in order to reproduce emergent crowd patterns. Gene expression 

programming was used to evolve the utility functions, where the maximum complexity 

of the function is defined by the fixed chromosome length. While the ambition of this 

approach was to reproduce empirical crowding behavior, only simulated data was used in 

the study. In a sequence of studies, Gunaratne & Garibay (2017a), Gunaratne & Garibay 

(2017b), Gunaratne & Garibay (2020) used iGSS to identify candidate discrete choice utility 

functions for the seminal Artificial Anasazi model (Axtell et al. 2002). To our knowledge, 

the 2017 papers are the first iGSS studies of human behavioral rules using empirical target 

data. Genetic programming was used to operationalize the search, with model complexity 

handled by applying a constraint to the maximum tree depth of a genetic program. These 

Vu et al. Page 4

J Artif Soc Soc Simul. Author manuscript; available in PMC 2023 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



studies are also notable in using data mining on candidate models arising from multiple 

runs of the iGSS process in order to identify commonalities in the components of the 

agents’ utility function. Gunaratne and colleagues’ evolutionary model discovery framework 

has also been applied to understanding the mechanisms of message prioritisation by social 

media users, using empirical data from social media platforms (Gunaratne et al. 2021).

Generative model discovery in the physical sciences has previously attempted to capture 

the potential trade-off between goodness-of-fit to empirical data and model complexity 

or parsimony; however here the generative models are typically differential equations 

representing physical systems rather than social processes (Schmidt & Lipson 2009). There 

is also an interesting seam of model discovery research in the physical sciences seeking 

to identify cellular automata rules and neighborhood structures, for both one-dimensional 

and two-dimensional topologies, from temporal slices of the evolution of the emergent 

spatio-temporal pattern (Richards et al. 1990). Here, the goodness-of-fit is measured via 

examining one-to-one correspondence between the individual automata responses and the 

target system, rather than through direct comparison of emergent structures. Some of these 

studies have also considered the trade-off between goodness-of-fit and structural parsimony, 

generating Pareto fronts using multi-objective evolutionary algorithms (Yang & Billings 

2000).

Recent iGSS work has also aimed to capture such Pareto fronts through the use of multi-

objective evolutionary algorithms. Vu et al. (2019) developed a method using multi-objective 

genetic programming (MOGP) with the two objectives of empirical goodness-of-fit and 

the number of nodes in the genetic program. The method was applied to a social norms 

model of alcohol use behaviors attempting to reproduce population trends in drinking in the 

US. The method was later extended to include a domain expert in the loop and to make 

use of multi-objective grammar-based genetic programming (MOGGP) (Vu et al. 2020a). 

The approach was used to discover alternative formulations of social role theory that could 

explain the US drinking trends, with explicit comparison to empirical findings within the 

domain literature on the varying contribution of social role factors. These methods are 

underpinned by a unifying mechanism-based social systems modeling (MBSSM) framework 

that allows modular ABM components to be integrated together (Vu et al. 2020b). This 

framework enabled iGSS to be used to study integrations of social norm theory and social 

role theory in determining how individuals make their next drinking decision within a 

drinking occasion (Vu et al. 2021).

Given that iGSS represents a new frontier in social simulation, there are many research 

challenges that remain to be addressed, including efficiency of the search process (e.g., 

through use of surrogate modeling), further integration of domain experts and data, and a 

more consistent approach to uncertainty quantification (e.g., the explicit consideration of 

prior probabilities for different mechanisms). There has also been little work done so far on 

how the choice of targets influences the iGSS findings and interpretations of the mechanisms 

so identified.
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Existing agent-based models for alcohol policy appraisal

A recent scoping review by McGill et al. (2021) identified 25 ABM studies of alcohol-

related behaviors. Here we elaborate on that review in terms of the theories represented by 

the model structures and the degree of empirical embeddedness of the models (Boero & 

Squazzoni 2005).

Theories represented—In all but one model, the agents represent individual people; 

in the remaining study (Spicer et al. 2012), the agents represent city blocks. Perhaps 

unsurprisingly for ABMs, a variety of the models focus on social influence processes 

arising from direct agent-to-agent interaction (Gorman et al. 2006; Jackson et al. 2012; Ip 

et al. 2012; Perez et al. 2012), although only two include contemporaneous social selection 

mechanisms (Giabbanelli & Crutzen 2013; Schuhmacher et al. 2014). The joint processes of 

niche theory and assortative drinking, proposed by Gruenewald (2007) have been adopted in 

at least two ABMs (Castillo-Carniglia et al. 2019; Fitzpatrick & Martinez 2012).

Social psychological theories are also represented: drinking motives are included in the 

model by Giabbanelli & Crutzen (2013), the theory of planned behavior forms the 

centerpiece of the model by Purshouse et al. (2014), and Atkinson et al. (2018)’s ABM 

is informed by the capability-opportunity-motivation-behavior (COM-B) model.

Sociological theories are also represented: Fitzpatrick et al. (2015, 2016)’s models are based 

on social norms theory and social identity theory. The norm theory in these models relate to 

perceived descriptive norms; Probst et al. (2020) also base their model on norm theory, but 

include injunctive norms in addition to descriptive norms. Role theory is also represented in 

one of the ABMs (Vu et al. 2020b), for which an integrated design with norm theory is also 

shown (Vu et al. 2020a).

One further model blends different types of mechanisms together, using a causal loop 

diagram framing more usually associated with system dynamics modeling (Stankov et al. 

2019). In a further seven models, the mechanisms encoded by the ABMs are not associated 

with any clear theoretical position (Garrison & Babcock 2009; Keyes et al. 2019; Lamy et al. 

2011; Redfern et al. 2017; Scott et al. 2016b,a, 2017).

Empirical embeddedness—Credibility of the model and trust in its outputs are critical 

to the usefulness of a policy appraisal model (Stewart & Smith 2015). In this context, 

ensuring an empirically rich parameterization of the model inputs and parameters—situating 

the policy in the specific time and place where it is being considered for implementation—is 

often regarded as important (Thiele et al. 2014). Of the 25 studies, 10 do not attempt any 

calibration to data, while a variety of different approaches to calibration can be found across 

the remaining 15 works.

Several studies initialize the agent population using survey data, often requiring the 

synthesis of several distinct data sources (Atkinson et al. 2018; Castillo-Carniglia et al. 

2019; Fitzpatrick et al. 2016; Giabbanelli & Crutzen 2013; Keyes et al. 2019; Probst et 

al. 2020; Purshouse et al. 2014; Scott et al. 2016b,a, 2017; Stankov et al. 2019; Vu et al. 

2020b). A number of studies initialize the agent environment with data drawn from specific 
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jurisdictions concerning the location of alcohol outlets (Castillo-Carniglia et al. 2019; Keyes 

et al. 2019; Redfern et al. 2017; Spicer et al. 2012; Stankov et al. 2019).

In terms of model parameter calibration, a number of studies make use of empirical target 

data (i.e., data that the ABM output can be compared to) to inform model parameters. In the 

related models by Castillo-Carniglia et al. (2019) and Keyes et al. (2019), model parameters 

are adjusted until model outputs (e.g., alcohol-related homicide rates) are similar to those 

of the target jurisdiction. These models also include a ‘burn in’ period of 110 time steps to 

allow for model outputs to stabilize, after which comparisons are made to static targets from 

a defined period (e.g., an estimate of the alcohol-related homicide rate in New York City in 

the early-to-mid 2000s). A similar approach is adopted by Perez et al. (2012), who run the 

model for 200 time steps and compare an average of the last five time steps to target data for 

a specific year.

While the above studies compare the equilibrium state of the ABM to static target data, other 

studies have attempted to reproduce dynamical trends in the target systems immediately 

following the defined initial conditions for the model (i.e., with no burn in). Stankov et al. 

(2019) compare model outputs to 5 year depression and alcohol misuse trends from survey 

data; Purshouse et al. (2014) compare to seven years of drinking frequency survey data; 

Probst et al. (2020) and Vu et al. (2020b) compare to six alcohol consumption targets for the 

20 year period from 1979 to 1999. The latter study is notable as the only one of the 25 to 

calibrate the model structure (i.e., the agent rules) in addition to the model parameters.

Since calibration processes may overfit models to data (by capturing the noise in the data, in 

addition to the dynamics of interest), examining the performance of models over a separate 

validation data set is also regarded as good practice. This approach can also test other 

important assumptions for policy modeling, such as that the estimated model parameters are 

time-invariant (i.e., that the model estimates can be trusted outside of the immediate spatio-

temporal context). Only two of the 25 models describe validation outcomes—a successful 

single year validation window in Purshouse et al. (2014) and an only partially successful 

10 year validation window in Vu et al. (2020b). Systematic description of the calibration 

approach is also limited to just a few studies (Purshouse et al. 2014; Probst et al. 2020; Vu et 

al. 2020b).

Research gap—When considering the existing ABM studies of alcohol-related behaviors, 

there is a clear need for improved empirical embeddedness, not just in terms of parameter 

calibration, but also in terms of model structure selection and model validation. There also 

exists a need for a more systematic approach to empirical embedding. In the present study, 

we consider how iGSS can be used to address this research gap.

Alcohol Use Behaviors: Postulated Entities and Mechanisms

Model description

We use a computational model of drinking behaviors recently proposed by Buckley et al. 

(2022b). This model exploits the architecture developed by Vu et al. (2020b) that facilitates 

the application of iGSS methods (Vu et al. 2020a). The computational model is designed to 
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be a modular mechanism that can be plugged in to broader dynamical models of alcohol use. 

We use a limited realization of the dynamics of the model in what follows. The agents in 

the model are individuals, and are assumed to be representative of adults in the US. Agent 

behaviors are typologized using five schema representing different daily drinking practices: 

abstaining, light drinking, moderate drinking, heavy drinking and very heavy drinking. 

While these schema are derived from an ordering based on number of drinks consumed, they 

are treated as unordered in the model. 1 To introduce the cognitive processes that lead to 

the selection of a schema on a particular day by a particular individual, consider an example 

agent, Agent Alan. Our agent is endowed with two competing pathways: intentional action 

and habitual action. Agent Alan has an attribute, automaticity, that describes his tendency 

to follow the habitual rather than intentional pathway. Automaticity is defined continuously 

on the range [0; 1], from always behaving intentionally to always behaving habitually, and 

varies between agents. In the present model, automaticity is a static attribute—it does not 

vary over time.

On every day of the simulation, the intentional or habitual process is triggered 

probabilistically for Agent Alan. Assuming that the habitual process is triggered, Agent 

Alan will randomly and without replacement select a schema from his history. 2 The history 

represents the instances of schema performed by Agent Alan over the previous n days, 

excluding any instances that have already been selected through the habitual process. At the 

end of the n days, where the window n varies between agents, the history is refreshed with 

all the instances of schema performed over the previous window, regardless of whether they 

arose from the habitual or intentional pathway.

Assuming instead that the intentional pathway is triggered, we now consider three further 

attributes of Agent Alan: his attitude, subjective norms, and perceived behavioral control 
relating to each schema. Each of these attributes is defined for each schema (15 attributes 

in total 3) over an unbounded continuous range, each representing a component of utility 

that contributes to the rational choice of intentionally selecting a schema. The net utility 

for a schema is a weighted sum of the attitude, subjective norms and perceived behavioral 

control corresponding to that schema. The weights are population-level parameters that are 

identical across agents, representing the universal relative importance of these attributes to 

the formation of intentions. In the present model, attitude is a static attribute, subjective 

norms is a dynamic attribute, and perceived behavioral control is assumed to be zero (i.e., 

it does not affect intention). Example values of these attributes for Agent Alan are shown 

in Table 1. Consider Agent Alan’s attitude toward abstaining: his attitude represents his 

personal evaluation of abstaining and is −1, indicating a negative evaluation. His subjective 

norms represents his perception of others’ behavior in relation to abstaining combined 

with his perception of society’s rules around abstaining; Agent Alan’s subjective norm is 

+2, indicating that he perceives abstaining as being encouraged by society. His perceived 

behavioral control represents his perceived ability to perform abstention; the value 0 

1The schema are unordered since they are intended to represent qualitatively different drinking practices, rather than implying a latent 
preference for ethanol quantity.
2We use random selection without replacement to avoid random drift in the agent’s habitual behavior over time.
3This large number of attributes is a disadvantage of assuming unordered schema. If the schema were ordered, e.g., according to 
preference for ethanol quantity, then only three attributes would be necessary.
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indicates a neutral impact on intention. Assuming population weights of 0.5, 0.5 and 0 

for attitudes, subjective norms, and perceived behavioral control respectively, his net utility 

of abstaining is +0.5. Similar utilities can be calculated for the other schema in Table 1. 

The utilities are converted to intentional probabilities using the standard discrete choice 

equation for multinomial log odds. When considered against the utilities for other schema, 

the probability that Agent Alan will choose to abstain is 0.33. Note that this probability is 

conditional on the intentional pathway having been triggered. If Agent Alan’s automaticity 

were 0.4, then the unconditional probability of abstaining would be a minimum of 0.33 × 

(1−0.4) = 0.20 (and would be greater than this value if his history contained instances of 

abstaining that had not yet been sampled).

In the present model, Agent Alan’s only dynamically updating attribute is his subjective 

norms. The update mechanism is adapted from an existing computational model of social 

norms by Probst et al. (2020). Agent Alan is associated with a reference group based on 

his sex and age 4. The reference group is used to define two dynamic normative social 

structures: descriptive norms, which define the prevalence of schema instances currently 

performed by agents associated with each reference group, and injunctive norms which 

describe the current social acceptability of a person of that reference group performing 

each schema—the latter is defined continuously on the range [0; 1] from performance 

of the schema is completely unacceptable to completely acceptable. Values for the 

injunctive norms for each age and sex reference group are initialized based on empirical 

data from the National Alcohol Surveys (NAS) 5 on perceptions of the acceptability of 

drinking (Greenfield & Room 1997). Agent Alan updates his subjective norms through 

his perceptions of both the current descriptive and injunctive norms. His perception of the 

descriptive norms is affected by his own drinking, expressed as a weighted sum of his 

own schema prevalence and the reference group’s schema preference, where the weight is 

universal for all agents. For example, if Agent Alan is a heavy drinker, he will perceive the 

descriptive norms to be more positively skewed towards heavier drinking (i.e. assuming that 

others are also drinking heavily). The overall subjective norm is computed as the weighted 

average of the log-odds representation of the descriptive norm and injunctive norm. Finally 

the subjective norm is attenuated by a factor (1 – autonomy), where autonomy is a static 

attribute of Agent Alan that represents the extent to which he ignores the influence of 

social norms. Autonomy is defined continuously on the range [0; 1], from no autonomy to 

full autonomy, and varies between agents according to a calibrated distribution. Detailed 

descriptions of concepts and equations used to operationalize the intentional pathway are 

listed in Table 2.

The structural descriptive and injunctive norms are both dynamically updated for each 

reference group. The descriptive norm is a simple aggregation of schema performance 

by agents of the reference group. The injunctive norm is progressively adjusted by two 

mechanisms: (1) a so-called punishment mechanism that tightens the restrictiveness of the 

norms (i.e., moving them closer to zero) if the prevalence of heavy drinking by members of 

4Other attributes, e.g., ethnicity, could also be used to define the reference group, which is conceptualized as a proxy for an agent’s 
identity.
5Further details about the NAS series can be found in Kerr et al. (2009, 2013).
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the reference group exceeds a threshold tolerance; (2) a relaxation mechanism that shifts the 

injunctive norms slightly closer to the current descriptive norms.

The computational model is implemented in C++ using the mechanism-based social systems 

modeling (MBSSM) software architecture (Vu et al. 2020b) and Repast HPC (Collier & 

North 2013). The source code of the model is available at: https://bitbucket.org/r01cascade/

ge_norm_igss/

Model initialization

Agents are initialized using an existing microsimulation model (Brennan et al. 2020). This 

comprises a synthetic population of adults aged 18–80 representative of individuals in New 

York state between 1985 and 2015. The microsimulation integrates data on the US state level 

population from several sources including the US Census (Manson et al. 2019), American 

Community Survey (Ruggles et al. 2020) and accounts for population developments such as 

births, deaths and migration over time. Data from the Behavioral Risk Factor Surveillance 

System (BRFSS, Centers for Disease Control and Prevention (CDC) 2019) is used to 

initialize agents with baseline socio-demographic characteristics (including age and sex) and 

baseline alcohol consumption (12-month drinking status and usual quantity and frequency of 

drinking). Properties of the synthetic individuals, at baseline are shown in Table 3.

Empirical calibration

Target data for calibration are taken from the US Behavioral Risk Factor Surveillance 

System (BRFSS) survey data for New York, adjusted to per capita New York State alcohol 

sales data for each year (Buckley et al. 2022a). Three alcohol use targets are defined for each 

year describing: (1) prevalence—the overall proportion of individuals consuming alcohol at 

least once during the previous year; (2) quantity—the average grams of ethanol consumed 

per day among drinkers; and (3) frequency—the average number of drinking days per month 

amongst drinkers. Targets are calculated separately for each year and split by sex. Models 

are calibrated using data for the years 1984–2010 and validated using reserved data from 

2011–2015.

The original model was calibrated to targets for the US population as a whole and a fresh 

calibration to the New York State targets was required for the present work. The calibration 

process is a simple 1000 sample Latin hypercube over the model parameters, where the 

Latin hypercube design is optimized for its space-filling properties. Each individual is 

assigned a value of autonomy, automaticity and the n days over which to update drinking 

habits. These attributes are informed as part of the calibration process. For autonomy, values 

are taken from a beta distribution that is calibrated separately for males and females, and 

varies according to drinking patterns to allow for heavier drinkers and non-drinkers to be 

influenced differently by social norms. Automaticity is also represented by a calibrated 

beta distribution whereby low, medium and heavy drinkers have different distributions. 

The length of time habits take to update for an individual are represented by a calibrated 

truncated normal distribution, for which prior beliefs are informed by existing psychological 

research on habit formation (Lally et al. 2010). The calibration wrapper code and targets 

data are available at: https://bitbucket.org/r01cascade/calibration_jasss/
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Model discovery methods

To search for the combinations of social theories that offer the best explanation to the macro-

level phenomenon, we make use of multi-objective grammar-based genetic programming.

Genetic programming

Genetic programming (GP) (Koza 1992) is used to generate computer programs 6 

automatically with the help of genetic operators. It is usually applied to problems where 

there is an underlying requirement for structural optimization, besides the need (or not) 

to find the optimal parameters of the problem. An example is the design of a digital 

filter where besides having to find a set of optimal filter parameters, one also needs to 

determine the order of the filter. Although traditional genetic algorithms (GAs) are well 

suited for finding the optimal parameters of an optimization problem, they are not able 

to represent the structural requirements of a solution in chromosomes. A chromosome 

in GP, besides supporting constants, has provision for variables and functions (including 

algebraic operators, such as + and −), which can be combined in different ways to 

generate a syntax tree. In a similar fashion as it is done for GAs, a GP algorithm 

evolves a population of computer programs (or candidates) over many generations where 

selection and variation operators (e.g., crossover and mutation) take turns to find the fittest 

individuals. Traditionally in GP, Lisp prefix notation was used to represent a syntax tree 

in a chromosome but it has several shortcomings, such as the chromosome can have 

variable length, and that it is very easy for crossover and mutation operators to generate 

illegal (programmatically invalid) offspring. To mitigate these shortcomings, this paper uses 

grammatical evolution (GE) (O’Neill & Ryan 2001, 2003) which relies on the Backus–Naur 

form (BNF) syntax. This ensures chromosomes with a fixed length, restricts the search space 

in a way that it is possible to apply standard crossover and mutation operators more freely, 

and prevents the generation of illegal offspring.

Multi-objective optimization—In this study our interest is to find model structures 

and parameters that offer the best trade-offs between the complexity of the model and 

the goodness-of-fit with respect to multiple phenomenon targets. In total there are three 

objectives in this grammar-based genetic programming problem that have to be dealt with 

simultaneously, and these are: female alcohol use; male alcohol use, and complexity. When 

dealing with multiple conflicting objectives the problem does not contain a single optimal 

solution, which is often the case with single-objective problems. Besides the existence of a 

single optimal solution for each objective function, there is also a set of trade-off solutions 

where an improvement in one objective is earned at the expense (deterioration) of another 

objective(s). The best trade-offs in terms of Pareto optimality can be captured by the concept 

of dominance. Consider two solutions a ∈ ℛM and b ∈ ℛM where M is the number of 

objectives: a is said to dominate b if a is not worse than b in all objectives (i.e., ai ≤ bi ∀i 
= 1, …, M), and a is strictly better than b in at least one objective (i.e., ∃i∈{1, …, M} : ai < 

bi). From a set of solutions, any subset that contains only solutions that are not dominated by 

6A computer program in this context could be an algorithm, a machine or even a brain.
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any other solution in the set constitutes a non-dominated set, and the non-dominated set with 

respect to the entire search space is known as the Pareto optimal set.

We use the following objectives in this study. First we consider the overall goodness-of-fit 

between the model output and the target data, accounting for sampling uncertainty in both 

the output and target measurement. Here, our objective function for model structure x is 

based on an implausibility metric (Vernon et al. 2010), Ik,m, that measures the error between 

the mth simulated output ym
⋆, averaged over N model runs of structure x with different 

random number seeds n, and equivalent empirical target data ym over a sequence of temporal 

observations k defined by:

Ik, m(x) =
1
N ∑n = 1

N ym
⋆(x ∣ n)[k] − ym[k]

sm[k] 2 + dm
2 , (1)

where sm[k] is the observed standard error for output m at time point k, and (dm)2 is the 

variance of the ‘model discrepancy’ for output m, which is taken as 10% of the possible 

output range for each output. Model discrepancy is the error in a model output that arises 

because the model is not a perfect representation of reality.

We define as an objective the maximum implausibility observed across all outputs m and all 

time points k:

z1(x) = max
k ∈ K, m ∈ ℳ

Im, k(x), (2)

where  is the set of time points and ℳ is the set of output measures.

Since we are interested in whether the iGSS process might work better for male targets 

than female targets, and vice versa, we also decompose this first objective into two sub-

objectives:

z1, male (x) = max
k ∈ K, m ∈ ℳmale 

Im, k(x), (3)

z1, female(x) = max
k ∈ K, m ∈ ℳfemale 

Im, k(x), (4)

where ℳmale and ℳfemale are the subset of targets relating to men and women respectively.

The final objective we consider is a complexity measure, which aims to promote model 

parsimony for the purposes of interpretability and avoiding over-fitting. This type of 

approach was introduced to genetic programming by Rodríguez-Vázquez et al. (2004) to 

combat the issue of bloat—where the tree lengths in the genetic program tend to drift 

upwards over the course of the evolutionary process.

We calculate interpretability therefore as the number of nodes in the grammar-based tree:
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z2 = nodes(x), (5)

where nodes(.) counts the number of nodes in the tree that encodes model structure x.

Multi-objective evolutionary algorithms (MOEAs) are very popular nowadays for dealing 

with multi-objective optimization problems. An MOEA evolves a set of solutions (also 

known as a population) over several generations by applying operators based on the 

principles of natural evolution such as selection, crossover, and mutation, until some 

termination criterion is satisfied (e.g., a maximum number of generations has been 

exceeded). There are many MOEAs in the literature and existing ones can be categorized 

as Pareto-based, decomposition-based and indicator-based. For a more detailed discussion 

about the different types of MOEAs, including their strengths and weaknesses, the reader 

is referred to a recent tutorial by Emmerich & Deutz (2018). In this study we employ 

a GP version of a popular Pareto-based MOEAs known as NSGA-II (Deb et al. 2002), 

implementated in the PonyGE2 toolkit (Fenton et al. 2017). NSGA-II uses a non-dominated 

sorting algorithm to assign ranks to solutions and a diversity preservation mechanism that 

ensures a good spread of solutions across the Pareto optimal front.

To evaluate the performance of a non-dominated solution set obtained by a multi-objective 

optimization algorithm there are several performance indicators in the literature that could 

be used. The hypervolume indicator (Zitzler & Thiele 1998) is very popular in the 

evolutionary multi-objective optimization community and will be used in this study. This 

indicator is also known as the Lebesgue measure and it is determined by quantifying the 

region in the objective space enclosed by the front of the non-dominated solutions and 

an upper-bounded reference point (assuming minimization). An illustration that shows the 

hypervolume for a hypothetical two-objective problem is depicted in Figure 2. Improving 

the hypervolume means increasing the area between the non-dominated solutions and the 

reference point, and this could be achieved by either improving the convergence (i.e., 

solutions with better performance with respect to both objectives) or improving the spread 

across the front (i.e., generating a higher density of more evenly spread non-dominated 

solutions). To compute the hypervolume value we use an exact dimension-sweep algorithm 

(Fonseca et al. 2006).

Overview of model discovery process

A schematic of the overall model discovery process is shown in Figure 3. Step 0 represents a 

pre-condition for the model discovery process. We define a library of theory building blocks 

implemented as model components and a grammar to guide the search process. Step 1 to 

6 is the Grammatical Evolution process. In Step 1, an initialized population of models is 

generated. In Step 2, variation operators, e.g., crossover and mutation, are applied to produce 

new candidate models. In Step 3, the models in the current population are evaluated for 

generative sufficiency. Step 4 selects the models to retain in the population. If convergence 

is not achieved, go back to Step 2. If the convergence is achieved, the Pareto optimal model 

structures will be assessed for their theoretical contribution. Afterwards, if improvement 

is needed, the whole process can be restarted by adjusting the grammar or the library of 

components.
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Grammar

In this study, our interest is to find model structures and parameters that offer the best 

trade-offs between the complexity of the model and the goodness-of-fit with respect 

to multiple targets. The model structure and the model parameters are separated in a 

bi-level formulation, where for each model structure identified by the GP algorithm at 

the upper-level, there is a separate calibration process being conducted to identify the best 

parameters at the lower-level. The goal is to find the model structure and parameters that 

will provide the best goodness-of-fit. This is known as a nested approach in the bi-level 

optimization literature (Sinha et al. 2018), which is commonly used in conjunction with 

evolutionary computation algorithms, such as genetic algorithms, differential evolution, and 

swarm intelligence. We did not use advanced bi-level optimization but addressed the bi-level 

problem by building constants and allowing the model discovery process to select promising 

parameter sets and agent heterogeneity distributions from calibrated results. However, to our 

knowledge, this is the first time that this approach has been used in conjunction with a GE 

algorithm. The following paragraphs describe in detail how the grammar incorporates both 

model structures and parameters.

The grammar describes which components in agent behavioral rules will be considered 

and how they can be combined together. This study focuses on agents’ daily decisions of 

which drinking schema to perform. The structure of the agents’ intention pathway will be 

exposed to the model discovery process. The intention is a function that determines the 

probability of choosing a drinking schema based on the following components: desire to 

drink (i.e., attitude to drinking) and the social norm theory concepts (injunctive norms, 

descriptive norms and autonomy). Refer to Table 2 for further details of the components 

of the intentional pathway. For the individual-level components autonomy and automaticity 

(the latter determining the likelihood of the intention pathway being triggered), the grammar 

also defines options for specifying the distribution across agents.

Figure 4 describes the grammar that guides the model discovery process. Each candidate 

(a program < p >) contains two expressions: one for the log odds intention and one for 

selecting a parameter set. Each expression can be formed only by a defined combination 

of expressions, variables, constants, and distribution options. This hierarchical grammar 

captures the complexity of different expressions.

The intention pathway uses a log odds function for each schema because, in the model, the 

probabilities of instantiating each drinking schema are represented using a multinomial logit 

equation. The log odds expression <lo_exp> can be modified by multiplying log odds with 

a variable/constant expression <vc> or −<vc>, or by summing two log odds.

The variable/constant expression <vc> can be constructed from a combination of agents’ 

autonomy (Autonomy, (1-Autonomy)), calibrated parameters for the agent intention 

(BETA_ATTITUDE, BETA_NORM), a constant between 0 and 1 (<c_01>), and the product 

of autonomy, a calibrated parameter and a constant. <vc> can also apply a square-root 

operator, or raise to the power of 2.
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The expression within the odds <exp> can be constructed with normtheory concepts Desire, 

Descriptive, Injunctive and several operations (sum, multiplication, square root, raising to 

the power of 2). The odds expression is simplified in the grammar. In the implementation, 

the odds expression will be converted to expression of schema j over expression of schema 

0. For example, if the expression is Desire + Injunctive then the full log odds function for 

schema j of agent i will be LogOddsIntentioni[j] = log((Desirei[j] + Injunctivei[j])/(Desirei[j 
= 0] + Injunctivei[j = 0])).

Finally, for parameter selection, model parameters can be selected according to three 

calibrated parameter sets: <parameter_option>: male, female, or balanced. These 

options correspond to the three calibrated parameter sets that have the lowest implausibility 

when considering only male goodness-of-fit, considering only female goodness-of-fit, and 

balancing both simultaneously.

Experimental setup

The MOGGP algorithm is configured as follows. We defined a budget of 500 candidate 

model structures per population for up to 50 generations. We terminated the MOGGP 

early if convergence appeared to have been achieved according to the hypervolume metric. 

The GP variation operators are 75% subtree crossover and 25% subtree mutation. To 

account for model stochasticity, runs for each model structure are replicated 10 times 

with different random number seeds, with implausibilities computed as in Equations 3 and 

4. It is computationally intensive to do a complete run of MOGGP, the process taking 

approximately 3 hours per generation on an i9-7980XE processor with 36 cores. We were 

unable to engage in hyperparameter tuning of the MOGGP configuration due to the run-time 

constraints, instead relying on default settings from the PonyGE2 toolbox. The source code 

to set up the MOGGP is available at: https://bitbucket.org/r01cascade/ge_norm_igss/

We use the annual time series data from 1985–2010 to compute implausibilities of the 

model structures during the MOGGP run. We reserve 2011–2015 data to validate the non-

dominated structures that are identified during the structural calibration.

Results

Parameter calibration results for the original model structure

Parameter calibration was undertaken for the original model structure, both to identify 

how this structure would perform on targets for New York State and to provide parameter 

sets that could be used by the MOGGP. This calibration identified a trade-off between 

male and female implausibility, with parameter settings identified for: (a) lowest male 

implausibility; (b) lowest female implausibility; (c) a compromise between male and female 

implausibilities. The time series associated with each of these parameter sets is shown in 

the three left-hand columns in Figure 6. The top row of the figure shows the prevalence of 

drinking over time in the population split by male (red) and female (blue). The middle row 

shows the quantity of drinking over time (in grams of ethanol per day amongst drinkers). 

The bottom row shows frequency of drinking (average number of drinking days per month 

amongst drinkers). A clear trade-off between male and female performance can be seen. In 
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particular, the model that is the best fit for males has a poor fit on female quantity and shows 

convergence of male and female frequency over time. Similarly, the model that is the best 

fit for females overestimates both prevalence and quantity for males. None of the calibrated 

models using the Buckley et al. (2022b) baseline structure are able to capture trends in male 

quantity towards the end of the calibration window.

The population-level weightings identified for attitudes and norms in the equation for agent 

intention are shown in Table 4, together with summaries of the individual heterogeneity 

for autonomy, automaticity and the history window for habits. These parameterizations are 

subsequently made available to the MOGGP process.

Structural calibration results

The hypervolume indicator was computed for each generation and monitored online during 

the MOGGP run. As shown in Figure 5, the indicator begins to saturate from generation 30 

and we terminated the run at generation 45 when little further progress was being achieved.

The Pareto front corresponding to the 157 non-dominated model structures contained in 

the final generation of the MOGGP population is shown in the scatterplot in Figure 7. 

The horizontal and vertical axes represent male and female implausibility respectively. The 

colour represents the complexity. Each point shown is a non-dominated model structure. 

The parameter calibration results for the original Buckley et al. (2022b) model are also 

superimposed on the scatterplot: lowest male implausibility (triangle shape), lowest female 

implausibility (diamond shape) and the compromise parameterization (inverted triangle 

shape). These comparator models are all of complexity 42. The square shaped point relates 

to a discovered ‘alternative’ model structure that is discussed in more detail below.

The Pareto front is convex and identifies several auto-generated model structures that 

dominate the parameter calibrations of the original model. The front is composed of two 

distinct regions. The first region, to the lower-right of the plot, consists of, for the most part, 

relatively low complexity structures that provide good female implausibility but relatively 

poor male implausibility. Within this region, there is a consistent trade-off between low 

complexity and higher, but still modest, complexity structures. There are also a few high 

complexity structures to the right of this region that provide very marginal gains in female 

implausibility for marginal losses in male implausibility. The second region, to the upper-left 

of the plot, consists of relatively high complexity structures that perform best in terms of 

male implausibility but worst in terms of female complexity, with marginal improvements 

in male implausibility being achieved at the expense of a large deterioration in female 

implausibility. It is possible that the Pareto front is disconnected between these two regions. 

There exists a solution of special interest in the space between these two regions (sometimes 

referred to as the ‘knee region’), which appears to offer a balanced trade-off between male 

and female implausibility without requiring a substantially complex structure. We investigate 

this alternative candidate structure (indicated by the square shape) further below.

Validation of identified model structures

The performance of the identified model structures on the validation window, 2011–2015, is 

shown in the scatterplot in Figure 8. Some bunching of the original lower-right region of the 
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Pareto front is observed, with less of a trade-off between implausibility and complexity. This 

behavior is likely to be because the validation target time series has a smaller dynamic range 

than the calibration time series (as seen in Figure 6), allowing some of the low complexity 

structures that display flat dynamics to perform relatively well. High complexity structures 

from this region are now seen to perform relatively badly, indicative of over-fitting to the 

calibration data. While we might have suspected that the high complexity structures from 

the original upper-left region of the Pareto front would also see a similar deterioration in 

performance, this part of the front actually retains its position relative to the lower-right 

region. The candidate solution identified in the knee region of the calibration Pareto front is 

also located in the knee region of the validation front, but its relative advantage over other 

structures, in terms of implausibility, is reduced.

Discussion

Model discovery findings

Drinking behavior by gender—The original Buckley et al. (2022b) model exhibits 

issues in simultaneously reproducing both male and female drinking patterns over time. 

The parameter calibration was able to reproduce female quantity targets better than male, 

and particularly struggled to reproduce the increase in male drinking frequency observed 

after the year 2000 in all three parameterizations that were identified. The alternative model 

identified by the MOGGP leads to substantial improvements in model fit, retaining the good 

fit to the female targets and improving the fit to the male targets, and is able to reproduce the 

increase in male drinking frequency.

Theoretical interpretability and plausibility of the identified model structures
—The complexity of the model structures varies between 10 (the simplest model) and 105 

(the most complex model). For parameter selection, 17 structures use the male option, 134 

use female, and five use balanced. We picked four structures for discussion: the original 

model structure from Buckley et al. (2022b), a structure with the simplest complexity, a 

structure with the highest complexity, and the alternative candidate structure which has 

an interpretable complexity and can achieve low implausibility for both male and female 

drinking trends. Structures picked for discussion are highlighted in Listing 1 alongside 

the three objective values: [male implausibility z1,male, female implausibility z1,female, 

complexity z2].

For models with a complexity of less than 18, the structures only contain Desire, weighted 

by different constant parameters. For example, Listing 1b shows the simplest structure with 

complexity 10 and is the product of Desire and the population-level attitude weighting 

BETA_NORM. In the context of social norm theory, when the log odds intention consists of 

only Desire, the agents follow their past behavior initialized at baseline. This will produce a 

time series in which drinking prevalence, quantity, and frequency are relatively stable over 

time. Multipliers on Desire will act to scale the drinking level up or down. This effect can 

be seen in Figure 6, where the model with the lowest complexity exhibits an immediate drop 

in the time series to roughly the average of the target trend, followed by stability for the 

remainder of the time period.
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The alternative perspective that the MOGGP identified contains all of the theoretical 

components from the original Buckley et al. (2022b) model—see Listing 1a and Listing 

1d for a comparison of structures—but suggests an alternative mechanism for how these 

concepts are combined to derive intentions to drink. In this alternative perspective, all of 

the theoretical constructs from the original model, including both descriptive and injunctive 

norms, desire to drink and autonomy, were used to calculate intentions, suggesting that 

these are all of theoretical importance for determining individuals’ intentions to drink. In 

contrast to the original model, whereby the normative component was calculated as an 

equally weighted average of injunctive and descriptive norms, different constants are applied 

to injunctive and descriptive norms in the alternative model, suggesting that these may 

be weighted differently in the calculation of overall norms. This alternative formulation 

has some support in empirical research. In a study exploring the independent contribution 

of injunctive and descriptive norms for determining drinking intentions in US university 

students, Park et al. (2009) found that both types of norms were independent predictors 

of intention to drink, supporting our alternative model’s differential weighting of these 

constructs. This is further supported by a meta-analysis finding that descriptive norms had 

a slightly higher weighting on behaviors compared to injunctive norms (Rivis & Sheeran 

2017).

Several components of the alternative model are not supported by the literature and warrant 

further investigation. First, the inverse of autonomy is used to determine how much 

individuals consider the descriptive norm when deciding their drinking, suggesting that 

individuals with lower autonomy rebel against the descriptive norm more than individuals 

with greater autonomy. This is the opposite of what we would expect; the concept of 

autonomy is intended to represent an individual’s susceptibility to normative influence and 

therefore more susceptible individuals would be expected to pay more attention to the norm. 

There is limited evidence on the individual-level factors influencing the distribution of 

autonomy in the population. However the candidate model goes against evidence suggesting 

that there are individual-level factors, including self-control (Robinson et al. 2015) and 

socio-demographic factors (Edwards et al. 2019) that bias individuals towards paying more 

or less attention to norms about drinking. Although more evidence is required on the factors 

influencing autonomy at the individual-level, it is possible that tying the distribution of 

autonomy to individual-level factors other than sex and alcohol consumption could improve 

model fit. A second component with limited empirical evidence is the negative contribution 

of descriptive norms to decisions to drink. This is incongruent with previous literature; meta-

analyses consistently find that both injunctive and descriptive norms are positive predictors 

of behavior—i.e., the more ‘normal’ a behavior is, the more people will be motivated to 

act out that behavior (Rivis & Sheeran 2017). In summary, although the alternative model 

structure may usefully suggest a differential weighting on descriptive and injunctive norms, 

the original Buckley et al. (2022b) model remains more consistent overall with the wider 

empirical literature on normative behavioral influences on alcohol use.

Interpretability challenge—Models with high complexity are extremely difficult to 

interpret. For the structure with the highest complexity, all of the dynamic concepts from the 

Buckley et al. (2022b) model are used (see Listing 1c); however, this model is challenging 
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to accept as theoretically meaningful. In the time series in Figure 6, the model produces 

trends in alcohol use behaviors that adequately fit targets for men, but struggle to fit 

female targets at all and vastly overestimates female drinking frequency and quantity, while 

underestimating prevalence.

Other strategies can be used during the model discovery process for improving theoretical 

interpretability, include simplifying the function before evaluation, limiting the tree depth in 

the GE configuration, or restricting the grammar. While designing the grammar, modelers 

have to be careful to balance exploration capability and interpretability. Since the model 

attempts to speak to theory and to policy logic models, it is important to leverage the model 

discovery process for theoretical interpretability and generative explanation.

To evaluate theoretical credibility, domain experts can be involved to assess the discovered 

structures (Step 6 of Figure 3). Vu et al. (2020a) demonstrated the involvement of domain 

experts to interpret and evaluate the theoretical credibility of a role theory model. To 

consistently assess the credibility, three qualitative criteria were proposed: (1) at least 

one of the theory constructs must be implicated in the model dynamics; (2) the theory 

constructs must be used to represent mechanisms, rather than being proxies for black-box 

variable-centric explanation; (3) the model equations that describe the mechanisms must be 

compatible with the causal logic and evidence base for the theory. Since quantitative criteria 

may be difficult to develop for theoretical credibility assessment (beyond crude metrics 

of model complexity), identifying qualitative criteria like these is imperative for achieving 

consistency over judgments. In the case of the most promising MOGGP candidate structure, 

the model satisfies the first and second criteria, but its ability to satisfy the third criterion is 

called into question.

The evolution of structure—It is informative to consider the pathway the MOGGP took 

in evolving the candidate structure in Listing 1d. By looking through the history of the 

MOGGP populations, we have been able to identify structural ‘DNA’ for the candidate 

model and how these discoveries affected the convergence of the algorithm. As shown 

in Figure 9, the component term BETA_NORM*Autonomy*Log(Odds(Desire)) was first 

identified at generation 6 as part of a model that did not include normative elements. This 

model performed reasonably for males but less well for females (as a model that only 

amplifies Desire, it would produce relatively flat dynamics). At generation 9, a model 

emerged that was very similar to the final structure. This model contains injunctive and 

descriptive norms components, but the Desire term is now contained within a square-root 

operator, which will act as a nonlinear amplifier on agent attitudes. The inclusion of 

normative components enables the model to produce dynamics that improve the fit to 

both the male and female target trends, but at the cost of increased complexity. Despite 

only requiring a single change, the final model was not discovered until generation 21—

here, the square-root operator is removed leading to substantial improvements in goodness-

of-fit, particularly for female implausibility. Monitoring of the contributions that different 

candidate structures make to improving convergence may be useful in highlighting points in 

the model discovery process where the theory contributions of models could be assessed and 

changes to grammar made, if appropriate (see the discovery process schematic in Figure 3).
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Limitations of iGSS as a method for mechanism identification

Alcohol use in New York State followed gentle trends over the study period, arguably 

indicative of a low-order dynamical system that is not prone to volatility. This period 

does not capture shocks that may activate the causal mechanisms that tend to cause 

instability or phase transitions (e.g., the pandemics of the early twentieth and twenty-first 

centuries, the impact of major human conflicts such as World War 2, or major interventions 

such as ‘Prohibition’—the 18th Amendment to the US Constitution that prohibited the 

manufacture, transportation and sale of alcohol in the US from 1920 to 1933). As such, 

the range of causal mechanisms that can be identified is limited and the findings cannot be 

confidently extrapolated outside of the specific spatio-temporal setting of New York State 

from the mid-1980s to mid-2010s. We cannot claim to have identified candidate mechanisms 

associated with Prohibition and so would not consider the model to have utility in predicting 

the effects of a new prohibition era. However, the ambitions of contemporary alcohol 

policymakers are typically more modest, being related to the scale of policies seen over the 

study window (e.g., changes in taxation and licensing laws).

Our findings do not allow conclusions to be drawn about the ability of iGSS to identify 

mechanisms driving dynamics in higher-order systems (e.g., systems which may exhibit 

phase transitions for small changes in system parameters or initial conditions). However, it is 

worth noting that existing model discovery works have demonstrated success in recovering 

cellular automata rules and network structures for chaotic systems (Yang & Billings 2000) 

and nonlinear differential equations for the classic Lorentz system (Ribera et al. 2022).

In principle, regardless of the order of the system, there could be a very large (potentially 

infinite) set of configurations of contingent mechanisms that could generate a given 

phenomenon. In earlier work, we have motivated iGSS by arguing explicitly for a plurality 

of mechanisms to be considered (Vu et al. 2020a). We believe that iGSS approaches should 

seek to promote diversity in the structures that are identified. More could be done in this 

area, by introducing explicitly diversity-promoting mechanisms—such as niching—as has 

been achieved for parameter estimation (Purshouse et al. 2014). Lawson (1997) has argued 

that the inability to differentiate between multiple candidate models using the existing data 

should not be regarded as a pathological ‘identification problem’, but rather indicates the 

need for further empirical investigation of the credible alternative explanations. We agree—

iGSS should not be seen as a single isolated activity using frozen secondary datasets, but 

rather part of a reflexive and iterative process of scientific inquiry to better understand a 

phenomenon. Existing iGSS studies have tended to be presented as isolated computational 

activities focused on retrodiction of specific cases of a phenomenon, with work now 

needed to integrate the computational power of iGSS into broader retroductive frameworks 

incorporating a mix of quantitative and qualitative methods.

iGSS findings are contingent on the choice of targets. In our study, the targets we selected 

were population averages over time. While population average behavior is of key interest to 

alcohol harms prevention researchers (Skog 1985), we could instead have chosen metrics 

that captured the full distribution of behavior (e.g., Kolmogorov-Smironov statistics). 

Longitudinal surveys on alcohol use that are representative at state or country levels are 

not available for the US, so we could not use targets derived from individual trajectories of 

Vu et al. Page 20

J Artif Soc Soc Simul. Author manuscript; available in PMC 2023 May 25.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



drinking. The choice of targets remains an open issue in iGSS but is likely to be application 

dependent. The iGSS process may have produced different findings if different targets had 

been available.

Conclusion

This paper has presented a novel computational social science method that uses multi-

objective grammar-based genetic programming to explore different combinations of social 

theory concepts to search for alternative agent behavioral rules. The case study in alcohol 

use behaviors using concepts from social norm theory has been successful in showing how 

different arrangements of concepts from the theory produce different trade-offs between 

empirical goodness-of-fit and model interpretability. It would take human modelers an 

infeasible amount of time and effort to manually construct and explore the same number 

of realizations. These model discovery methods can be a tool to complement conventional 

model development and to help identify candidate mechanisms that better explain social 

phenomena.

The best calibrated parameterizations of the original Buckley et al. (2022b) model of social 

norms theory can partially explain male and female drinking trends in isolation. However 

no parameterisation was found which could explain both male and female drinking trends 

simultaneously, producing both male and female time series outputs with under one unit 

of implausibility. The MOGGP identified a candidate model that could meet this threshold 

for simultaneous goodness-of-fit, while also providing relatively good performance when 

validated. This model offers an interesting alternative perspective on how injunctive and 

descriptive norms come together with an agent’s autonomy to form an intention. However, 

the binding of autonomy with descriptive norms (i.e., that agents with less autonomy would 

act more strongly against descriptive norms) seems counterintuitive. It is important to 

recognize that evidence to inform prior beliefs about the distribution of autonomy across 

the population was not available, with agent heterogeneity informed by the calibration 

process. As such, this apparently counter-intuitive finding may be an artefact of the model. 

It would be very beneficial for future social surveys to include instruments which estimate 

psychological attributes, to better inform iGSS efforts that leverage secondary data.

Joint structure-parameter calibration is a significant computational challenge for iGSS, since 

each candidate model structure requires its own parameter calibration. Previous approaches 

have either performed parameter calibration post-hoc (Vu et al. 2019) or provided a limited 

number of constants for the optimizer to choose from (Gunaratne & Garibay 2017a; Vu 

et al. 2020a). The present study provides a modest advance in this area—enabling the 

optimizer to build constants from components using the grammar and enabling it to choose 

from promising model parameter sets and distributions of agent heterogeneity. This type 

of approach is likely to be only locally optimal. Substantially more research is needed to 

provide a more robust solution to the joint structure-parameter problem, e.g., development 

of bi-level optimization approaches, including emulator technologies that can estimate the 

performance of a calibrated model structure without performing parameter calibration. The 

major challenge to emulation of model structure is the choice of an appropriate metric 
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for measuring distances between candidate structures—Levenshtein distance is a possible 

contender but is, itself, computationally demanding to compute.

Our case study using social norm theory provided only a limited collection of theory 

building blocks for the iGSS process to work with. Further, we focused the study on 

the agent decision-making ‘rules’ (i.e., intentions) and did not consider changes to other 

mechanisms in the model (e.g., the perception of norms and processes that were modeled 

at the macro-level). The potential for iGSS as a cross-theory integration method remains 

largely unexplored, despite some fledgling work in this area integrating norm theory with 

role theory (Vu et al. 2021). There is presently a lack of available building blocks in the 

ABM community that are amenable to ‘plug-and-play’ iGSS, arguably due to the lack of 

uptake of any standard software engineering framework for specifying ABM models.

In our work, we have focused on empirical embeddedness as the key motivation for 

performing iGSS. However, iGSS may also have application beyond identifying candidate 

mechanisms that generate empirical phenomena. The method could also be used to identify 

mechanisms that could give rise to counterfactual or as yet unrealized dynamics, where 

the model discovery targets describe outcomes—possible futures—that are desirable (or 

otherwise) for society.
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Figure 1: 
Trends in alcohol use in New York State, estimated using data from the Behavioral Risk 

Factor Surveillance System (BRFSS, Centers for Disease Control and Prevention (CDC) 

2019)
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Figure 2: 
Hypervolume of the non-dominated solutions with respect to a reference point in a two-

objective scenario.
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Figure 3: 
Model discovery process
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Figure 4: 
Grammar for the model discovery process
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Figure 5: 
Hypervolume convergence plot
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Figure 6: 
Time series of selected model structures, shaded areas represent 95% confidence interval for 

target data and range for all model runs for modeled data
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Figure 7: 
Scatter plot of the structures on the Pareto front, for the calibration period 1985–2010
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Figure 8: 
Scatter plot of the structures on the Pareto front, for the validation period 2011–2015
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Figure 9: 
The evolution of the alternative structure identified by the MOGGP
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Table 1:

Agent Alan’s intentional pathway utilities, with attitude weighted 0.5, subjective norms weighted 0.5, and 

perceived behavioral control weighted 0.

Utility components Intention

Schema Attitude Subjective norms Perceived behavioral control Utility Probability

Abstaining −1 +2 0 +0.5 0.33

Light drinking +1 +1 0 +1 0.20

Moderate drinking +1 0 0 +0.5 0.33

Heavy drinking +1 −2 0 −0.5 0.12

Very heavy drinking −1 −4 0 −2.5 0.02
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Table 2:

A description of concepts and equations used to operationalize the intentional pathway.

No. Concept Model equation Description

1 Descriptive 
norms

DescriptiveNormRaw[j, g] = MeanPrevalence[j, g] The raw descriptive norm is the mean prevalence 
(percentage of days) individuals i in each age-sex subgroup g 
perform each schema category j.

2 Descriptive 
norms

WeightedDescriptiveNorm[j, g] = Σh(Shared[j, g, h]
×DescriptiveNormRaw[j, g])/Σh Shared[j, g, h]

The weighted descriptive norm is the weighted sum of 
the raw descriptive norms for all reference groups, h, 
the individual belongs to (calculated using the operator 
Σ Shared), i.e., if they are an 18–24-year-old man, the 
norms of 18–24-year-old men are weighted as 2, all other 
age categories for men are weighted as 1, the 18–24 year-
old women category is weighted as 1, and all other age 
categories for women are weighted as 0.

3 Descriptive 
norms

DescriptiveNormi[j] = 
Perception_bias×WeightedDescriptiveNorm[j, gi]+(1 − 
Perception_bias)×PrevalenceSchemai[j]

The weighted descriptive norm is adjusted for 
Perception_bias. This mechanism adjusts the descriptive 
norms to be biased towards the current drinking level of the 
individual. PrevalenceSchemai[j] refers to the percentage of 
the time individual i drinks in schema j.

4 Injunctive 
norms 
punishment

If HED_proportion[g] > Injunctive_proportion 
Then InjunctiveNorm[g] = 
Punish_adjustment×InjunctiveNorm[g]

If the prevalence of heavy episodic drinking (HED, defined 
by quantity of ethanol Injunctive_threshold) in a particular 
subgroup g rises above a level Injunctive_proportion, the 
injunctive norm is tightened by a factor Punish_adjustment 
to make it less acceptable to drink.

5 Injunctive 
norms 
relaxation

If Σj≠1MeanPrevalence[j ≠ 1, g] > Σj≠1InjunctiveNorm[j 
≠ 1, g] Then InjunctiveNorm[j ≠ 1, g] = 
(1 − Relax_adjustment)×MeanPrevalence[j ≠ 1, g]
+Relax_adjustment×InjunctiveNorm[j ≠ 1, g]

Mean prevalence refers to the average percentage of the time 
individuals in reference group g perform schema j. If the 
sum of mean prevalences for non-abstention schema (i.e., j 
≠ 1) is greater than the sum of the injunctive norms over 
Days_relax days for those schema, then the injunctive norm 
is relaxed by a factor Relax_adjustment.

6 Norms Normsi[k, j] = (1− Autonomyi)×
(log(DescriptiveNormi[j]/DescriptiveNormi[j = 0])
+log(InjunctiveNorm[j, gi]/InjunctiveNorm[j = 0, gi]))/2

The norms have two components: (1) descriptive norms—
describe the prevalence of drinking in each schema, for 
each population age/sex sub-group; and (2) injunctive norms
—describe the perceived acceptability of drinking in each 
schema category j for each reference sub-group g. These are 
weighted by individual’s Autonomy, which is how much 
they tend to ignore norms.

7 Attitudes Attitudesi[k, j] = Autonomyi×log(desirei[j]/desirei[j = 
0])

Attitudes refer to the overall positive or negative appraisal of 
drinking in each schema category. Here this is calculated as 
the individual’s desire to drink weighted by their Autonomy.

8 Log odds 
intention

LogOddsIntentioni[k, j] = β_Attitude × 
Attitudesi[k, j]+β_Norms × Normsi[k, j]+β_PBC × 
PerceivedBehavioralControli[k, j]

The log odds of intention for each schema is the 
weighted sum of attitudes, norms and perceived behavioral 
control, with weights β_Attitude, β_Norms and β_PBC 
respectively. PerceivedBehavioralControli[k, j] = 0 in this 
initial model.

9 Intention Intentioni[k, j] = exp(LogOddsIntentioni[k, j]/Σm 
exp(LogOddsIntentioni[k,m]))

The intention for each schema j is converted into a 
probability of performing the behavior in each schema 
category by normalizing across the odds for all schema m.

Note: These equations contain unobserved parameters (highlighted in bold) which modify the effects of the mechanisms. These are given values 
following the model calibration process which searches for the parameters that best fit historical alcohol consumption trends over time. The 
simulated individuals in the model are indexed by i and represent individual inhabitants of the US. Drinking is simulated on each day and is 
indexed by k. There are 5 behavioral schema that individuals can select, and these are indexed by j. Reference groups for social norms are indexed 
by g and indicate the individual’s age and sex subgroup.
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Table 3:

Characteristics of the New York synthetic population 1985 (to 1 d.p.)

Characteristic of the synthetic population Initialization data

N agents 1000

Sex, % male 43.7%

Age, mean years (SD) 42.7 (16.7)

Non-drinker (%) 18.9%

Mean grams per day among drinkers (SD) 15.3 (26.5)

Mean drinking days per month among drinkers (SD) 10.2 (9.3)
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Table 4:

Calibrated population-level and individual-level parameters (to 3 s.f.). Agent heterogeneity is summarized 

using the mean and standard deviation (SD) of the distribution across agents.

Parameter

Calibrated parameter values

Lowest male implausibility Lowest female implausibility Balanced implausibility

Population-level

BETA_ATTITUDE 0.976 0.967 0.918

BETA_NORM 0.664 0.818 0.868

Individual-level

Mean Autonomy(SD) 0.68 (0.37) 0.86 (0.22) 0.48 (0.39)

Mean automaticity (SD) 0.22 (0.23) 0.20 (0.15) 0.32 (0.29)

Mean habit history window in days (SD) 64 (32) 89 (42) 67 (33)

J Artif Soc Soc Simul. Author manuscript; available in PMC 2023 May 25.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Vu et al. Page 40

Listing 1:

Log odds intention and performance of selected structures

LogOddsIntention =(( BETA_ATTITUDE * Autonomy *Log ( Odds ( Desire )) +
( BETA_NORM *0.50*(1 - Autonomy )* Log ( Odds ( Descriptive )) +
BETA_NORM *0.50*(1 - Autonomy )* Log ( Odds ( Injunctive ))));

(a) Log odds intention of Buckley et al.’s structure. Performance for the three parameter 
calibrations are: lowest male implausibility
[z1,male = 0.989, z1,female = 0.846, z2 = 42], lowest female implausibility [z1,male 
= 1.391, z1,female = 0.602, z2 = 42], and balanced implausibility [z1,male = 1.338, 
z1,female = 0.681, z2 = 42].

LogOddsIntention = BETA_ATTITUDE * Log ( Odds ( Desire ));
parameter . selection = male ;

(b) The simplest structure. Performance: [z1,male = 1.136, z1,female = 1.250, z2 = 10]. 
There is an equivalent structure
using parameter.selection=female which has objectives: [z1,male = 1.482, z1,female = 
0.628, z2 = 10]

LogOddsIntention =((( BETA_ATTITUDE * Autonomy * Log ( Odds ( Desire )) +
BETA_ATTITUDE * Autonomy * Log ( Odds ( Injunctive ))) +
(- BETA_NORM * Autonomy * Log ( Odds ( Descriptive )) + -(1- Autonomy )* Log ( Odds 
( Desire )))) +
((1.00*(1 - Autonomy )* Log( Odds ( sqrt ( Desire ))) +
BETA_NORM *(1 - Autonomy )* Log ( Odds ( sqrt ( sqrt ( sqrt ( pow ( BETA_NORM ,2)*( sqrt 
((( sqrt ( Desire ) +
sqrt ( Desire )) + BETA_NORM *( pow ( Descriptive ,2))))))))))) +
(- BETA_NORM * Log ( Odds (( Descriptive + Desire ))) + BETA_NORM * Log ( Odds 
( Desire )))));
parameter . selection = male ;

(c) The most complex structure. Performance: [z1,male = 0.763, z1,female = 4.791, z2 = 
105].

LogOddsIntention =(( BETA_ATTITUDE * Log ( Odds ( Injunctive )) +
- BETA_ATTITUDE *(1 - Autonomy )* Log ( Odds ( BETA_NORM *( sqrt ( Descriptive ))))) +
BETA_NORM * Autonomy * Log ( Odds ( Desire )));
parameter . selection = balanced ;

(d) Alternative candidate structure. Performance: [z1,male = 0.766, z1,female = 0.667, z2 
= 35].
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