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Abstract

Multimodal neuroimaging data have attracted increasing attention for brain research. An 

integrated analysis of multimodal neuroimaging data and behavioral or clinical measurements 

provides a promising approach for comprehensively and systematically investigating the 

underlying neural mechanisms of different phenotypes. However, such an integrated data analysis 

is intrinsically challenging due to the complex interactive relationships between the multimodal 

multivariate imaging variables. To address this challenge, a novel multivariate-mediator and 
multivariate-outcome mediation model (MMO) is proposed to simultaneously extract the latent 

systematic mediation patterns and estimate the mediation effects based on a dense bi-cluster 

graph approach. A computationally efficient algorithm is developed for dense bicluster structure 

estimation and inference to identify the mediation patterns with multiple testing correction. The 

performance of the proposed method is evaluated by an extensive simulation analysis with 

comparison to the existing methods. The results show that MMO performs better in terms of 

both the false discovery rate and sensitivity compared to existing models. The MMO is applied 

to a multimodal imaging dataset from the Human Connectome Project to investigate the effect 

of systolic blood pressure on whole-brain imaging measures for the regional homogeneity of the 

blood oxygenation level-dependent signal through the cerebral blood flow.
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1. Introduction

The joint analysis of multiple types of neuroimaging data (i.e., multimodal imaging) 

has garnered increasing interest for brain research, as these data can characterize brain 

functions and structure from different yet complementary angles (Guo et al., 2020). For 

example, functional magnetic resonance imaging (fMRI) can capture neural responses to 

external stimuli. Resting-state fMRI is commonly used to assess functional connectivity 

between neural populations from different brain areas. Diffusion-weighted MRI evaluates 

the molecular function and micro-architecture. Recently, regional homogeneity (ReHo) 

has been widely discussed in the resting-state literature (Zang et al., 2004; Craddock et 

al., 2013). ReHo is a measure of brain activity that evaluates the summarized functional 

connectivity between a voxel and its nearest neighbors. It is based on the blood oxygenation 

level-dependent (BOLD) signal. These imaging variables from multimodal datasets can be 

influenced by peripheral and behavioral conditions simultaneously and, at the same time, 

interact with each other.

The current research is a multimodal imaging study investigating cardiovascular disease 

risks, such as the effects of systolic blood pressure (SBP) on ReHo via the influence of 

cerebral blood flow (CBF). We develop the hypothesis based on previous findings of the 

physiological effects of SBP on CBF (Glodzik et al., 2019), and CBF on ReHo (Jiang and 

Zuo, 2016; Liang et al., 2013). This study uses two brain imaging modalities and thus, 

has two sets of spatially dependent multivariate variables. One way to systematically study 

the underlying mechanism of SBP CBF ReHo is to use a multivariate-mediator and 

multivariate-outcome mediation model (MMO). We use multivariate mediation methods in 

the integrated analysis of SBP through multimodal imaging mediation.

Statistical mediation analysis has been widely applied in neuroimaging studies (Lindquist, 

2012; Bi et al., 2017; Shi and Li, 2021). Certain models have been adopted for image-based 

mediators. For example, Chén et al. (2018) proposed an orthogonal mediator decomposition 

method and Zhao et al. (2020) used a sparse principal component analysis in a multiple-

mediator analysis. Advanced models have also been developed to handle mediation analysis 

with multivariate exposures and multivariate mediators (Long et al., 2020; Zhao et al., 

2021). However, there is still a methodological gap in mediation analysis where the mediator 

and outcome are both multivariate.

To fill this gap, we propose a novel mediation model to handle multivariate-mediators and 

multivariate-outcomes. In our application, extracting the underlying mediation pathways 

is naturally challenging because the mediation pathways are tangled between imaging 

modalities with complex data structures. In our motivation data example, a small set of 

CBF mediators related to the primary brain arteries can mediate most of the effects of 

peripheral blood pressure (exposure) on localized ReHo measures (outcomes). Here, we 
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mimic this neurobiological property (i.e., systematic mediation patterns) by introducing the 

concept of dense bi-clusters. We use the following example to illustrate the concept of dense 

bi-clusters while referring the readers to Section 2.2.1 for the detailed introduction. In a 

dataset with 100 mediators and 100 outcomes, there exist 10 000 potential pathways, among 

which 200 (2%) are positive pathways, and 9 800 are negative. If positive pathways are 

evenly distributed, a bi-cluter consisting of 10 mediators and 20 outcomes is expected to 

cover around four positive pathways 10 × 20 × 2% . The 10 mediator-20-outcome bi-cluster 

is dense if it covers a large number (say 120) of positive pathways suggesting unevenly 

distributed positive pathways. The dense bi-clusters is particularly useful for our application 

because they can reveal the underlying complex mediation pathways, which is required for 

mediation effect estimation. We develop a computationally efficient algorithm that is tailored 

to extract the latent mediation pathways among multivariate mediators and multivariate 

outcomes with guaranteed optimum convergence. Based on the extracted mediation dense 

bi-clusters, we estimate mediation effects by performing an orthogonal transformation 

for the selected mediators. A new form of statistical inference is adopted to assess the 

significance of the mediation dense bi-clusters.

We apply this approach to the Amish Connectome Project, which is a subcohort of the 

Human Connectome Project, to investigate the influence of SBP on ReHo through CBF. Six 

CBF regions are identified as momentous mediators, and 59 ReHo regions are affected by 

SBP through them. These CBF regions are analogous to those found in previous studies, 

which proved that they can trigger changes to metabolism and higher-order information 

processing. Our findings are aligned well with previous research in the literature, since a 

negative influence is observed from SBP to the CBF latent factor, and there are positive 

effects between the CBF factor and ReHo regions. Our method is among the first to use 

a mediation analysis with high-dimensional mediators and outcomes. Unlike conventional 

multivariate three-step mediation inference (e.g., Bi et al., 2017) or a marginal mediation 

model with Benjamini-Hochberg false discovery rate (BH-FDR) correction, MMO can 

substantially improve the statistical power and prohibit the finding of false positives by 

fully leveraging the latent organized mediation patterns. While the proposed framework is 

applicable to causal mediation analysis for datasets with manipulable causal variables and 

mediators, we can also use it for pathway analysis in observational studies (i.e., causal 

variables and mediators are not manipulable). In the neuroimaging statistics literature, 

pathway analysis has been widely used to investigate the potential pathways among 

exposures - imaging variables - behavior outcomes (Zhao and Luo, 2016; Zhao et al., 2021). 

We performed the pathway analysis as our data example is collected from an observational 

study.

This paper is organized as follows. Section 2 describes MMO and the steps for dense 

bi-cluster extraction, mediation effect estimation, and inference. Section 3 applies our 

framework to the Amish Connectome data and explains the identified CBF regions 

and mediation effects. Section 4 implements simulations to demonstrate the empirical 

performance of our method. We conclude the paper with a discussion in Section 5.
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2. Methods

2.1. Multivariate mediation model

We consider a setup with a single-exposure, multivariate-mediator, and multivariate-outcome 

mediation model, as illustrated in Figure 1. Our model includes p mediating imaging 

variables from the first imaging modality and q outcome imaging variables from the second 

imaging modality. To perform the mediation analysis on a sample of n participants, let 

X = X1, …, Xn ′ ∈ ℝn be the observed exposure vector for n subjects. Let ℳ = M i
i = 1

p

denote the set of mediating imaging variables, where M i ∈ ℝn is the i-th mediator. 

Similarly, define Y = Y j
j = 1

q
 to be the set of imgaing outcomes, where Y j ∈ ℝn is the j-th 

outcome. Then, the univariate mediation analysis is denoted by X M i Y j . However, 

this may not reveal the systematic mediation pattern nor lead to an accurate inference. 

Therefore, the goal of the current research is to develop MMO to identify and estimate the 

underlying systematic mediation effects.

The systematic mediation effects may involve only a subset of the p mediating imaging 

variables and a subset of the q outcomes. We further assume that the systematic mediation 

pattern is in an organized structure. That is, the exposure X influences a subset of outcomes 

Yd = Yd
j

j = 1
Jd d = 1, …, D  only through the subset of mediators Mc = Mc

(i)
(i = 1)
(Ic) c = 1, …, C , 

where Ic and Jd are the number of mediators and outcomes in ℳc and Yd respectively. 

For example, in our real data analysis, we have n = 204, p = q = 107 as the input data, and 

D = C = 1, I1 = 6, J1 = 59 based on Step 1 analysis (see Section 3). We denote a systematic 

mediator-outcomeset pair by ℳc, Yd  [Figure 1(b)], ∪c = 1
C ℳc ⊂ ℳ and ∪d = 1

D Yd ⊂ Y. In 

practice, ℳc, Yd  pairs are unknown. We provide a graph model-based procedure for 

estimating ℳc, Yd  in Section 2.2. Here, we first present the mediation model with known 

mediation patterns ∪ ℳc, Yd .

Given a systematic mediation set pair ℳc, Yd , we can model the mediation X ℳc Yd. 

In practice, the mediators in imaging data are highly correlated and thus obscure the 

identification of the mediation effect. To ensure the identifiability, we calculate a set of 

orthogonal latent factors ℳc = Mc
l

l = 1

Lc
 of ℳc by factorization model (see section 2.2.2), 

where ℳc is a variable set consisting of Lc orthogonal factors corresponding to ℳc. For 

example, Mc
l
, Mc

l′ ∈ ℳc 1 ≤ l < l  ′ ≤ Lc  are two orthogonal factors [Figure 1(c)]

Specifically, we present the MMO mediation model for each ℳc, Yd  by a linear structural 

equation model (LSEM) as:
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E Mc
l X = x = γl0 + αlx,

E Yd
j X = x, ℳc = mc

1 , …, mc
Lc = vj0 + θjx + ∑

l = 1

Lc

βljmc
l ,

(1)

where j = 1, …, Jd and l = 1, …, Lc. Lower-case variables (e.g., x and m l ) denote manipulated 

values.

Our method can be applied for the causal mediation analysis when the causal variable (or 

exposure) X and mediators M can be manipulated in experiments (see the specification and 

assumptions of causal mediation model in Appendix A.4). In most observational studies 

where X and M cannot be manipulated, we apply the MMO to identify the potential 

mediation pathways and estimate the mediation effects. In the neuroimaging statistics 

literature, this approach is often referred to as pathway analysis (Zhao and Luo, 2016; Zhao 

et al., 2021). We consider mediation analysis and pathway analysis as interchangeable terms 

for the rest of the paper.

2.2. Model estimation

In this section, we estimate the parameters in MMO using a two-step procedure. In step 1, 

we aim to extract potential mediation pairs ℳc, Yd  from X M Y. Then, we estimate 

the latent factors ℳc and the mediation effects in step 2.

2.2.1. Step 1: Mediation bi-cluster estimation—We estimate ∪ ℳc, Yd  by 

leveraging a graph model. Let bipartite graph G U, V , E  denote all potential marginal 

mediation pathways of X M Y and let W be the weighted matrix of the edges in G. 

The node set U represents the mediator imaging variables with U = p, whereas the node 

set V  denotes the outcome imaging variables with V = q. The edge set E, where E = p ⋅ q, 

refers to all potential mediation pathways. The weighted edge set W is calculated with the 

sample data. For example, wij = − logpij, where pij is the p-value for the mediation model 

X M i Y j  (Tingley et al., 2014). The analysis of X M i Y j  can be considered as 

a sure independent screening procedure for multivariate mediation analysis by Zhang et al. 

(2016). In our model, this procedure aims to extract the latent mediation patterns instead of 

estimating the mediation effect.

When systematic mediation patterns exist, we define a dense bi-cluster Uc ⊗ V d ⊂ G as the 

Cartesian product of Uc ⊂ U and V d ⊂ V , and P wij > wi′j′ = 1 for i and j from Uc ⊗ V d  and 

i′ and j′ not in Uc ⊗ V d  (see formal definition of dense bi-cluster in the Appendix A.1). 

Our goal is to extract all dense bi-clusters Uc ⊗ V d  from G based on W from the sample 

data. The node sets of an extracted Uc ⊗ V d become the mediation pair ℳc, Yd  for the 

above-mentioned mediation analysis in section 2.1
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Since the combinatorial of Uc ⊗ V d  from G is infinite, a sound heuristic is required 

to recover Uc ⊗ V d . Therefore, for the sample matrix W, we tend to assign wij with 

high values into Uc ⊗ V d  while maximizing the proportion of high-value edges in each 

dense bi-cluster. This heuristic can be translated into an objective function that maximally 

includes informative edges with a set of subgraphs under minimal size. The maximal weight 

inclusion ensures high sensitivity, whereas the subgraph size penalty prohibits the finding of 

false positives. The objective function is given by:

arg max
Uc ⊗ V d

dλ Uc, V d = arg max
Uc ⊗ V d

∑
c, d

∑
i ∈ Uc, j ∈ V d

log wij − 1
2λlog Uc V d , (2)

where λ is a tuning parameter for the size penalty term. When λ is large, our approach tends 

to extract more parsimonious Uc ⊗ V d  with a reduced size and increased density.

Estimating Eq. (2) is an NP hard problem (Shabalin et al., 2009). Thus, we translate the 

objective function into an adaptive dense directed subgraph detection problem using greedy 

algorithms (Charikar, 2000). Multiple dense bi-clusters U c ⊗ V d  can be captured by an 

iterative procedure (Shabalin et al., 2009). When implementing the greedy algorithms, the 

choice of λ is critical for extracting Uc ⊗ V d  (Wu et al., 2020). To avoid an ad hoc 

parameter selection and ensure maximal reproducibility, we develop a data-driven approach 

to automatically determine λ based on the Kullback-Leibler (KL) divergence criterion 

(Kullback and Leibler, 1951).

Recall that the KL divergence is given by:

D P ∥ Q = ∑
i, j

P δij log P δij

Q δij
, (3)

which measures the discrepancy between two distributions. Specifically, for a systematic 

dense bi-cluster, let δij be an indicator variable for the edge set E. δij = 1 if i ∈ U and j ∈ V
are connected, and δij = 0 otherwise. P  and Q are two distributions of δij, which follows a 

mixture Bernoulli distribution P δij . If there are dense bi-clusters in G:

P δij = Bern π1 ,  if  i, j ∈ Uc ⊗ V d ,
Bern π0 ,  otherwise,  (4)

where π1 > π0 are the parameters of the two Bernoulli distributions. In contrast, when 

Uc ⊗ V d = 0, δij follows a Bernoulli distribution Q δij , where

Q δij = Bern π , (5)

and π is uniform in G.

The KL divergence measures the discrepancy between the distributions of the systematic 

dense bi-cluster mediation patterns (4) and the null model (5) (Daudin et al., 2008). The 
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divergence reaches a maximum when the estimated U c ⊗ V d  bi-cluster structures are the 

same as the underlying true patterns Uc ⊗ V d  (Theorem 1). This can guide the tuning. As 

we assume that there are systematic mediation patterns, a larger KL divergence indicates 

that the underlying systematic patterns Uc ⊗ V d  are better recovered from W (Buse, 1982). 

Therefore, we maximize the KL divergence in (3) to objectively select the tuning parameter 

λ by:

arg max
λ

D P Uc ⊗ V d λ ∥ Q

= arg max
λ

∑
c, d

∑
i, j ∈ Uc ⊗ V d λ

δijπ1logπ1

π + 1 − δij 1 − π1 log 1 − π1

1 − π

+ ∑
i, j ∉ Uc ⊗ V d λ

δijπ0logπ0

π + 1 − δij 1 − π0 log 1 − π0

1 − π .

(6)

In practice, δij is unknown and can be approximated by δ ij = I wij > r  (He et al., 2019). The 

choice of the threshold r depends on a prior distribution ℎ0 r  (such as the mixture binomial 

model, as we assumed) and can be integrated out by ∫ D P Uc ⊗ V d λ ∥ Q ℎ0 r dr. Further, 

π1, π0, and π are also unknown and can be estimated by maximum likelihood estimation 

based on the estimated dense bi-cluster structures (4) (details are in the Appendix A.3 of 

Supplementary Materials). Last, we optimize λ using a grid search to maximize (6)

We integrate the objective function optimization and objective tuning parameter selection in 

Algorithm 1 in the Appendix A.5. The output of this algorithm is U c ⊗ V d . By Theorem 1, 

we show that the optimum can be attained under mild regularity conditions.

Theorem 1. Let Uc ⊗ V d  be the true underlying mediation dense bi-cluster pattern and 

Uc
′ ⊗ V d

′  be the dense bi-cluster pattern different from Uc ⊗ V d . Then, we have

D P Uc ⊗ V d ∥ Q > D P Uc′ ⊗ V d′ ∥ Q . (7)

The proof of this Theorem is in the Appendix A.2 of the Supplementary Materials.

2.2.2. Step 2: Mediation effect estimation—For each estimated ℳc, Yd  (i.e., 

Uc ⊗ V d), we next estimate the mediation effects. We first calculate the orthogonal mediating 

factors from a set of correlated mediating imaging variables ℳc to ensure mediation 

identifiability. As demonstrated in Figure 1(c), let Mc ∈ ℝn × Lc be the observed matrix of ℳc, 

c = 1, …, C. For the orthogonal factor matrix Mc of ℳc, we apply the following factorization 

model: Mc = Mcηc + ϵc. Here, η c ∈ ℝIc × Lc represents the corresponding loading, and ϵc ∈ ℝn

is the error term. The factorization model above can be solved with either classical low-rank 

methods or using the direction of mediation method designed for multiple mediators (Chén 

et al., 2018). Although low-rank models are commonly used to estimate the aggregating 
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effect of correlated multiple mediators (e.g., orthogonal factorization and sparse princinple 

component analysis by Zhao et al., 2020), the alternative approach (e.g., the weighted sum 

method) can also be applied (see Appendix C.3).

Given the orthogonal mediating factors, we follow the commonly used imaging mediation 

procedure to estimate indirect effect (IE) and direct effect (DE). Specifically, with estimated 

ℳc, Yd , the estimated indirect and total effects are:

IEd = 1
Jd
∑

j = 1

Jd

∑
l = 1

Lc

β ljαl,

TEd = 1
Jd
∑

j = 1

Jd

∑
l = 1

Lc

β ljαl + θ j ,

(8)

where β lj and αl are estimated using equation (1) based on the orthogonal factors. The 

mediation proportion then will be: IEd

TEd
.

In practice, the numeric ranges of the mediating imaging variables and imaging outcomes 

can vary, the directly estimated mediation effects are less informative about the level of 

the mediation effect. Therefore, we adopt the commonly used partial correlation as the 

standardized mediation effect size (Kenny and Judd, 2014, see details in the Appendix A.6).

2.3. Inference for dense bi-clusters

The goal of our statistical inference is to test the systematic mediation pattern for each 

estimated dense bi-cluster U c ⊗ V d. Since Uc ⊗ V d are not specified before the data analysis, 

the classical statistical inference methods for the fixed parameter(s) are not applicable. We 

consider U c ⊗ V d as a data-driven “cluster” object. In the large body of the neuroimaging 

statistics literature, permutation test-based family-wise-error (FWE) methods are widely 

used to test the statistical significance of clusters (Nichols and Holmes, 2002; Nichols, 

2012).

In our application, we implement the FWE-based inference procedure as follows. First, 

we permute the labels of mediators and outcomes to generate B permutation datasets 

Db = Xb, Mb, Yb , b = 1, …, B, where, for example, B = 10000. Next, we apply the MMO 

Algorithm 1 to each permuted dataset and the observed dataset. For each permutation dataset 

Db, the test statistic is calculated by:

T b = max
Uc, V d

∑
i ∈ Uc, j ∈ V d

− log pij
b

U c V d

, (9)
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where pij
b  is calculated from the mediation analysis Xb Mb i Yb j . The test statistic 

integrates the mediation effect size, and the extent and the density of the mediation dense 

bi-cluster, and thus, it is superior than the commonly used cluster extent (Zalesky et al., 

2010). Last, we calculate the FEW q-values for the observed mediation dense bi-clusters 

based on the percentile ranks of their test statistics among T b  from the permuted datasets.

3. Data Example

We applied the proposed method to the multimodal brain imaging data from the Amish 

Connectome Project (ACP), which is a subcohort of the Human Connectome Project 

(Kochunov et al., 2016). In this study, there were 94 male and 110 female participants 

(i.e. n = 204) with ages 39.3 ± 16.9. One goal of the Amish Connectome Project is to 

investigate the association between the risk factors for cardiovascular disease and brain 

structures and functions (i.e., heart and brain). Multiple clinical measurements for the 

risk factors for cardiovascular disease were collected, including SBP and total cholesterol. 

Multimodal imaging data were also acquired, including CBF, which was calculated from 

arterial-spin labeling imaging data (Smith et al., 2004), and ReHo, which was calculated 

from resting-state fMRI data (Zang et al., 2004). Specifically, ReHo was derived from 

the BOLD signal using Kendall’s coefficient of concordance. In our data example, both 

mediators (CBF) and outcomes (ReHo) are region-level brain imaging measures based on a 

commonly used brain atlas of 107 regions (JHU-MNI, Oishi et al., 2009). Previous studies 

have revealed significant correlations between SBP and CBF and between SBP and ReHo 

(Muller et al., 2010; Michelet et al., 2015). Covariates (e.g., age and sex) were adjusted in 

the analysis. However, it remains unclear how SBP can affect ReHo by influencing CBF, and 

this naturally requires a complex mediation analysis with high-dimensional mediators and 

outcomes. The details of the multimodal imaging data acquisition and preprocessing, and 

the validity of the studied pathways are provided in the Appendix B.1 of the Supplementary 

Materials.

The two-step procedure (MMO) was applied to the multimodal imaging data with n = 204
and p = q = 107. We first performed mediation analyses to obtain the W matrix and then 

extracted mediation dense bi-clusters using Algorithm 1. The KL criterion selected λ = 1.8. 

The results show one significant dense bi-cluster with six CBF ROIs and 59 ReHo ROIs 

(i.e., C = D = 1, I1 = 6, J1 = 59) with an FWE rate adjusted q-value of 0.019 . Figures 

3(a) and 3(b) illustrate the input matrix and outcome matrix for step 1, and Figure 2 

shows CBF and ReHo ROIs overlaid onto a 3D brain imaging template. Next, we applied 

the factorization method to estimate the orthogonal vectors from the six CBF ROIs. 

Interestingly, only one vector was extracted. It explains 88% of the variance of the six 

mediators. Last, we estimated the systematic mediation effect. The mean of the mediation 

partial correlation coefficients for SBP → CBF component → 59 ReHo is −0.094 (a 

medium effect size, Shrout and Bolger, 2002) with a standard deviation of 0.015. The 

negative mediation effect suggests that SBP can decrease ReHo in multiple brain areas by 

first reducing CBF in the six areas where CBF regions are positively associated with ReHo. 

The partial correlations between pairs of SBP, CBF, and ReHo are shown in Figure 3(c). The 

average mediation proportion across all outcomes is 66.30%.
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The systematic mediation pattern discovered by MMO reveals the critical pathways for 

CBF: cingulate gyrus left (CingG_L), cingulate gyrus right (CingG_R), supramarginal 

gyrus left (SMG_L), supramarginal gyrus right (SMG_R), cingulum (cingulate gyrus) left 

(CGC_L), and inferior occipital gyrus right (IOG_R) [Figure 2(a)]. Specifically, for the six 

CBF regions, CingG_L, CingG_R, and CGC_L are centred around the middle cerebral, 

while SMG_L, SMG_R, and IOG_R are close to posterior cerebral arteries, which play a 

central role in affecting ReHo. Regional-specific changes partially influence ReHo scores 

related to neuropsychiatric illness and CBF, where CBF is itself influenced by SBP. The 

59 ReHo regions cover a large proportion of the brain, including superior frontal gyrus left 

(SFG L), middle frontal gyrus right (MFG_R), etc. in the frontal lobe [Figure 2(b)]; superior 

corona radiata left (SCRL), CGC, etc. in the corona radiata [Figure 2(c)]; parahippocampal 

gyrus left (PHG L), superior temporal gyrus right (STG_R), etc. in the temporal lobe [Figure 

2(d)]; superior parietal lobule left (SPG L), SMG R, etc. in the cuneus [Figure 2(e)]; and 

insular left (Ins L) and putamen right (Put R) in the midbrain [Figure 2(f)]. These brain 

areas are involved in multiple cognitive, language, and motor functions. For example, CingG 

is related to metabolic reduction for higher executive functions (Haznedar et al., 2004). 

The SMG, located in the parietal area, is highly correlated with information processing and 

metabolism (Penniello et al., 1995). The CBF from six regions supports ReHo in the above 

regions.

Our findings suggest that a reduced CBF can lead to a lower level of ReHo. These explain, 

in part, how the risk factors for cardiovascular disease can adversely affect daily functions 

by influencing the CBF and, accordingly, ReHo regions. The details of the selected CBF 

and ReHo regions and the corresponding full names of the regions are provided in the 

Appendix B.4 of the Supplementary Materials. We further performed a sensitivity analysis 

by following Imai et al. (2010b) to assess the effects of the potential violation of the 

mediation assumptions. The results suggest that our mediation results are generally robust to 

moderate violation of assumption (details are in the Appendix B.3).

For comparison, we also applied the classical BH-FDR methods and three-step regression 

methods in Bi et al. (2017). However, no regions were identified under either method, and 

the systematic mediation pattern was not discovered. The BH-FDR is conservative when 

there is enough noise (Kim and van de Wiel, 2008). We also applied the Pathway Lasso 

method (Zhao and Luo, 2022). Although this method allows us to select only the CBF 

regions, we applied it to each outcome and took the union of the results. Consequently, 32 

CBF regions were selected. They contain the regions selected by our method.

4. Simulation

We simulated the multimodal imaging data for the mediation analysis, including a scalar 

exposure variable, multivariate mediating imaging variables, and multivariate imaging 

outcomes. Specifically, we simulated the exposure X, orthogonal mediator factors M, and 

outcomes Y with X, M, Y ∼ N μ, Σ , where the dimension of the multinormal distribution 

was the sum of the number of latent factors and outcomes plus the exposure, and 
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μ = μX, μM, μY ′ and Σ is covariance matrix (see details in Appendix C.1 in the Supplementary 

Materials). We then generated observed mediator variables M, as described in step 2 .

4.1. Parameters and settings

For simplicity, we fixed μ = 0. The parameters in the data simulation were the sample 

size n, effect size of the mediation, dimension of mediating and outcome variables, and 

the cardinality of the mediation structure. We let p = q = 100 and 300, n = 80 and 200 , set 

the mediation effect as ± 0.24 and 0.16 , and included two cardinalities Uc ⊗ V d = 10 × 10
and Uc ⊗ V d = 20 × 20. We assessed the performance of our method for combinations of 

different sample sizes, mediator and outcome dimensions, mediation dense bi-cluster sizes 

(cardinalities), and effect sizes. We also evaluated the performance of our method under the 

settings of non-normally distributed mediators and outcomes. Specifically, we considered 

the Cauchy distribution and Laplace distribution. Moreover, we tested our method under the 

settings with mediators generated from non-orthogonal factors (factor correlations varying 

from 0.5–0.8). The details of data generation and analysis results of these two settings are 

provided in Appendix C.2 in the Supplementary Materials.

4.2. Comparable methods

We first assessed the accuracy of the multivariate mediator and multivariate outcome 

mediation analysis using the results of step 1. The goal of the step 1 analysis is to recover 

the systematic mediation pattern. We compared the results for our method with those of 

existing methods, including univariate mass methods BH-FDR and a three-step LSEM from 

Bi et al. (2017) and a pathway least absolute shrinkage and selection operator (Lasso) 

method (PathL) from Zhao and Luo (2022). Since pathway Lasso by default handles a single 

outcome, we aggregated selected mediators for each outcome. We calculated the sensitivity 

and FDR of the mediation patterns as the evaluation criteria by comparing the estimated 

U c ⊗ V d with the true Uc ⊗ V d. Specifically, the sensitivity is

∑
c, d

Uc ⊗ V d ∩ Uc ⊗ V d

∑
c, d

Uc ⊗ V d

,

and the FDR is

∑
c, d

Uc ⊗ V d − Uc ⊗ V d ∩ Uc ⊗ V d

∑
c, d

Uc ⊗ V d

,

where U c ⊗ V d ∩ Uc ⊗ V d  is the number of edges intersecting between the estimated set 

and the true set.

We evaluated the accuracy of the mediation effect estimation for step 2, given the estimated 

mediation patterns. We compared our model with the ‘oracle model’, which directly 

Zhao et al. Page 11

Comput Stat Data Anal. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



estimates the mediation effects based on true latent mediating factors and a mediation 

low-rank factorization model (medLRM) that decomposes all mediating variables without 

leveraging the estimated mediation pattern. We calculated the estimation bias of the 

mediation effects of MMO and medLRM in contrast to the oracle model. We also calculated 

the coverage probabilities with asymptotic 95% confidence intervals (Aroian, 1947)

4.3. Results

We summarized the edge-wise results for mediation pattern detection in Figure 4 and Table 

1. Our approach MMO achieved high sensitivity across all settings with a well-controlled 

FDR. These results indicated that MMO can accurately reveal the mediation pattern. In 

comparison, the sensitivity rates of the competing methods were lower when the sample 

size or effect size was relatively small, although the FDRs were similar. The reason for this 

difference is mainly because MMO can lend strength to mediators and outcomes, and thus, 

it joins the weak signals in organized structures. When the sample size and effect size were 

larger, all methods had excellent performance. Moreover, the performance of MMO was 

more robust for both negative and positive mediation effects.

We listed the estimates of the mediation effect size (step 2 of O) in Table 2. Since the 

true mediators and corresponding outcomes were implicit as the input to each method, 

we used the results from the oracle model analysis, which used true mediating factors 

ℳ, as a reference. We then performed a low-rank mediation analysis with MMO and 

medLRM and compared the estimated mediation effect size with that of the oracle model. 

We calculated the average mediation effect size for all outcomes for each simulated dataset. 

In general, MMO outperformed medLRM across all settings because it can more accurately 

capture the true mediators. In addition, our model is generally robust to the non-normally 

distributed mediators and outcomes (See Table C.4 and C.5 in the Appendix C.2). When 

non-orthogonal mediating factors present, the mediation pathway extraction by the Step 1 of 

our method remain accurate. However, the performance of the mediation effect estimation 

can vary due to non-orthogonal factors (See Table C.6 and C.7 in the Appendix C.2).

5. Discussion

This paper attempts to solve the mediation problem with high-dimensional-mediators and 

high-dimensional outcomes. This dual high-dimensionality can lead to a massive number of 

mediation pathways, which, thus, gives rise to numerical challenges for mediation analysis. 

We proposed a mediation dense bi-cluster structure to identify systematic mediation patterns 

under the bipartite graph framework, which reflects that the exposure affects multiple 

outcomes via influencing a corresponding set of mediators. We developed cluster-wise 

inference for set-to-set mediation patterns and statistical methods for mediation estimation.

This paper makes several methodological contributions to neuroimaging statistics. First, our 

method extracts multivariate-mediator and multivariate-outcome mediation patterns using 

a graph-based bi-cluster model. The model effectively reveals the underlying systematic 

mediation pathways, which can be recovered with the guaranteed optimality of pattern 

extraction. Second, our method provides an approach for systematic mediation effect 

estimation. Within a dense bi-cluster structure, we factorize the mediators and take the 
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product of partial correlations as the standardized mediation effects. Our model can also 

handle dense bi-clusters sharing the identical outcome set by concatenating mediator sets 

to estimate mediating factors. Finally, we provide a computationally efficient algorithm for 

an integrated multimodal high-dimensional data analysis and an open-source toolkit for the 

mediation analysis.

Our method has limitations. MMO cannot identify the sequential mediation model if the 

previous mediators (or outcomes) can influence later ones in the proper order (Zhao and 

Luo, 2022). In addition, estimating mediation effects on orthogonalized factors can lead 

to an unstraightforward interpretation. Last, we could extend the existing model to handle 

longitudinal multimodal imaging data.

In our analysis of application data, we first identify the systematic mediation pattern 

SBP CBF ReHo. The CBF regions and ReHo regions can better reveal how 

cardiovascular risk factors affect brain-related functions through neural pathways related 

to CBF around vast areas of ReHo. The joint analysis of multimodal imaging data via a 

mediation model provides neurological insights into the influence of SBP on ReHo via 

CBF. These findings may lead to more effective treatments for brain diseases related to 

blood oxygen levels. In contrast, the traditional methods, including BH-FDR, may miss the 

mediation pattern. Therefore, our method may be an alternative tool for analyzing integrated 

multimodal imaging data.

In summary, we developed MMO, a method for the joint analysis of multimodal 

neuroimaging data in a mediation framework. The multivariate-mediator and multivariate-

outcome mediation tool can also be applied to other multimodal high-dimensional data, for 

example, omics-imaging data and omics-omics data (Richardson et al., 2016). Our algorithm 

is scalable since the computational cost for the above application is moderate. The software 

package for the proposed method is available at https://github.com/zhuivv/MMO.git.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgements

This study makes uses of data from the Amish Connectome Project, the description of this study is available at 
https://www.humanconnectome.org/study/amish-connectome-project.

6. Funding:

This work was supported by the National Institute on Drug Abuse of the National Institutes of Health [Award 
Number 1DP1DA048968–01].

7. References

Adhikari BM, Hong LE, Zhao Z, Wang DJ, Thompson PM, Jahanshad N, Zhu AH, Holiga S, Turner 
JA, van Erp TG, et al. , 2022. Cerebral blood flow and cardiovascular risk effects on resting brain 
regional homogeneity. NeuroImage 262, 119555. [PubMed: 35963506] 

Adhikari BM, Jahanshad N, Shukla D, Glahn DC, Blangero J, Reynolds RC, Cox RW, Fieremans E, 
Veraart J, Novikov DS, et al., 2018. Heritability estimates on resting state fmri data using enigma 

Zhao et al. Page 13

Comput Stat Data Anal. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/zhuivv/MMO.git
https://www.humanconnectome.org/study/amish-connectome-project


analysis pipeline, in: PACIFIC SYMPOSIUM ON BIOCOMPUTING 2018: Proceedings of the 
Pacific Symposium, World Scientific. pp. 307–318.

Alsop DC, Detre JA, Golay X, Günther M, Hendrikse J, Hernandez-Garcia L, Lu H, MacIntosh BJ, 
Parkes LM, Smits M, et al. , 2015. Recommended implementation of arterial spin-labeled perfusion 
mri for clinical applications: A consensus of the ismrm perfusion study group and the european 
consortium for asl in dementia. Magnetic resonance in medicine 73, 102–116. [PubMed: 24715426] 

Aroian LA, 1947. The probability function of the product of two normally distributed variables. The 
Annals of Mathematical Statistics , 265–271.

Bi X, Yang L, Li T, Wang B, Zhu H, Zhang H, 2017. Genome-wide mediation analysis of psychiatric 
and cognitive traits through imaging phenotypes. Human brain mapping 38, 4088–4097. [PubMed: 
28544218] 

Bickel P, Choi D, Chang X, Zhang H, 2013. Asymptotic normality of maximum likelihood and its 
variational approximation for stochastic blockmodels. The Annals of Statistics 41, 1922–1943.

Buse A, 1982. The likelihood ratio, wald, and lagrange multiplier tests: An expository note. The 
American Statistician 36, 153–157.

Charikar M, 2000. Greedy approximation algorithms for finding dense components in a graph, in: 
International Workshop on Approximation Algorithms for Combinatorial Optimization, Springer. 
pp. 84–95.

Chén OY, Crainiceanu C, Ogburn EL, Caffo BS, Wager TD, Lindquist MA, 2018. High-dimensional 
multivariate mediation with application to neuroimaging data. Biostatistics 19, 121–136. [PubMed: 
28637279] 

Craddock C, Sikka S, Cheung B, Khanuja R, Ghosh SS, Yan C, Li Q, Lurie D, Vogelstein J, Burns 
R, et al. , 2013. Towards automated analysis of connectomes: The configurable pipeline for the 
analysis of connectomes (c-pac). Front Neuroinform 42, 10–3389.

Daudin JJ, Picard F, Robin S, 2008. A mixture model for random graphs. Statistics and computing 18, 
173–183.

Glodzik L, Rusinek H, Tsui W, Pirraglia E, Kim HJ, Deshpande A, Li Y, Storey P, Randall C, Chen 
J, et al. , 2019. Different relationship between systolic blood pressure and cerebral perfusion in 
subjects with and without hypertension. Hypertension 73, 197–205. [PubMed: 30571554] 

Glymour C, Zhang K, Spirtes P, 2019. Review of causal discovery methods based on graphical models. 
Frontiers in genetics 10, 524. [PubMed: 31214249] 

Guo C, Kang J, Johnson TD, 2020. A spatial bayesian latent factor model for image-on-image 
regression. Biometrics .

Haznedar MM, Buchsbaum MS, Hazlett EA, Shihabuddin L, New A, Siever LJ, 2004. Cingulate 
gyrus volume and metabolism in the schizophrenia spectrum. Schizophrenia research 71, 249–262. 
[PubMed: 15474896] 

He K, Kang J, Hong HG, Zhu J, Li Y, Lin H, Xu H, Li Y, 2019. Covariance-insured screening. 
Computational statistics & data analysis 132, 100–114. [PubMed: 30880853] 

Huang YT, Pan WC, 2016. Hypothesis test of mediation effect in causal mediation model with 
high-dimensional continuous mediators. Biometrics 72, 402–413. [PubMed: 26414245] 

Imai K, Keele L, Tingley D, 2010a. A general approach to causal mediation analysis. Psychological 
methods 15, 309. [PubMed: 20954780] 

Imai K, Keele L, Yamamoto T, 2010b. Identification, inference and sensitivity analysis for causal 
mediation effects. Statistical science 25, 51–71

Imai K, Yamamoto T, 2013. Identification and sensitivity analysis for multiple causal mechanisms: 
Revisiting evidence from framing experiments. Political Analysis 21, 141–171.

Jiang L, Zuo XN, 2016. Regional homogeneity: a multimodal, multiscale neuroimaging marker of the 
human connectome. The Neuroscientist 22, 486–505. [PubMed: 26170004] 

Kenley EC, Cho YR, 2011. Entropy-based graph clustering: Application to biological and social 
networks, in: 2011 IEEE 11th International Conference on Data Mining, IEEE. pp. 1116–1121.

Kenny DA, Judd CM, 2014. Power anomalies in testing mediation. Psychological science 25, 334–339. 
[PubMed: 24311476] 

Zhao et al. Page 14

Comput Stat Data Anal. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Kim KI, van de Wiel MA, 2008. Effects of dependence in high-dimensional multiple testing problems. 
BMC bioinformatics 9, 1–12. [PubMed: 18173834] 

Kochunov P, Thompson PM, Winkler A, Morrissey M, Fu M, Coyle TR, Du X, Muellerklein F, 
Savransky A, Gaudiot C, et al. , 2016. The common genetic influence over processing speed and 
white matter microstructure: Evidence from the old order amish and human connectome projects. 
Neuroimage 125, 189–197. [PubMed: 26499807] 

Kullback S, Leibler RA, 1951. On information and sufficiency. The annals of mathematical statistics 
22, 79–86.

Liang X, Zou Q, He Y, Yang Y, 2013. Coupling of functional connectivity and regional cerebral 
blood flow reveals a physiological basis for network hubs of the human brain. Proceedings of the 
National Academy of Sciences 110, 1929–1934.

Lindquist MA, 2012. Functional causal mediation analysis with an application to brain connectivity. 
Journal of the American Statistical Association 107, 1297–1309 [PubMed: 25076802] 

Long JP, Irajizad E, Doecke JD, Do KA, Ha MJ, 2020. A framework for mediation analysis 
with multiple exposures, multivariate mediators, and non-linear response models. arXiv preprint 
arXiv:2011.06061

Michelet D, Arslan O, Hilly J, Mangalsuren N, Brasher C, Grace R, Bonnard A, Malbezin S, 
Nivoche Y, Dahmani S, 2015. Intraoperative changes in blood pressure associated with cerebral 
desaturation in infants. Pediatric Anesthesia 25, 681–688. [PubMed: 25929346] 

Muller M, van der Graaf Y, Visseren FL, Vlek AL, Mali WP, Geerlings MI, Group SS, et al. , 
2010. Blood pressure, cerebral blood flow, and brain volumes. the smart-mr study. Journal of 
hypertension 28, 1498–1505. [PubMed: 20453669] 

Nichols TE, 2012. Multiple testing corrections, nonparametric methods, and random field theory. 
Neuroimage 62, 811–815. [PubMed: 22521256] 

Nichols TE, Holmes AP, 2002. Nonparametric permutation tests for functional neuroimaging: a primer 
with examples. Human brain mapping 15, 1–25. [PubMed: 11747097] 

Oishi K, Faria A, Jiang H, Li X, Akhter K, Zhang J, Hsu JT, Miller MI, van Zijl PC, Albert M, et 
al. , 2009. Atlas-based whole brain white matter analysis using large deformation diffeomorphic 
metric mapping: application to normal elderly and alzheimer’s disease participants. Neuroimage 
46, 486–499. [PubMed: 19385016] 

Penniello MJ, Lambert J, Eustache F, Petit-Taboué MC, Barré L, Viader F, Morin P, Lechevalier B, 
Baron JC, 1995. A pet study of the functional neuroanatomy of writing impairment in alzheimer’s 
disease the role of the left supramarginal and left angular gyri. Brain 118, 697–706. [PubMed: 
7600087] 

Richardson S, Tseng GC, Sun W, 2016. Statistical methods in integrative genomics. Annual review of 
statistics and its application 3, 181–209.

Rubin DB, 2005. Causal inference using potential outcomes: Design, modeling, decisions. Journal of 
the American Statistical Association 100, 322–331.

Shabalin AA, Weigman VJ, Perou CM, Nobel AB, 2009. Finding large average submatrices in high 
dimensional data. The Annals of Applied Statistics , 985–1012.

Shi C, Li L, 2021. Testing mediation effects using logic of boolean matrices. Journal of the American 
Statistical Association, 1–14. [PubMed: 35757777] 

Shrout PE, Bolger N, 2002. Mediation in experimental and nonexperimental studies: new procedures 
and recommendations. Psychological methods 7, 422. [PubMed: 12530702] 

Smith SM, Jenkinson M, Woolrich MW, Beckmann CF, Behrens TE, Johansen-Berg H, Bannister PR, 
De Luca M, Drobnjak I, Flitney DE, et al. , 2004. Advances in functional and structural mr image 
analysis and implementation as fsl. Neuroimage 23, S208–S219. [PubMed: 15501092] 

Tingley D, Yamamoto T, Hirose K, Keele L, Imai K, 2014. Mediation: R package for causal mediation 
analysis

Wang YR, Bickel PJ, 2017. Likelihood-based model selection for stochastic block models. The Annals 
of Statistics 45, 500–528.

Wu Q, Huang X, Culbreth A, Waltz J, Hong LE, Chen S, 2020. Extracting brain disease-related 
connectome subgraphs by adaptive dense subgraph discovery. bioRxiv 

Zhao et al. Page 15

Comput Stat Data Anal. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wu Q, Ma T, Liu Q, Milton DK, Zhang Y, Chen S, 2021a. Icn: extracting interconnected communities 
in gene co-expression networks. Bioinformatics 37, 1997–2003. [PubMed: 33508087] 

Wu Q, Zhang Y, Huang X, Ma T, Hong L, Kochunov P, Chen S, 2021b. A multivariate to multivariate 
approach for voxel-wise genome-wide association analysis 

Zalesky A, Fornito A, Bullmore ET, 2010. Network-based statistic: identifying differences in brain 
networks. Neuroimage 53, 1197–1207. [PubMed: 20600983] 

Zang Y, Jiang T, Lu Y, He Y, Tian L, 2004. Regional homogeneity approach to fmri data analysis. 
Neuroimage 22, 394–400. [PubMed: 15110032] 

Zhang H, Zheng Y, Zhang Z, Gao T, Joyce B, Yoon G, Zhang W, Schwartz J, Just A, Colicino 
E, et al. , 2016. Estimating and testing high-dimensional mediation effects in epigenetic studies. 
Bioinformatics 32, 3150–3154. [PubMed: 27357171] 

Zhao Y, Li L, Caffo BS, 2021. Multimodal neuroimaging data integration and pathway analysis. 
Biometrics 77, 879–889. [PubMed: 32789850] 

Zhao Y, Lindquist MA, Caffo BS, 2020. Sparse principal component based high-dimensional 
mediation analysis. Computational statistics & data analysis 142, 106835. [PubMed: 32863492] 

Zhao Y, Luo X, 2016. Pathway lasso: estimate and select sparse mediation pathways with high 
dimensional mediators. arXiv preprint arXiv: 1603.07749

Zhao Y, Luo X, 2022. Pathway lasso: pathway estimation and selection with high-dimensional 
mediators. Statistics and Its Interface 15, 39–50. [PubMed: 35815003] 

Zhao et al. Page 16

Comput Stat Data Anal. Author manuscript; available in PMC 2024 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
We illustrate the multivariate mediator multivariate outcome mediation analysis: (a) is the 

mediation model based on observed data with massive and complicated mediation patterns; 

(b) is the mediation model with recognized systematic mediation patterns, showing X
affecting a subset of outcomes Y1  through a corresponding set of mediators ℳ1 , the 

bold arrows represent relations between sets; and (c) is the mediation model with factorized 

mediators for a specific mediator set ℳc and outcome set Yd.
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Figure 2: 
Selected Regions for CBF (mediators) and ReHo (outcomes): (a) is the six regions for CBF 

(mediators) including the six region names which are close to the bilateral primary cerebral 

arteries, (b)-(f) demonstrate the selected regions of ReHo (outcomes) in the areas of frontal, 

corona, temporal, parietal and midbrain.
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Figure 3: 
The mediation analysis results for the data example. The mediation variable is systolic blood 

pressure (SBP). (a) is the heatmap of −log p -matrix based on the input data. (b) is the 

heatmap with detected systematic mediation patterns. (c) is the mediation results based on 

the mediating factor. β and θ effects are averaged across related outcome ROIs. Overall, the 

mediation proportion is high.
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Figure 4: 
Edge-wise bi-cluster simulation results for all methods: the scenarios on x axis correspond to 

the scenarios in Table 1 from left to right, top to bottom.
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Table 1:

Edge-wise results of extracting mediation pattern Uc ⊗ V d by all methods. We demonstrate the false discovery 

rate (FDR), sensitivity (sens) and specificity (spec) across different settings for all comparable methods.

Mediation effect size and 
Sample size Method

Cluster Size = 10 × 10 Cluster Size = 20 × 20

FDR sens spec FDR sens spec

Effect=0.24
n=80

BH 0 0.021(0.135) 1 0 0.155(0.359) 1*

3-step 0.118(0.247) 0.371(0.459) 1* 0.014(0.101) 0.296(0.433) 1*

PathL 0.222(0.245) 0.490(0.179) 0.973(0.042) 0.098(0.018) 0.365(0.127) 0.979(0.042)

MMO 0.106(0.188) 0.955(0.129) 0.998(0.004) 0.057(0.116) 0.950(0.131) 0.997(0.001)

Effect=0.24
n=200

BH 0.017(0.048) 0.728(0.434) 1* 0.001(0.013) 0.895(0.299) 1*

3-step 0.149(0.162) 0.952(0.161) 0.998(0.003) 0.022(0.24) 0.974(0.131) 1*

PathL 0.129(0.102) 0.740(0.182) 0.984(0.017) 0.106(0.125) 0.629(0.086) 0.980(0.023)

MMO 0.040(0.084) 0.994(0.028) 1* 0.004(0.020) 1 1*

Effect=0.16
n = 80

BH 0 0 1 0 0.017(0.128) 1

3-step 0.082(0.215) 0.204(0.368) 1* 0.009(0.025) 0.112(0.294) 1*

PathL 0.208(0.248) 0.530(0.142) 0.971(0.046) 0.106(0.181) 0.405(0.128) 0.976(0.043)

MMO 0.136(0.208) 0.950(0.154) 0.997(0.005) 0.124(0.129) 0.937(0.152) 0.993(0*)

Effect=0.16
n = 200

BH 0 0.607(0.481) 1 0.004(0.019) 0.758(0.409) 1*

3-step 0.114(0.160) 0.899(0.207) 0.998(0.003) 0.037(0.082) 0.946(0.189) 0.998(0.005)

PathL 0.086(0.193) 0.460(0.135) 0.993(0.015) 0.036(0.095) 0.379(0.141) 0.996(0.009)

MMO 0.041(0.076) 1 1* 0.047(0.078) 1 0.998(0.004)

Effect=−0.24
n = 200

BH 0* 0.763(0.420) 1 0.007(0.027) 0.863(0.341) 1*

3-step 0.003(0.019) 0.150(0.359) 0.999(0.003) 0.0002(0.002) 0.111(0.313) 1*

PathL 0.167(0.214) 0.630(0.134) 0.981(0.027) 0.057(0.121) 0.445(0.107) 0.993(0.016)

MMO 0.030(0.099) 0.999(0.009) 0.999(0.002) 0.023(0.070) 0.993(0.057) 0.999(0.004)

p, q = 300
Effect=0.16

Cluster Size = 30 × 30

Sample size = 200 Sample size = 80

BH 0.017(0.060) 0.504(0.492) 1* 0 0 1

3-step 0.131(0.155) 0.712(0.437) 0.999(.0002) 0.025(0.033) 0.096(0.287) 1*

PathL 0.087(0.084) 0.667(0.096) 0.993(0.007) 0.238(0.149) 0.393(0.113) 0.985(0.011)

MMO 0.076(0.129) 0.966(0.106) 0.999(0.003) 0.089(0.126) 0.867(0.219) 0.999(0.002)

*
represents a rounded number.
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Table 2:

Simulation results for mediation effect estimation (step 2). We compare the estimated mediation effects by 

Low Rank Model (medLRM) and MMO, with reference to the estimated mediation effect based on the oracle 

model (with known mediating imaging factors).

Effect size and Sample 
size Method

signal region = 10 × 10 signal region = 20 × 20

Mean Bias Coverage 
Prob Mean Bias Coverage 

Prob

effect=0.24
n=80

‘Oracle 
Model’ 0.295(0.055) 0.292(0.058)

medLRM 0.073(0.093) 0.222(0.093) 15.9% 0.142(0.111) 0.149(0.105) 47.8%

MMO 0.259(0.095) 0.036(0.078) 92.5% 0.285(0.058) 0.007(0.027) 98.9%

effect=0.24
n=200

‘Oracle 
Model’ 0.279(0.047) 0.285(0.039)

medLRM 0.071(0.086) 0.208(0.081) 9.7% 0.229(0.086) 0.056(0.072) 74.6%

MMO 0.266(0.052) 0.012(0.021) 98.8% 0.282(0.040) 0.003(0.005) 99.29%

effect=0.16
n = 80

‘Oracle 
Model’ 0.218(0.047) 0.193(0.049)

medLRM 0.008(0.021) 0.210(0.047) 0% 0.034(0.057) 0.160(0.061) 14.7%

MMO 0.192(0.073) 0.026(0.052) 93.4% 0.174(0.069) 0.019(0.043) 94.2%

effect=0.16
n = 200

‘Oracle 
Model’ 0.195(0.035) 0.193(0.035)

medLRM 0.018(0.033) 0.178(0.044) 0.9% 0.028(0.041) 0.165(0.049) 5.0%

MMO 0.186(0.041) 0.010(0.017) 83.9% 0.182(0.039) 0.011(0.017) 93.8%

Effect=−0.24
n = 200

‘Oracle 
Model’ −0.250(0.044) −0.249(0.047)

medLRM −0.015(0.032) 0.235(0.050) 0.7% −0.094(0.094) 0.156(0.092) 29.5%

MMO −0.233(0.062) 0.017(0.044) 96.7% −0.233(0.068) 0.016(0.053) 96.5%

p, q = 300
effect=0.16

Cluster Size = 30 × 30

Sample size = 200 Sample size = 80

Mean Bias Coverage 
Prob Mean Bias Coverage 

Prob

‘Oracle 
Model’ 0.191(0.037) 0.194(0.051)

medLRM 0.010(0.016) 0.181(0.040) 0.7% 0.025(0.047) 0.170(0.056) 8.2%

MMO 0.174(0.038) 0.017(0.033) 95.7% 0.179(0.056) 0.016(0.031) 96.0%
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