
1

OPEN

DATA

Single nucleotide variants in Pseudomonas aeruginosa 
populations from sputum correlate with baseline lung function 
and predict disease progression in individuals with cystic fibrosis

Morteza M. Saber1†, Jannik Donner2†, Inès Levade2, Nicole Acosta3, Michael D. Parkins3,4, Brian Boyle5, Roger 

C. Levesque5, Dao Nguyen1,2,6,* and B. Jesse Shapiro1,7,*

RESEARCH ARTICLE
Saber et al., Microbial Genomics 2023;9:000981

DOI 10.1099/mgen.0.000981

Received 11 July 2022; Accepted 13 February 2023; Published 13 April 2023
Author affiliations: 1Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada; 2Department of Medicine, Research Institute 
of the McGill University Health Centre, Montreal, QC, Canada; 3Department of Microbiology, Immunology and Infectious Disease, University of Calgary, 
Calgary, AB, Canada; 4Department of Medicine, University of Calgary, Calgary, AB, Canada; 5Integrative Systems Biology Institute, University of Laval, 
Québec, QC, Canada; 6Meakins Christie Laboratories, Research Institute of the McGill University Health Centre, Montreal, QC, Canada; 7McGill Genome 
Centre, Montreal, QC, Canada.
*Correspondence: Dao Nguyen, ​dao.​nguyen@​mcgill.​ca; B. Jesse Shapiro, ​jesse.​shapiro@​mcgill.​ca;​jesse.​shapiro@​umontreal.​ca
Keywords: AmpliSeq; cystic fibrosis; genomics; machine learning; Pseudomonas aeruginosa; within–host diversity; lung function.
Abbreviations: AUROC, area under the receiver operating characteristic; AUROC, area under the receiver operating characteristic; BMI, body mass 
index; CF, cystic fibrosis; CFTR, CF transmembrane conductance regulator; LightGBM, Light Gradient Boosting Method; ML, maching learning; Pa, 
Pseudomonas aeruginosa; PES, Prairie Epidemic Strain; SNV, single nucleotide variant.
†These authors contributed equally to this work
Data statement: All supporting data, code and protocols have been provided within the article or through supplementary data files. Six supplementary 
figures, two supplementary tables and two datasets are available with the online version of this article.
000981 © 2023 The Authors

This is an open-access article distributed under the terms of the Creative Commons Attribution License.

Abstract

The severity and progression of lung disease are highly variable across individuals with cystic fibrosis (CF) and are imper-
fectly predicted by mutations in the human gene CFTR, lung microbiome variation or other clinical factors. The opportunistic 
pathogen Pseudomonas aeruginosa (Pa) dominates airway infections in most CF adults. Here we hypothesized that within–host 
genetic variation of Pa populations would be associated with lung disease severity. To quantify Pa genetic variation within CF 
sputum samples, we used deep amplicon sequencing (AmpliSeq) of 209 Pa genes previously associated with pathogenesis or 
adaptation to the CF lung. We trained machine learning models using Pa single nucleotide variants (SNVs), microbiome diversity 
data and clinical factors to classify lung disease severity at the time of sputum sampling, and to predict lung function decline 
after 5 years in a cohort of 54 adult CF patients with chronic Pa infection. Models using Pa SNVs alone classified lung disease 
severity with good sensitivity and specificity (area under the receiver operating characteristic curve: AUROC=0.87). Models were 
less predictive of lung function decline after 5 years (AUROC=0.74) but still significantly better than random. The addition of 
clinical data, but not sputum microbiome diversity data, yielded only modest improvements in classifying baseline lung function 
(AUROC=0.92) and predicting lung function decline (AUROC=0.79), suggesting that Pa AmpliSeq data account for most of the 
predictive value. Our work provides a proof of principle that Pa genetic variation in sputum tracks lung disease severity, mod-
erately predicts lung function decline and could serve as a disease biomarker among CF patients with chronic Pa infections.

Data Summary
All amplicon sequencing data generated in this project are deposited in NCBI GenBank under BioProject PRJNA763719: https://
www.ncbi.nlm.nih.gov/bioproject/PRJNA763719

Introduction
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the CF transmembrane conductance regulator 
(CFTR) gene and is the most common lethal Mendelian disease in populations with European ancestry [1]. The resulting lung 
disease is the major cause of morbidity and mortality in CF patients, with lung failure the most common cause of death [2]. The 
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severity of lung disease and the rate of lung function decline are highly variable across CF patients, and cannot be fully explained 
by variations in CFTR alleles or other modifier genes [3].

While CF airway infections are polymicrobial, and microbiome diversity has been associated with lung disease severity in many 
studies ([4–7], Pseudomonas aeruginosa (Pa) is an opportunistic pathogen found in the majority of adult CF patients and often 
dominates their airway microbiome [7, 8]. Infection with Pa in early life is associated with a greater decline in lung function 
and mortality [9–11]. Notably, Pa airway infections can persist even with highly effective CFTR-modulator therapies [12, 13].

Over the course of chronic CF lung infections, Pa undergoes genetic diversification, selection and adaptive evolution, resulting 
in a genetically and phenotypically diverse Pa population within each patient [14–19]. How this pathoadaptation affects the 
clinical course of CF lung disease remains poorly understood. We therefore focused on examining the association between Pa 
genetic variation and the severity and progression of lung disease in CF patients with chronic Pa infections. We hypothesized 
that within–host genetic variations in Pa populations during chronic CF lung infections are associated with lung disease severity 
(i.e baseline lung function) and subsequent progression (i.e. decline in lung function), as measured by spirometry.

While it is known that within–host mutations can significantly affect the virulence of Pa and host responses to Pa, previous studies 
[16, 20–23] have examined the genetic variation of Pa across cohorts of CF patients by performing whole-genome sequencing 
(WGS) of only one or few Pa clones isolated from CF sputum samples – an approach that fails to capture the genetic diversity of 
Pa within the lung and is subject to sampling bias. While shotgun metagenomic analysis of CF sputum is increasingly used for 
microbiome analyses [24], the overwhelming abundance of host-derived DNA in sputum samples still hampers the ability to 
resolve within-species genetic variation. To overcome these challenges, here we applied a novel amplicon sequencing (AmpliSeq) 
panel of 209 genes in the Pa genome previously known to be involved in the pathoadaptation and pathogenesis of CF infections 
(Dataset S1, available in the online version of this article). The AmpliSeq platform allows us to estimate single nucleotide variant 
(SNV) frequencies within the Pa population, directly from CF samples, without the need to culture and sequence hundreds of 
isolates per individual.

We then used several machine learning (ML) approaches to classify lung disease severity (at the time of sampling) and to predict 
disease progression (after 5 years) based on the SNV frequency data from a cohort of 54 adult CF patients with chronic Pa infec-
tion. ML has been successfully applied to predict phenotypes from genotype data in other model systems [25]. ML models can 
explicitly include the interactions and correlations between features (in our case, SNVs), which helps control for confounding 
factors such as population stratification that may exist in the dataset [26].

Our study provides a proof of principle that the population of Pa in CF sputum samples includes bacterial genetic biomarkers 
that are associated with disease status and could serve to identify individuals at increased risk of rapid lung function decline. 
Additionally, this work identified genetic variation in Pa genes that merit further investigation for their potential roles in the 
pathogenesis of CF lung disease.

Methods
Patient selection, sample and clinical data collection
The Calgary biobank includes frozen whole sputum samples prospectively collected from individuals with CF followed at the 
Calgary Adult CF clinic from 1998 to 2017, as described previously [27, 28]. A cohort of 104 individuals between the ages of 
18 and 22 years with sputum available from the Calgary biobank was previously characterized [27]. For this study, we selected 
from this cohort all individuals with sputum cultures positive for Pa (64 out of 104 patients). Out of these 64 samples, 54 yielded 
AmpliSeq data of sufficient depth (>10× average depth of coverage of the targeted genes) and were retained for further analysis. 

Impact Statement

Cystic fibrosis (CF) is among the most common, life-limiting inherited disorders, caused by mutations in the CF transmembrane 
conductance regulator (CFTR) gene. CFTR dysfunction causes impaired mucociliary clearance, leading to chronic airway infec-
tions, and a vicious cycle of lung inflammation and damage, resulting in progressive lung disease, the major cause of morbidity 
and mortality in CF patients. However, the severity of lung disease and the rate of lung function decline are highly variable 
across CF patients, and cannot be fully explained using existing clinical or host genetic factors. Here we employed machine 
learning (ML) techniques to establish a link between Pseudomonas aeruginosa (Pa) within–patient genetic diversity and lung 
disease severity in a cohort of CF patients with chronic Pa infections. Our study provides a proof of principle demonstrating the 
utility of ML tools for predictive modelling of lung function severity and decline in CF patients using Pa genetic diversity data. 
Our findings show the potential for ML models to identify high-risk CF patients using Pa genetic information.
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Table 1. Patient clinical data

Values show the absolute count, or mean with standard deviation in parentheses where applicable. Baseline lung function is defined as severe 
when FEVp <60% predicted and mild otherwise. Lung function decline is defined as non-rapid when 5 year FEVp decline <5 % and rapid otherwise. 
The relative abundance of Pa, as well as Shannon and Simpson diversity indices, were computed based on 16S rRNA gene sequencing of the lung 
microbiome community. Homozygous ΔF508 indicates the counts of individuals with a ΔF508/ΔF508 genotype; others include heterozygotes or other 
genotypes. Test statistics are the Wilcoxon rank-sum statistic for numerical data [Pa, age, body mass index (BMI), Shannon and Simpson indices] and 
odds ratio for categorical data.

Patient data Baseline lung function Lung function decline over 5 years

Severe
(n=27)

Mild
(n=27)

Test statistic P value Non-rapid 
(n=31)

Rapid
(n=23)

Test statistic P value

Pa relative abundance 0.59 (0.32) 0.35 (0.32) 2.48 0.01 0.46 (0.33) 0.49 (0.32) 0.3 0.75

Age (years) 19.0 (1.13) 19.4 (1.16) 1.40 0.16 19.2 (1.1) 19.2 (1.25) 0.24 0.80

BMI (kg m–2) 19.0 (2.3) 21.4 (2.3) 3.45 0.0005 20.62 (2.9) 19.7 (2.1) 1.18 0.23

Shannon index 1.12 (0.64) 1.21 (0.68) 0.42 0.66 1.31 (0.66) 1.06 (0.65) 1.44 0.24

Simpson index 0.48 (0.26) 0.5 (0.28) 0.23 0.81 0.54 (0.26) 0.45 (0.27) 1.61 0.20

PES (PFGE typing) 15 9 2.5 0.17 16 8 2.0 0.27

Homozygous ΔF508 15 13 1.34 0.78 14 14 0.52 0.28

Not-deceased (Death) 22 25 0.35 0.42 27 20 1.01 1

Male (Gender) 11 9 0.72 0.77 8 12 3.13 0.86

Mucoid 24 23 0.71 1 27 20 0.98 1

Birth cohort years 1978–1984 11 8 0.47 0.49 12 7 1.31 0.25

Birth cohort years 1985–1990 9 11 0.2 0.65 7 13 1.8 0.17

PES, Prairie Epidemic Strain.

Clinical data collected for each patient are outlined in Tables 1 and S1 and include age, gender, body mass index, CFTR genotype, 
birth cohorts and microbiology (mucoid phenotype, Pa relative abundance, microbiome diversity indices).

As a measure of lung disease severity at the time of sputum collection, we used the spirometric measure of forced expiratory 
volume in 1 s, percentage predicted (hereafter referred to as ‘baseline lung function’ and noted FEVp), a standard measure of 
lung function normalized for age, height, and self-identified sex and ethnicity. Baseline lung function was categorized as severe 
for FEVp <60 % predicted, and mild/moderate for FEVp ≥60 % predicted based on the European Respiratory Society/American 
Thoracic Society standard lung function interpretations [29]. Long-term lung function decline (hereafter noted as ‘lung func-
tion decline’) was measured using the relative rate of FEVp decline per year (determined by subject-specific constructed linear 
regressions over the 5 years following sputum collection as described by Acosta et al. [27]. Lung function decline was categorized 
as ‘rapid’ when the relative FEVp decline was >5 % per year, and ‘non-rapid’ when ≤5 % per year.

Sputum DNA extraction and microbiome analyses
Genomic DNA was extracted from a single biobanked sputum sample per patient as previously described [27], and used as 
template for 16S rRNA gene amplicon and Ion AmpliSeq sequencing. The Prairie Epidemic Strain (PES) genotype, a highly 
prevalent strain in our study population, was identified by PFGE and/or multi-locus sequence typing (MLST) . For microbiome 
analysis, bacterial communities in CF sputum and reagent blanks were characterized by amplification and sequencing of the 
V3–V4 region of the 16S rRNA gene, as previously described [27]. The sequencing reads were then processed to identify opera-
tional taxonomic units (OTUs) [28]. Relative Pa abundance was determined as the proportion of Pseudomonas reads relative to 
the total number of 16S rRNA gene reads.

Ion AmpliSeq panel design and sequencing
The AmpliSeq panel targeted 209 Pa genes previously implicated in pathogenicity, antimicrobial resistance and within–host 
pathoadaptation during chronic infection (Data S1). The AmpliSeq primer panel (generated by Life Technologies) was designed 
by the AmpliSeq Custom Services (White Glove, Thermo Fisher Scientific) to provide high sequencing coverage of the target 
genes based on the Pa PAO1 genome (NCBI accession number: GCA_000006765.1), with 100 % breadth of coverage for 205 
genes and >96 % in four genes, based on the tiling of amplicons. Four additional genome assemblies of Pa clinical isolates 
[GCF_004375495.1, GCF_004374685.1, GCF_004374275.1 and the PES genome (NCBI BioProject: PRJNA750451)] were also 
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evaluated along with PAO1 for the optimization of primer design, tiling and pooling to achieve maximal target coverage by the 
primer panel with minimal misalignments and homology with the human genome.

AmpliSeq libraries were constructed using the Ion AmpliSeq Library kit 2.0 and IonCode barcode set with the following modifica-
tions. SparQ magnetic beads (Quantabio) were used for purification, and individual libraries were quantified using the Quant-iT 
PicoGreen dsDNA Assay Kit (ThermoFisher). Samples were mixed in equimolar proportions and the pooled library (200 pM) 
was loaded on an Ion Chef for template preparation using HiQ reagents. The P1 v3 chips were sequenced using an Ion Proton 
sequencer (500 flows) with P1 HiQ sequencing reagents following the manufacturer’s instructions.

AmpliSeq variant calling
The quality of AmpliSeq sequencing was confirmed using TorrentSuite software (v.5.2; Thermo Fisher Scientific). Raw sequencing 
reads were trimmed based on a per-base phred quality score cutoff (‘q’ flag) of 18, window size of 1 bp and minimum remaining 
sequence length (‘l’ flag) of 19 using fastq-mcf (v.1.04.636) [30]. Reads were aligned to the PES genome (CP080405) using BWA 
MEM and the alignments were sorted and indexed using SAMtools (v.1.9) [31]. Samples with average sequencing depth ≤10× 
across the target genes were discarded, leaving 54 samples for further analysis. SNVs with minimum mapping quality of 20, 
minimum base quality of 18 and minimum coverage of 10× were then identified using VarScan 2 [32] and functional consequences 
of each SNV were inferred using snpEFF (v.2.4.2) [33]. The SNV allele frequencies (ranging from 0 to 1) at each polymorphic site 
covered by the AmpliSeq panel were used to generate an SNV frequency matrix, with samples as rows and nucleotide positions 
as columns. For baseline lung function (measured based on FEVp score) and lung function decline (disease progression) predic-
tion analysis, all synonymous variants were filtered out and only non-synonymous variants (including nonsense and missense 
mutations, frameshift deletions and insertions) were used (Dataset S2). All SNVs (including synonymous sites) were included 
for population stratification analyses.

Heritability estimation
Here we define heritability as the variation in disease status that can be explained by genetic variation measured in the AmpliSeq 
SNV data. We estimated heritability as the average prediction accuracy R2 from the elastic net model implemented in the scikit-
learn Python package in held-out samples during cross-validation on continuous phenotypes (not binned into mild/severe or 
rapid/non-rapid). This approach is similar to that described previously by Lees et al. [26].

Bacterial population stratification
Population stratification in Pa was evaluated by calculating pairwise Pearson correlation coefficients between sputum samples based 
on the SNV frequency matrix followed by determination of distinct genome subgroups using hierarchical agglomerative clustering 
implemented in SciPy [34] and visualized using the python seaborn package [35]. This identified two major subclusters of Pa, one of 
which was significantly enriched in PES strains. To determine if any clinical factors were associated with these subclusters, we used 
t-tests for continuous variables including age, body mass index (BMI), Shannon and Simpson diversity indices and Pa abundance in 
the sputum sample. For binary variables including PFGE typing (PES or not), gender, host CFTR genotype, death, mucoid presence/
absence status, baseline lung function and lung disease progression (lung function decline), we used a Fisher Exact test. A Chi-square 
test was used for the multi-categorical birth cohort factor.

Feature selection and training predictive model of lung function
In an ML context, a feature is defined as an individual measurable characteristic of an observed phenomenon. In this study, 
the features considered are Pa genetic variants (SNV frequencies) identified by the AmpliSeq panel and the clinical factors 
linked to the study patients (Table S1). To reduce the dimensionality of the dataset (i.e. to reduce the ratio of features to 
sample size), a feature selection approach was applied using nested cross-validation in three steps.

1. Outer loop: data were split into 80 % training (43 samples) and 20 % testing (11 samples) for 20 resamplings (folds) using 
a stratified shuffled split function implemented in sklearn [36]. This method ensures no overlap between train and test 
dataset in each fold but samples in the training dataset may overlap across folds. Stratification was performed along labels 
in each phenotype (i.e. baseline lung function and lung function decline) to keep the ratio of cases to controls in train and 
test datasets similar in each fold.

•	 Inner loop: from the training dataset within each outer loop, samples were randomly bootstrapped (n=43, sampling with 
replacement) and feature importance (i.e. scores assigned to each input feature indicating the relative importance of the feature 
when making a prediction) were estimated using the lightGBM [37] gradient boosting ensemble method implemented in 
feature-selector v1.0.0 [38] for 50 folds. Feature-selector parameters were set as: n estimators=1000, learning_rate=0.05 and 
early_stopping=True.

•	 Features with an importance value of zero averaged across 50 inner loops were discarded. Each of four ML models (i.e. logistic 
regression, SVM, random forest and XGBoost) were independently trained on a dataset of selected features and performance 
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of the trained model was measured by estimating ROC-AUC on the test dataset ensuring no data leakage between training 
and testing datasets.

2. Feature importance values estimated in the 20 outer loops were averaged and the set of features required to obtain 99 % cumula-
tive relative importance were retained to perform prediction analysis. The remaining features were filtered out.

3. ROC-AUCs of models were estimated by averaging the ROC-AUCs over the 20 outer loops.

To prevent bias or overfitting to the training data, we performed feature selection within the inner cross-validation such that 
no information from the training data is leaked to the held-out samples. In other words, to find the optimal coefficient values 
for each feature, we used inner cross-validation and set the feature importance to 0 for the features that did not contribute to 
the classification of the data in the test dataset, thereby preventing any leakage of information between training and testing 
datasets.

Four ML models were used in this study: logistic regression with l2 regularization, extreme gradient boosting implemented in 
XGBoost [39], ensemble decision trees implemented in random forest [40] and linear support vector machine (SVM) with linear 
kernel implemented in the sklearn package with default hyperparameters. Model performance was evaluated using six metrics: (1) 
area under the receiver operating characteristic (AUROC), accuracy (number of correct predictions/total number of predictions); (2) 
precision (True Positives/(True Positives+False Positives)); (3) recall (True Positives/(True Positives+False Negatives)); (4) F1 score 
(2*(Precision*Recall)/Precision +Recall); (5) Accuracy; and (6) balanced accuracy (bACC), the average of recall obtained on each 
class (i.e. severe/mild for baseline lung function and rapid/non-rapid for lung function decline).

To evaluate the statistical significance of the prediction performances (AUROC scores) obtained by ML models in comparison with 
random expectations, a non-parametric permutation test [36] was performed using 100 rounds of label switching followed by feature 
selection and model training (as done for real data) and estimating empirical P-values (i.e. the chance that the observed AUROC scores 
obtained using the data could be obtained by chance alone). The enrichment of predictor SNVs across functional gene categories 
relative to the total genes in the AmpliSeq panel was assessed using Fisher’s exact test with a family-wise error rate of 0.05 adjusted for 
multiple testing using the Bonferroni method.

Code availability
All computer code used to conduct the AmpliSeq data analysis, including ML methods, are available at GitHub at the following 
link: https://github.com/Morteza-M-Saber/Cystic_fibrosis_ML_analysis/

Results
We studied a previously described and well-characterized cohort of young adult CF patients aged 18–22 years with chronic Pa infection 
[27]. After filtering for AmpliSeq sequencing quality, we excluded 10 patients with low coverage of Pa, leaving 54 patients for further 
analysis. The clinical and demographic characteristics of all 54 patients are summarized in Table 1, and the excluded patients were not 
apparent outliers in their clinical profiles. From the filtered sequence data, we identified SNVs within the 209 genes represented in the 
AmpliSeq panel and estimated the frequency of each SNV within each patient sputum sample. In total across the 54 patient samples, 
we identified 7867 synonymous and 4452 non-synonymous SNVs (Dataset S2). All variants were used for population stratification 
analysis and only non-synonymous SNVs were used to train ML models.

We first estimated the heritability of baseline lung function (FEVp score) and lung function decline over 5 years. Baseline lung function 
had a heritability of 0.30 [95 % confidence interval (CI): 0.23–0.37], indicating a significant genetic component from the AmpliSeq data. 
In contrast, the heritability of lung function decline could not be estimated due to a poor fit of the elastic net model (mean R2 across 
cross-validation folds <0). We therefore expect lung function decline to be challenging to predict from AmpliSeq data. Considering 
baseline and future lung disease as continuous factors, we found that AmpliSeq data explain significant variance in baseline lung 
function (elastic net explained variance regression score=0.41; 95 % CI: 0.37–0.46) but not in lung function decline (explained vari-
ance ~0). Due to these relatively poor model fits on continuous phenotypes, we binned each measure of disease severity into discrete, 
clinically relevant categories: (1) severe or mild baseline lung function, and (2) rapid or non-rapid lung function decline over 5 years (see 
Methods). Both measures of lung disease severity were binned based on clinically accepted threshold values [29]. As described below 
in detail, ML models were able to classify these discrete disease categories significantly better than random. We therefore proceeded 
with these discrete categories for subsequent analyses.

Stratification in the Pa population
We quantified the extent of Pa population stratification, which can be problematic if there are clonally related genetic clusters that 
are confounded with the lung disease outcomes of interest. If a particular genetic cluster or lineage is associated with lung disease 
severity, it then becomes difficult to pinpoint the SNVs associated with disease because all mutations (whether related to disease or 
not) in a cluster are correlated with each other. We know a priori based on PFGE typing that our dataset contains a highly prevalent 

https://github.com/Morteza-M-Saber/Cystic_fibrosis_ML_analysis/
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Fig. 1. Pa populations are stratified into two genetic clusters, neither of which is associated with baseline lung function (FEVp) or lung function decline. 
(a) Heatmap showing correlations in within–host Pa SNV frequencies between pairs of sputum samples. Strong correlations are in yellow; weak 
correlations in blue. Rows and columns (samples) are ordered by hierarchical clustering. Distribution of baseline lung function measured by FEVp 
score (27 Severe and 27 Mild individuals), lung function decline (23 Rapid and 31 Non-rapid individuals) and PFGE typing (25 PES and 29 Unique) 
are presented on the y-axis. Baseline lung function and lung function decline over 5 years are not significantly correlated (Pearson R2 score=−0.19, 
P=0.22). (b) P-values for the association between clinical data and genetic clusters are determined by t-tests for numerical data and Chi-square tests 
for categorical data (Methods). Only the association between PFGE type (PES or non-PES) is significantly associated with the genetic clusters in (a) 
(P<0.0045 after Bonferroni correction for multiple tests).

lineage of Pa [called Prairie Epidemic Strain or PES; sequence type (ST)-192; Table 1] suspected to be associated with severe lung 
disease [41]. We confirmed this by hierarchical clustering of the Pa AmpliSeq data (n=12 319 SNVs, including both synonymous and 
non-synonymous variants), which revealed two apparent genetic clusters (Fig. 1a), one of which was strongly associated with the PES 
lineage (Fisher exact test, odds ratio=168.0, P=1.1e-09; Fig. 1b). The few observed exceptions (i.e. three PES samples grouped with 
unique PFGE types; Fig. 1a) could be due to mixed infections or sufficient within–host diversification to obscure the genetic signal 
of PES ancestry. The two major Pa genetic clusters were also weakly associated with the birth cohort (Chi-square test, P=0.0095; not 
significant after multiple test correction; Fig. 1b) which is probably due to unequal prevalence of PES across the time periods where 
cohorts were recruited (Table S1). No other clinical factor was significantly associated with either genetic cluster (Fig. 1b). Importantly, 
neither cluster is correlated with either baseline lung function (Fisher exact test, P=0.81) or lung function decline (Fisher exact test, 
P= 0.51) (Fig. 1b), indicating that these disease outcomes are unlikely to be confounded by Pa population stratification, and that 
finer-grained predictive modelling is warranted. We also noted that lung disease progression over 5 years (lung function decline) is 
not significantly correlated with baseline lung function at sample collection (Fig. 1a).

Genetic and clinical features associated with baseline lung function and lung function decline in CF patients
A common challenge in predicting outcomes from sequence data is the sparsity of the data, that is the relatively few available 
samples compared to the large number of genetic markers (called ‘features’ in ML context). To resolve this problem, feature selec-
tion can be used to remove non-informative features (i.e. SNVs and clinical factors) and focus only on the most predictive ones 
[42–45]. We used a nested cross-validation approach for feature selection based on ensemble gradient boosting (see Methods). 
Out of 4452 non-synonymous SNVs and 11 clinical factors considered, our model selected only 34 SNVs (hereafter called 
predictor SNVs) and three clinical factors (age, BMI and Pa relative abundance in the sputum microbiome) that account for 99 % 
of the cumulative feature importance (Fig. 2). This means that a minimal set of SNVs and clinical factors provides 99 % of the 
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Fig. 2. Pa genes and clinical factors selected as predictive features of baseline lung function and lung function decline. Normalized importance of 
genomic and clinical data that contribute to 99 % cumulative relative importance for the prediction of (a) baseline lung function at time of sample 
collection and (b)  risk of 5 year progression (lung function decline). On the y-axis, gene identifiers (locus tag|chromosome location based on PES 
genome) are colour-coded based on their functional classification. Named genes are shown on the right, when available.
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Table 2. Functional classification of predictor genes used for prediction of baseline lung function and lung function decline

Baseline lung function predictor genes Lung function decline predictor genes Shared genes

Host adaptation

PA0454|conserved hypothetical protein
PA1188|hypothetical protein
PA2077|oleate 10S-lipoxygenase
PA3234|probable sodium:solute symporter
PA3327|probable non-ribosomal peptide 
synthetase
PA3728|hypothetical protein
PA3895|probable transcriptional regulator
PA4311|conserved hypothetical protein
PA4489|magD
PA4735|hypothetical protein
PA4961|hypothetical protein

PA2072|conserved hypothetical protein
PA2151|conserved hypothetical protein
PA2435|probable cation-transporting P-type 
ATPase
PA2635|hypothetical protein
PA3105|xcpQ
PA4372|hypothetical protein

PA4719|probable transporter
PA5238|probable O-antigen acetylase

Antibiotic resistance
PA2018|mexY
PA3168|gyrA

PA4020|mpl
PA4082|cupB5
PA4266|fusA1

Cell wall, LPS, capsule, motility and 
attachment

PA1099|fleR PA0705|migA
PA3704|wspE
PA4082|cupB5

PA0861|rbdA
PA4601|morA

Iron transport and metabolism PA0470|fiuA
PA0931|pirA

Regulators PA0600|agtS

Stress/metabolism PA1259|lhpH
PA4814|fadH2

PA1874|hypothetical protein
PA4937|rnr
PA5060|phaF

Virulence PA4211|phzB1
PA5266|vgrG6

PA0934|relA
PA2361|icmF3
PA3290|tle1
PA5262|fimS

LPS, lipopolysaccharide.

information used in predicting baseline lung function at the time of sampling (Fig. 2a). An equivalent analysis for lung function 
decline after 5 years identified 33 predictor SNVs and the same three clinical factors that contributed to 99 % of the cumulative 
feature importance (Fig. 2b). Including the number of polymorphic SNVs (within–sample frequency >0 and <1) to the models did 
not improve predictions nor was it selected as an important feature, suggesting that simple measures of within–patient diversity 
have limited predicted value. For both baseline lung function and future lung function decline, the phenotype is not simply 
predicted based on the presence/absence of each SNV, but rather on more subtle information about SNV allele frequencies within 
patients. In other words, predictive SNVs occur at a range of frequencies, with only 223 being clustered around 0 or 1 (Fig. S1).

The three selected clinical factors associated with both baseline lung function and lung function decline are BMI, Pa relative 
abundance from 16S rRNA gene amplicon sequence data from a previous study of the same cohort [27] and age (Fig. 2). 
Multiple studies have shown an association between poor lung function and low BMI [13, 46, 47], high abundance of Pa [5] 
and age [5, 48]. As expected, Pa relative abundance also showed a strong negative correlation with Shannon and Simpson 
microbiome diversity indices (Fig. S2), indicating that Pa abundance can be considered as a proxy for lung microbiome 
diversity in our dataset. However, Shannon and Simpson diversity indices were not selected as predictive features in our 
model, consistent with a previous study [48]. This suggests that, even if low microbiome diversity indices are associated with 
CF disease progression, the low diversity is probably driven by the dominance of key pathogens such as Pa. The recovery 
of previously known clinical determinants of lung function in CF patients supports the reliability of our feature selection 
approach.

To interpret the possible roles of Pa SNVs in CF lung disease, we classified the known or predicted function of genes 
containing predictor SNVs (hereafter called predictor genes) into functional categories manually curated based on existing 
literature. The predictor SNVs with the highest weighted importance for both baseline lung function and lung function decline 
outcomes are located within genes that play a role in seven functional categories (Table 2). The distribution of predictor 
genes is generally similar to the distribution of gene functions included in the AmpliSeq panel (Fig. S3). However, the 
predictor genes for baseline lung function are enriched in iron transport and metabolism (13.4 % in baseline lung function 
predictor genes vs. 1.4 % in the AmpliSeq panel, P=0.00018; Fig. S3). The genes encoding the ferric enterobactin receptor 
(PirA) and the ferrichrome receptor (FiuA) respectively account for 8.9 and 3.7 % of the total normalized importance for 
baseline lung function (Fig. 2a), and pirA contains multiple predictor SNVs (Fig. 3a). In contrast, the predictor genes for lung 
function decline are enriched in stress/metabolism functions (33.6 % in lung function decline predictor genes vs. 13.4 % in 
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Fig. 3. Genomic locations and importance of genes containing predictor SNVs. (a) Genes containing SNVs predictive of baseline lung function. The 
x-axis shows nucleotide positions across the Pa reference genome. (b) Genes containing SNVs predictive of lung function decline. Genes including 
multiple SNVs are shown with arrows. Note that the two arrows from PA2072 point to two different nearby SNVs in the same gene.

the AmpliSeq panel, P=0.002; Fig. S3). Notably, the hypothetical protein PA1874 accounts for 16.9 % of the total normalized 
importance for prediction of lung function decline and includes seven out of 33 predictor SNVs (Figs 2b and 3b), as well 
as two predictor SNVs for baseline lung function (Fig. 3). This hypothetical protein has also been shown to play a role in 
resistance of Pa to multiple antibiotics [49]. The PA4937 gene, which encodes an RNase R exoribonuclease, also contains 
multiple SNVs predictor genes of both baseline lung function and lung function decline (Figs 2a and 3a). The two genes 
PA0861 (rbdA) and PA4601 (morA), which encode regulators involved in bacterial motility and biofilm formation, are also 
predictor genes for both baseline lung function and lung function decline (Fig. 2).

Predicting lung disease severity and progression in individuals with CF using genetic and clinical factors
We used a nested cross-validation approach to compare the performance of four L models including l2-regularized logistic 
regression, support vector machines (SVM), random forests, and extreme gradient boosting (XGBoost) using the AUROC 
curve and other standard metrics (see Methods). To prevent data leakage (i.e. information from outside the training dataset 
being used to create the prediction model), feature selection was performed on a training dataset and the performance of 
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Table 3. Performance of logistic regression in predicting baseline lung function and lung function decline using genomic data only, or a combination 
of genomic and clinical data

See Methods for descriptions of the performance metrics.

Genomic data (95 % CI) Genomic and clinical data (95 % CI)

Baseline lung function

AUROC 0.87 (0.84,0.9) 0.92 (0.84,1)

bACC 0.81 (0.78,0.84) 0.83 (0.72,0.94)

Accuracy 0.81 (0.78,0.84) 0.83 (0.72,0.94)

F1 0.81 (0.78,0.83) 0.83 (0.72,0.94)

Precision 0.83 (0.81,0.86) 0.84 (0.73,0.94)

Recall 0.81 (0.78,0.84) 0.83 (0.72,0.94)

Lung function decline

AUROC 0.74 (0.71,0.78) 0.79 (0.7,0.88)

bACC 0.63 (0.59,0.66) 0.66 (0.59,0.74)

Accuracy 0.64 (0.6,0.67) 0.67 (0.6,0.75)

F1 0.62 (0.58,0.65) 0.66 (0.58,0.74)

Precision 0.65 (0.61,0.69) 0.69 (0.6,0.78)

Recall 0.64 (0.6,0.67) 0.67 (0.6,0.75)

Fig. 4. Predictive models of baseline lung function and lung function decline perform significantly better than expected by chance. (a) Classification 
score of baseline lung function using logistic regression (green dashed line) is significantly higher than expected based on permuted data (mean 
shown in black dashed line). (b) Average AUROC scores of different ML models to predict baseline lung function, compared to the random expectation 
(permuted sample labels). Shading indicates the 95 % confidence interval. (c) Classification score of lung function decline using logistic regression 
compared to permuted data. (d) Average AUROC scores for lung function decline prediction.
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the trained model was estimated on a completely independent test dataset. It should be noted that while an ensemble light 
gradient boosting model was used for feature selection (see Methods), we did not use it for predictive modelling to avoid 
overfitting. Of the ML methods tested, logistic regression had the best predictive performance for both phenotypes (Table 3, 
Fig. 4). Logistic regression is a simple classification model, which makes it reasonably robust against overfitting [50]. Cross-
validation showed that logistic regression was the most accurate and precise model for both baseline lung function, with an 
average AUROC score of 0.87 (95 % CI, 0.84–0.90), and for lung function decline, with a score of 0.74 (95 % CI: 0.71–0.78; 
Tables 3 and S2). The second best method was SVM, another type of linear model (Table S2). Across all models, the baseline 
lung function phenotype was more accurately predicted than lung function decline, consistent with predictions becoming 
more uncertain further into the future (Tables 3 and S2). Importantly, all models could predict both phenotypes significantly 
better than expected by chance (compared to a permutation test using data with shuffled outcome labels; Figs 4a, c and S4).

Clinical factors have been previously used to predict lung disease progression in CF patients [51]. We therefore assessed 
if integrating clinical factors could improve upon the predictions based on Pa AmpliSeq data alone. Including the three 
clinical factors identified by feature selection (BMI, age and Pa relative abundance) in our predictive models led to modest 
performance increases (~5 % increase in AUROC) for both baseline lung function and lung function decline outcomes 
across the four ML models considered (Tables 3 and S2). Using clinical factors alone was always inferior to AmpliSeq data 
to classify baseline lung function, and was unable to predict lung function decline better than a random expectation (Fig. 
S5). We conclude that, while these clinical factors are useful, most of the predictive power comes from the Pa genetic data.

Lack of generalizability is one of the main limiting factors for the translation of prediction models into clinically useful 
diagnostics. ML models often have low generalizability (i.e. ‘overfit’) in scenarios where the model performs well on the 
dataset used to train the model but fails to achieve similar prediction accuracy on new data. We plotted learning curves to 
assess how ML (using logistic regression) predictions improved by training on more data [52]. We found that the performance 
difference between training and testing data decreases as sample size increases (Fig. S6). There were no major differences 
in prediction accuracy of training and testing datasets (Fig. S6), which suggests the model does not suffer from significant 
overfitting. We also noted that cross-validation scores for both baseline lung function and lung function decline models 
continued to increase for the testing dataset as more data were used for model training (Fig. S6), which suggests the model 
could be further improved with more data.

Discussion
Considering the critical role of Pa in CF-related morbidity and mortality, here we established a link between Pa within–host 
genetic diversity and CF lung disease severity in a cohort of young adults with chronic Pa infections. Despite a modest 
sample size, our study provides a proof of principle demonstrating the utility of ML models for predictive modelling of lung 
function severity and decline in CF patients using bacterial genetic and clinical data. Although our models do not appear to 
be significantly overfitted, fully validating their predictive performance will require independent cohorts. We also identified 
potential genetic biomarkers associated with lung disease severity. Overall, our findings provide evidence that ML models 
can identify CF individuals at high risk for poor Pa infection outcomes using Pa genetic data.

Our work is based on a subset of samples from a previously described cohort study that identified dominance of Pa in the 
sputum microbiome (and the resulting reduction of community diversity) as a predictor of lung function decline in a cohort 
of young CF adults [27]. Here we focused on a subset of patients with a lung microbiome dominated by Pa. While these 
patients are already at increased risk of lung disease, we found that the severity of disease at the time of sampling and 5 years 
into the future could be predicted based on genetic variation within the infecting Pa population. Even in this patient cohort 
in which Pa was always present, we confirmed that Pa relative abundance is associated with disease severity and progression 
– although it is a less important predictor than many SNVs within the Pa genome. This suggests that genetic variation in 
dominant pathogens can significantly complement and improve upon predictions of disease status based on the microbiome. 
Along these lines, another recent study showed that the Pa genomic data could predict pathogenicity in mouse models [53].

In addition to variation in the host genome, the polymicrobial community inhabiting the CF lung has been identified as an 
important modifier of disease progression. Numerous studies of the lung microbiome have shown an association between 
decreasing microbial community diversity and worsening lung function [4–7, 54], as well as progression to end-stage lung 
disease [27]. However, microbiome diversity may have limited predictive value as there is high interpersonal variability in 
lung microbiomes [6], and a large number of adult CF individuals have microbiomes dominated by pathogens such as PA. 
Zhao et al. [55] recently showed that a combination of microbiome data and clinical metadata improved predictive perfor-
mance compared to either data type alone. Our results suggest that genetic diversity within key pathogens such as Pa could 
complement or even supersede microbiome community diversity for predicting clinical outcomes in specific patient subsets.

Limitations of our study include a relatively small sample size of patients (N=54) from a single cohort. As such, we consider 
our work a proof of concept that could be improved upon in larger cohorts. Indeed, learning curves showed that predictive 
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accuracy is likely to improve with more samples. Although we performed nested cross-validation by subsampling our 
54 patients for model training and testing, the model should ideally be tested on a completely independent cohort to assess its 
real-world predictive value. Other recent studies have suggested that standard cross-validation techniques can overestimate 
predictive accuracy due to strong genetic linkage across bacterial genomes [26, 56, 57]. Pa has a relatively high recombination 
rate [58] which should reduce the confounding effects of linkage. Importantly, the AmpliSeq data quantify within–patient 
genetic diversity which does contain traces of ancestry (e.g. PES vs. non-PES lineages) but should also be enriched in de novo 
mutations which are unlinked to deep-branching genomic backgrounds. Future work could attempt to disentangle de novo 
mutations from co-infection with different lineages, thereby determining which predictive features are lineage-associated. 
Nevertheless, we used a high number of cross-validation folds (k=20 for the outer loop and k=50 for the inner loop) relative to 
the sample size of 54 to help reduce the overestimation of accuracy. Using high values of k is similar to ‘leave-one-strain-out’ 
validation, which can be less prone to accuracy inflation [56]. Regardless, the accuracy and generality of our results will 
require replication in independent cohorts. Despite these limitations, our models made significantly better predictions than 
expected by chance. As expected, predicting lung function decline 5 years into the future proved more challenging than 
doing so at the time of sampling. These results provide a key first step toward clinical diagnostics of patients most at risk of 
lung function decline.

As with any genotype–phenotype association method, our approach does not fully guarantee causal relationships, and rather 
points to candidate genes. Further experimental testing is therefore required to determine whether Pa SNVs play a causal role 
in lung function decline, or simply serve as useful biomarkers. Regardless, we were able to pinpoint SNVs in several genes of 
interest. This was feasible because the strong population stratification of Pa into PES and non-PES lineages was fortunately not 
associated with the disease outcomes of interest. This allowed us to identify SNVs in several genes that provided independent 
biomarkers of disease.

Several genes containing SNVs predictive of disease status and progression were identified as candidates for further investiga-
tion. For example, baseline lung function predictor SNVs are enriched in genes involved in iron transport and metabolism. 
The AmpliSeq panel only included three iron-related genes, of which two (pirA and fiuA) contained SNVs associated with 
baseline lung function. Updated AmpliSeq panels or whole-genome sequencing, along with targeted experimental studies, 
could be used to test the hypothesis that variation in these genes plays a role in disease progression. Multiple studies have 
shown competition for iron to be key for the survival and virulence of many of the pathogens that reside in the CF lung, 
including Pa [59, 60]. We also found that SNVs predictive of lung function decline are enriched in genes involved in stress/
metabolism. Notably, the gene PA1874 includes seven predictor SNVs comprising 16.9 % of the total feature importance for 
lung function decline, and two predictor SNVs for baseline lung function prediction, suggesting its general importance in 
disease severity and progression in CF patients. PA1874 encodes a multidrug efflux pump involved in biofilm-dependent 
resistance to antibiotics including tobramycin, gentamicin and ciprofloxacin [49, 61] and could be a potentially promising 
biomarker of CF disease severity, which merits further investigation.

Among the set of clinical factors studied, BMI, Pa abundance and age were identified as important predictors of both baseline 
lung function and lung function decline. These are all known risk factors for CF disease severity and progression [5, 46–48]. By 
including these features in our prediction models, we noted a moderate increase across all the measured metrics relative to using 
only AmpliSeq data. These results are in line with previous studies showing the improvement of ML-based phenotype prediction 
by adding relevant clinical data [53, 62]. We note that clinical factors only modestly improved the performance of the models 
(~5 %), highlighting the rich information and predictive value of the Pa AmpliSeq data alone.

In summary, our study demonstrates that SNVs in the Pa genome, identified by ML models, can be powerful predictors of 
lung disease severity and progression in CF patients with chronic Pa infections. Even though this disease outcome is affected 
by multiple microbial, host genetic and environmental factors, Pa SNVs add complementary predictive value. With additional 
genetic and clinical data, our ML model could be further fine-tuned and eventually used as a biomarker to pre-emptively 
identify individuals with CF at high risk for more aggressive observation and treatment.
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