
Modeling Inelastic Responses Using Constrained Reactive 
Mixtures

Gerard A. Ateshiana,*, Clark T. Hungb, Jeffrey A. Weissc, Brandon K. Zimmermand

aColumbia University, Department of Mechanical Engineering, 10027, New York, New York, 
United States

bColumbia University, Department of Biomedical Engineering, 10027, New York, New York, United 
States

cUniversity of Utah, Department of Biomedical Engineering, 84112, Salt Lake City, Utah, United 
States

dLawrence Livermore National Laboratory, Computational Geosciences Group, 94550, Livermore, 
California, United States

Abstract

This study reviews the progression of our research, from modeling growth theories for cartilage 

tissue engineering, to the formulation of constrained reactive mixture theories to model inelastic 

responses in any solid material, such as theories for damage mechanics, viscoelasticity, plasticity, 

and elasto-plastic damage. In this framework, multiple solid generations α can co-exist at any 

given time in the mixture. The oldest generation is denoted by α = s and is called the master 

generation, whose reference configuration Xs is observable. The solid generations α are all 

constrained to share the same velocity vs, but may have distinct reference configurations Xα. An 

important element of this formulation is that the time-invariant mapping Fαs = ∂Xα/ ∂Xs between 

these reference configurations is a function of state, whose mathematical formulation is postulated 

by constitutive assumption. Thus, reference configurations Xα are not observable α ≠ s . This 

formulation employs only observable state variables, such as the deformation gradient Fs of the 

master generation and the referential mass concentrations ρr
α of each generation, in contrast to 

classical formulations of inelastic responses which rely on internal state variable theory, requiring 

evolution equations for those hidden variables. In constrained reactive mixtures, the evolution of 

the mass concentrations is governed by the axiom of mass balance, using constitutive models 

for the mass supply densities ρ̂r
α. Classical and constrained reactive mixture approaches share 

considerable mathematical analogies, as they both introduce a multiplicative decomposition of 
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the deformation gradient, also requiring evolution equations to track some of the state variables. 

However, they also differ at a fundamental level, since one adopts only observable state variables 

while the other introduces hidden state variables. In summary, this review presents an alternative 

foundational approach to the modeling of inelastic responses in solids, grounded in the classical 

framework of mixture theory.

1. Introduction

The objective of this study is to review the progression of our research, from modeling 

growth theories for cartilage tissue engineering, to the formulation of constrained reactive 

mixture theories to model inelastic responses in any solid material, such as theories 

for damage mechanics, viscoelasticity, plasticity, and elasto-plastic damage. Our initial 

motivation for formulating suitable biological tissue growth theories, using the framework of 

reactive mixture theory, confronted us with the need to account for the evolution of tissue 

composition over time, and the formulation of reference configurations for various growth 

generations of solid matrix constituents, such as the collagen matrix of articular cartilage. 

A theoretical framework that accounts for evolution of material composition, while also 

accounting for the reference configuration of sequential generations of solid constitutents, 

turns out to be quite versatile, not limited to the modeling of growth.

The experimental field of cartilage tissue engineering arguably started in the 1990s [29–31], 

with the goal of growing cartilage, first in vitro, then in vivo, to treat osteoarthritis in 

younger populations. Osteoarthritis is a pervasive degenerative disease that afflicts articular 

joints such as the hip, knee and shoulder [2]. A hallmark of osteoarthritis is wear and 

ablation of the articular cartilage layers that line these diarthrodial joints, providing the 

bearing surfaces that transmit large joint contact loads with reciprocal sliding motions, while 

producing low friction under normal conditions such as activities of daily living. In humans, 

the articular cartilage layer varies in thickness, averaging less than one millimeter in finger 

and thumb joints [42], but reaching up to six or seven millimeters in some of the articular 

layers of the knee joint [12] (Figure 1a). When cartilage has worn away completely, the 

underlying innervated subchondral bone becomes exposed (Figure 1b), and innervated soft 

tissues that surround the joint are subjected to abnormal loads and stretching, often leading 

to debilitating joint pain [62]

Since cartilage degeneration often evolves quietly until cartilage has completely worn 

away, most symptomatic patients present themselves to the clinic with significant cartilage 

loss, limiting treatment options considerably. The most common treatment for advanced 

osteoarthritis is total joint replacement, using metal and polyethelyne components [39]. This 

highly successful clinical procedure is often considered to be limited by the life expectancy 

of patients, relative to that of the artificial joint, since repeated surgical interventions are 

not favored in the elderly. Therefore, for younger patients, orthopaedic researchers have 

contemplated the alternative option of resurfacing degenerated joints using engineered 

tissues, such as engineered cartilage or osteochondral constructs, as a precursor to total 

joint replacement [43].
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2. Cartilage Tissue Engineering

Our initial efforts in the experimental field of cartilage tissue engineering [52–54] led 

to the successful growth of small cylindrical cartilage tissue constructs (with a typical 

diameter of 6 mm and thickness of 2 mm). In these early studies, the dimensions of these 

constructs remained nearly unchanged over several weeks in culture (Figure 2a), whereas 

the constructs’ equilibrium compressive Young’s modulus (Figure 2b), and composition 

(principally, proteoglycan and collagen content, Figure 2c,d) increased significantly over 

time. These findings later motivated us to formulate an interstitial growth theory that 

depended on the evolution of tissue composition, as proposed by Cowin and Hegedus [27], 

in contrast to the classical growth theories of Skalak et al. [71] and Rodriguez et al. [67], 

which relied on the evolution of the tissue shape.

With further experimental investigations, we were able to increase the amount of tissue 

matrix deposition in culture by using higher cell seeding densities and larger supply of 

nutrients in the growth culture media used in our studies [55]. However, we also realized 

that nutrient consumption by cartilage cells located closer to construct boundaries immersed 

in culture media, significantly diminished the amount of nutrients available to cells located 

deeper in our tissue constructs [38]. We could make no further progress unless we added 

nutrient channels in our tissue constructs, as demonstrated preliminarily in small constructs 

in one of our earlier studies [16].

We were then confronted with the challenge of identifying the optimal placement of 

channels in larger constructs that would be suitable for resurfacing an entire articular 

layer in a diarthrodial joint. To meet this challenge, we formulated a growth theory that 

could account for the transport of nutrients from an external bath into the construct, the 

consumption of these nutrients by the cells, and the synthesis of matrix products by those 

cells. We used the framework of (unconstrained) reactive mixtures [4] based on the original 

mixture theory formulations of Truesdell [73, 74], Bowen [19], and others [15].

In this framework, the mixture may consist of solid constituents, including the scaffold 

material used in our tissue constructs (e.g., agarose), the fibrillar collagen and aggregating 

proteoglycans synthesized by cells, and other constituents such as crosslinks that form 

within, and stiffen, the collagen matrix; fluid constituents include the solvent (water) and 

the vast range of solutes present in growth culture media (salt ions, glucose, growth factors, 

etc.). The mixture is described as unconstrained because fluid constituents each have a 

velocity distinct from one another, and distinct from the solid matrix velocity. It is a reactive 

mixture since reactions occur, such as the consumption of interstitial fluid nutrients by cells, 

and the synthesis of solid matrix constituents by those cells,

cells+ nutrients cells + matrix products (1)

We implemented this growth theory [7, 9] into the open-source finite element code FEBio 

(febio.org) [48, 49], to identify optimal channel placement in large constructs. To inform 

these models, we first needed to experimentally characterize the essential nutrients in our 

growth media [22], the rate of consumption of these nutrients by the cells, and the rate of 
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synthesis of matrix products by cells [59]. Using those measurements, we were then able to 

run computational simulations of constructs with various numbers of channels, helping us 

identify a theoretical optimal amount of nutrients and channels per construct [23, 60]. Then, 

we validated the results of these simulations with a final set of experiments [24, 25].

Armed with this information, we were finally able to engineer channeled constructs large 

enough that they could theoretically be used to resurface an entire articular joint [21] (Figure 

3). At this juncture however, having increased cell seeding density and nutrient supply, 

and having provided a sufficient number of nutrient channels, we were now observing 

significant increases in the sizes of our tissue constructs (Figure 3), in contrast to our 

earliest studies (Figure 2a). This significant volumetric increase could be attributed to the 

large (supra-physiologic) deposition of negatively-charged proteoglycans by the cartilage 

cells, wherease the synthesis of collagen matrix, which normally restrains the swelling 

effect of proteoglycans, remained sub-physiologic [59]. Indeed, it is well known that 

negatively-charged proteoglycans attract cations from the surrounding bath into the tissue, 

at concentrations that increase the tissue osmolarity [50, 51, 75]. This osmolarity gradient 

drives solvent (water) from the bath into the tissue, producing a swelling pressure known as 

the Donnan osmotic pressure [46].

This observation of significant tissue swelling over weeks in culture led us to the 

formulation of two important theoretical frameworks: (1) Since cells continuously produced 

collagen matrix over these weeks in culture, we surmised that the collagen deposited at 

different times in culture must have had different reference configurations, due to increased 

swelling over time. We called this phenomenon multigenerational growth and we proposed 

that each generation had a reference configuration that could be postulated by assumption 

[11]. In other words, we proposed that the reference configuration of each generation 

is a function of state that requires a constitutive relation. (2) As elaborated in the next 

paragraphs, we surmised that excessive swelling cause by proteoglycans could cause tissue 

damage, leading to our formulation of a damage theory in the context of mixtures [61].

The observed disparity in the rate of synthesis of proteoglycans and collagen was most 

likely due to the fact that cartilage cells (chondrocytes) used in our experimental tissue 

engineering studies were obtained from bovine calves, whereas cartilage normally undergoes 

its most significant growth process in utero, under very different biochemical conditions. In 

other words, the immature bovine chondrocytes used in our studies did not spontaneously 

recapitulate their in utero phenotype, thus synthesizing proteoglycans at a greater rate than 

collagen.

We became concerned that this differential growth rate could lead to damage of the 

fledgling collagen matrix due to excessive Donnan osmotic swelling pressure caused by 

the proteoglycans. If this damage were to occur, it would compromise the quality of our 

engineered tissue constructs, despite the fact that these constructs were produced de novo. 

To investigate this hypothesis, we needed to formulate a theoretical framework for damage 

mechanics, preferably consistent with our reactive mixture theory framework used to model 

growth, since we wanted to experimentally validate the presence of construct collagen 

damage using compositional measurements, based on biochemical assays [14].
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In summary, we adapted Truesdell’s general theory of mixtures into a practical reactive 

mixture theory that could accommodate reactions between various solid and fluid 

constituents of a mixture [4], and implemented this framework computationally [7, 9]. We 

also formulated a multigenerational growth theory for the solid constituents of our tissue 

constructs [11], as well as a damage theory to account for excessive swelling [61], using 

mixture theory. For reactive processes taking place among solid matrix constituents, we 

adopted the assumption of Humphrey and Rajagopal [37], namely that solid constituents 

were all constrained to share the same velocity, even though each solid constituent could 

have a distinct reference configuration.

3. Reactive Mixtures

Our isothermal framework for unconstrained reactive mixtures was presented in [4]. 

The review presented in this article focuses on constrained reactive mixtures of solid 

constituents, following the definition of constrained mixtures presented by Humphrey and 

Rajagopal [37] and further elaborated upon by Wan et al. [77]. In a recent study [13], we 

developed the general formulation for such mixtures without restricting it to isothermal 

processes. Here, we summarize the salient features of this framework, though we limit the 

presentation to isothermal conditions.

3.1. Kinematics of a Constrained Mixture

Each solid constituent in a constrained reactive mixture is denoted generically by α. The 

reference configuration of constituent α is represented by the referential position of material 

points Xα. Since solid constituents may come into existence at different times, we denote the 

oldest generation of all constituents by α = s. We treat the reference configuration Xs of that 

oldest generation as being observable and we call it the master generation. For example, in 

cartilage tissue engineering, the oldest generation represents the tissue construct on the day 

of its initial manufacturing (day 0), when it consists only of agarose gel (the scaffold) and 

chondrocytes (cartilage cells) dispersed throughout that scaffold. The observable dimensions 

of the unloaded construct on day 0 represent the (presumably stress-free) configuration Xs.

In mixture theory [15, 18], all constituents α present in the mixture at the current time t
satisfy

x = χα Xα, t = χs Xs, t , (2)

where x is the spatial position of the elemental mixture volume dV  through which all 

constituents α are passing at the current time t. In general, the initial position Xα of material 

particle α is not the same for all constituents, which we may denote with Xα ≠ Xs. The 

velocity of constituent α is given by vα = ∂χα/ ∂t. However, in a constrained mixture, all 

constituents share the same velocity [37], thus we let vα = vs for all α,

∂χα Xα, t
∂t = ∂χs Xs, t

∂t . (3)
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Similarly, we define the deformation gradient of constituent α as Fα = ∂χα/ ∂Xα. Using the 

chain rule of differentiation and the general relation of eq.(2), we may relate Fα to the 

observable deformation gradient Fs of the master generation using

Fs = ∂χs

∂Xs = ∂χα

∂Xα ⋅ ∂Xα

∂Xs = Fα ⋅ Fαs, (4)

where Fαs = ∂Xα/ ∂Xs is a time-invariant mapping between the reference configurations Xα

and Xs. As proposed in [11] and further clarified in [13, 81], Fαs is a function of state which 

may be postulated by constitutive assumption, and constrained by the Clausius-Duhem 

inequality. In the sections below, we present various forms of such constitutive models, 

for different classes of inelastic material behaviors. Importantly, since Fαs is a function of 

state, it follows that the reference configurations Xα are not observable. While Xα could be 

obtained by integrating eq.(4) for an observed Fs and a postulated Fαs, it cannot be measured 

directly.

3.2. Objectivity

The mapping of eq.(4) between the postulated generation α and the observable master 

generation s must satisfy objectivity. Let Q be an orthogonal transformation, then 

Fs * = Q ⋅ Fs represents the transformation of Fs by Q, since the deformation gradient is 

a two-point tensor. If we adopt the constitutive assumption that the mapping Fαs constrains 

Fα to be a deformation gradient, it follows that Fα * = Q ⋅ Fα is the transformation of Fα by 

Q, for all α. Substituting these two transformations into eq.(4), we find that Fs * = Fα * ⋅ Fαs, 

which confirms that Fαs is a material tensor that must be formulated as a mapping within the 

material frame (i.e., between Xs and Xα such that Fαs * = Fαs = ∂Xα/ ∂Xs).

We use the polar decomposition theorem to decompose Fα into Rα ⋅ Uα, where Rα is the 

rotation tensor and Uα is the right-stretch tensor of Fα. Thus, the mapping of eq.(4) takes the 

alternative form

Us = Rs T ⋅ Rα

RT
⋅ Uα ⋅ Fαs = RT ⋅ Uα ⋅ Fαs

(5)

where R = Rα T ⋅ Rs represents the relative rotation from line elements dXs to dXα in the 

absence of stretching (i.e., when Us = Uα = I). We may rearrange this expression as

Fαs = Uα −1 ⋅ R ⋅ Us, (6)

where it should be recalled that Fαs is time-invariant, even though terms on the right-hand 

side of this expression may vary over time. Now we recognize that two-point rotation 

tensors and material right-stretch tensors respectively transform according to Rα * = Q ⋅ Rα
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and Uα * = Uα, from which it follows that R* = R. Therefore, the objectivity requirement 

Fαs * = Fαs is consistently satisfied by eq.(6)

Finally, the formulation of a suitable constitutive model for Fαs, at time tα when generation α
is created, can be obtained by formulating suitable expressions for the right-stretch tensor Uα

and the relative rotation R at time tα [10]. For example, the simplest constitutive model for 

R, generally suitable for isotropic materials, is to set it equal to the identity tensor I for all 

t ≥ tα.

3.3. Governing Equations

The referential apparent density ρr
α of constituent α is the ratio of the elemental mass dmα

of α in the current configuration, normalized by the referential elemental volume dV r of the 

mixture in the oldest generation. Here, ρr
α exclusively represents a compositional measure of 

constituent α in the mixture, in the form of a mass concentration. As shown by Bowen [18], 

the axiom of mass balance for components α of a constrained reactive mixture takes the form

ρ̇r
α = ρr

α, (7)

where the dot operator in ρ̇r
α denotes the material time derivative, and ρ̂r

α is a function 

of state that denotes the referential mass density supply to constituent α, due to reactive 

mass exchanges with all other mixture constituents. Constitutive models for ρ̂r
α will also be 

illustrated in the sections below. It should be evident from eq.(7) that ρr
α remains constant 

in the absence of reactions involving constituent α (when ρ̂r
α = 0), regardless of the state of 

deformation at the current time t.

In general mixtures [18], the axiom of mass balance for the mixture requires that

∑
α

ρr
α = 0, (8)

implying from eq.(7) that the referential mass concentrations ρr
α of all constituents in a 

constrained mixture must satisfy

∑
α

ρr
α = ρr, (9)

where ρr is the constrained mixture mass density.

In an isothermal framework where temperature is temporally constant and spatially uniform, 

the state variables for a constrained mixture may be reduced to Fs, ρr
α . This set of state 

variables is limited to the observable deformation gradient of the master generation, and 

the measurable composition ρr
α of all mixture constituents α. The corresponding referential 

(Helmholtz) free energy density of the mixture is
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Ψr = ∑
α

ρr
αψα Fs, ρr

β , (10)

where ψα is the specific (Helmholtz) free energy of constituent α, and ρr
β spans all α. As 

shown in [13], satisfying the Clausius-Duhem inequality for arbitrary processes produces the 

classical hyperelasticity constraint for the mixture stress,

σ = J−1 ∂Ψr

∂Fs ⋅ Fs T , (11)

leaving the residual dissipation statement

∑
α

ρr
αμα ≤ 0. (12)

Here, the term μα represents the chemical potential of constituent α, defined by

μα = ∂Ψr

∂ρr
α . (13)

The inequality of eq.(12) is commonly encountered in the physical chemistry of reactive 

mixtures, where it is generally described as the requirement for a chemical reaction 

to proceed spontaneously (i.e., without the addition of heat). It should be noted that, 

in classical physical chemistry, a process taking place at constant volume is equivalent 

to keeping the solid deformation gradient Fs constant in our list of state variables. 

Consequently, substituting eqs.(7) and (13) into the residual dissipation statement of eq.(12), 

and integrating the resulting expression with respect to time while keeping Fs constant, 

produces the more traditional form of this constraint,

ΔΨr ≤ 0  at constant volume , (14)

where ΔΨr = Ψr
final − Ψr

initial . This expression requires that there should be a net decrease in the 

referential (Helmholtz) free energy density of the mixture between final and initial states, 

when reactions take place under isothermal and isochoric conditions.

However, in a continuum mechanics framework, we do not adopt the assumption that Fs is 

constant, thus we should use the rate form of eq.(12) to place constraints on the functions 

of state that remain unconstrained so far, namely, the mapping Fαs between the reference 

configurations of constituent α and the master generation, as illustrated in the sections below.

Finally, it should be noted that the free energies (either Ψr or ψα) all represent measures 

of strain energy in an isothermal framework, since the temperature-dependent contribution 

to the free energy remains constant under isothermal conditions, and this constant may be 

arbitrarily set to zero [13].
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The linear momentum balance for the mixture reduces to the traditional form

divσ + ρb = ρa (15)

where ρ = ∑α ρr
α/Js is the mixture density and Js = detFs, b is the specific body force, and 

a is the mixture acceleration (the material time derivative of the common velocity vs of all 

constituents). The mixture angular momentum balance may be satisfied by eq.(15), as long 

as we require σ to be symmetric, σT = σ.

3.4. Ideal Simple Mixtures

As outlined in Section 3.3, the specific free energy ψα of mixture constituent α in an 

isothermal framework is generally a function of the state variables Fs, ρr
β , where β spans all 

α. For fluid solutions, this dependence of ψα on the concentrations ρr
β of all constituents is 

essential for recovering classical relations for the chemical potential of ideal and non-ideal 

solvent and solutes reported in physical chemistry [40].

However, for constrained mixtures of solid constituents, we may adopt the modeling 

simplification that the specific free energy ψα of each constituent depends at most on its 

own concentration ρr
α, as well as the deformation gradient Fs, with the understanding that this 

dependence on Fs may be via Fα and the associated constitutive model for Fαs, as per eq.(4). 

We refer to this type of mixture as an ideal simple mixture.1

Substituting this simplification into eq.(10) and the resulting expression into eq.(13) shows 

the chemical potential of constituent α in an ideal simple mixture reduces to

μα = ψα + ρr
α ∂ψα

∂ρr
α .  ideal simple mixture (16)

Recall that ψα reduces to the specific strain energy of constituent α in the context of 

isothermal processes, consequently the dependence of ψα on ρr
α implies that material 

properties of the solid constituent α are functions of ρr
α. Thus, a stress-free state, which 

normally implies a state of strain that produces ψα = 0, also implies that this state of strain 

will produce ∂ψα
∂ρr

α = 0, and thus μα = 0, as illustrated in an example below. This simplification 

allows us to provide a more intuitive application of the residual dissipation statement of 

eq.(12) to the case of constrained reactive solid mixtures,

∑
α

ρr
α ψα + ρr

α ∂ψα

∂ρr
α ≤ 0,   ideal simple mixture . (17)

1In our earlier study [13], we adopted a more restrictive definition of ideal simple mixtures, where ψα only depended on the 
deformation gradient. Here, we relax this definition of ideal simple mixtures, as it allows us to model the thermodynamics of a broader 
class of inelastic material responses.
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In general, the specific strain energy ψα is a positive semi-definite function of strain 

measures derived from Fs (or Fα), and in the case of ideal simple mixtures it follows that 

μα in eq.(16) behaves similarly as a function of strain. This observation makes it easier to 

enforce the residual dissipation statement in eq.(17), as outlined in the sections below.

As a final note in this section, because of the simplification adopted for this type of ideal 

mixture, the summation in eq.(17) is taken over solid constituents only, implying that the 

mixture only includes constrained solid constituents. Thus, any putative chemical energy 

produced from reactions involving (unconstrained) fluid constituents is being neglected in 

this ideal simple mixture model.

Example 1. Trabecular Bone Chemical Potential—For example, in the field of 

trabecular bone growth and remodeling, it may be assumed that trabecular bone behaves as 

a linear isotropic elastic solid, but its Young’s modulus depends nonlinearly on its apparent 

mass density. In the notation of this study, we may propose that the strain energy density for 

this material takes the form

ρr
αψα = Eαεα:εα, (18)

where Eα is Young’s modulus, which may depend on ρr
α, and εα is the infinitesimal strain 

tensor derived from Fα for generation α. This simplified model assumes that Poisson’s ratio 

for this porous trabecular bone structure is zero, for illustrative purposes. A common finding 

in the trabecular bone literature is that Eα = c ρr
α γ, where the parameter c and the exponent γ

are fitted material constants [36]. For this model, the chemical potential derived from eq.(16) 

takes the form

μα = γc ρr
α γ − 1εα:εα . (19)

This example confirms our expectation that μα is a positive semi-definite function of the 

strain εα, and thus a stress-free state for this material, which produces ψα = 0 when εα = 0, 

also yields μα = 0.

4. Multigenerational Interstitial Growth

Our multigenerational interstitial growth framework was first presented in [11]. In that 

original study, we proposed, by constitutive assumption, that a new generation α of solid 

matrix constituents being synthesized by cells at time tα, according to the reaction of eq.(1), 

was deposited in a stress-free state. In the context of the equations presented above, a stress-

free state implies that ψα = 0 at time tα, whereas the synthesis of this α −generation implies 

that ρ̂r
α > 0. Thus, this constitutive assumption satisfied the residual dissipation statement of 

eq.(17).

To satisfy this constitutive assumption, we must also assume that ψα is explicitly a function 

of Fα, ψα = ψα Fα , such that the right-stretch tensor Uα
tα = I at the time tα when solid 
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constituent α comes into existence (from reactive processes involving fluid constituents, not 

necessarily modeled explicitly in the mixture). In our original study [11], we also assumed 

implicitly that R tα = I, as we had not yet established the objectivity requirements that are 

now summarized in Section 3.2. Therefore, according to eq.(6), the constitutive model for 

Fαs must take the form

Fαs = Us
tα, (20)

showing that an expression for Fαs is easily deduced from the observable deformation 

gradient (and thus, the right-stretch tensor) of the master generation.

Here, we clarify that the assumption that R tα = I remains valid even if the constituent α being 

deposited is fibrillar or fibrous (as in the case of collagen matrix constituents synthesized by 

cells), thus imparting material anisotropy. Indeed, in a growth framework, constituent α is 

not extant for times prior to tα. Thus, the unit vector orientation nr
α of a fibrous or fibrillar 

matrix constituent synthesized at time tα is also defined only for times t ≥ tα. It follows that 

the concept of a relative rotation of nr
α between configurations Xs and Xα is irrelevant in this 

context.

In a practical growth theory, constitutive models for ρr
α must also be provided for 

completeness. In practice, suitable models for ρr
α are either characterized from experimental 

observations, as in tissue engineering studies [59, 60], or postulated by assumption [6, 8, 11, 

56], as illustrated in an example below.

In summary, in a growth framework that satisfies the constraints and simplifications outlined 

in Section 3.4, new generations must be deposited in a stress-free state. Objectivity is 

satisfied as long as the mapping Fαs is a material tensor given by the right-stretch tensor of 

the observable deformation gradient, at the time of synthesis, as given in eq.(20).

Example 2. Mass Growth from Nutrients

Consider that some nutrient n is present in a mixture, and that cells consume this nutrient 

to produce a solid constituent α. The reaction corresponding to this solid mass deposition 

(growth) process is

cells+ nutrientn cells + solidα. (21)

Using the law of mass action, which is a standard constitutive model for chemical reactions 

[47], we can apply Michaelis-Menten kinetics as shown, for example, in [59] to formulate 

the constitutive model

ρr
α = kα ρr

n

Km + ρr
n , (22)

where kα is the maximum synthesis rate of α, and Km is the Michaelis constant, which 

regulates how much of the nutrient consumption goes to maintain cell viability ρr
n ≪ Km
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and how much contributes to the synthesis of constituent α. Based on the axiom of mass 

balance in eq.(7), this relation also produces ρ̇r
α. Evidently, growth occurs for as long as 

nutrient n is available in the mixture ρr
n ≠ 0 . Integrating this ordinary differential equation 

produces a solution for ρr
α, which may lead to changes in the mixture’s material properties, 

as illustrated in Example 1. When modeling this type of growth, the nutrient may be 

simplistically assumed available at a constant concentration ρr
n, leading to a constant growth 

rate kρr
n/Km + ρr

n. Alternatively, it may be assumed that the nutrient diffuses from an external 

bath, thus obeying the mass balance equation

ρ̇r
n + Jsdivmn = ρr

n, (23)

where Js = detFs and mn is the mass flux of solute n relative to the solid constituent [7]. 

A constitutive model is needed to relate mn to the gradient of the concentration ρr
n, as well 

as the convective flux of the solvent, requiring the specification of a diffusivity coefficient. 

Here, we would set ρr
n = − ρr

α based on the stoichiometry of the reaction in eq.(21). In 

this type of process, nutrients would get preferentially consumed by cells located closer to 

the scaffold boundary against the bath solution, leading to inhomogeneous growth of solid 

matrix constituents, as illustrated in prior studies [56, 59].

Example 3. Solid Mass Growth Without Shape Change

In many tissue engineering studies, cells are seeded in a highly porous scaffold, and the 

growth culture leads to filling of the pore space with solid matrix constituents synthesized 

by the cells, in the absence of external loading, with no concomitant change in scaffold 

shape (Figure 2). Consequently, in this type of growth, it is not necessary to introduce new 

generations α to account for changes of reference configurations, thus the only generation 

needed in that formulation is the master generation s, and the only deformation gradient is 

the observable Fs.

Similarly, in the classical field of growth and remodeling of trabecular (spongy) bone, it 

has been noted that bone does not exhibit residual stresses, even though it actively remodels 

in response to changes in loading (also known as Wolff’s law). Since bone is typically 

subjected to cyclical stresses that span the range from compression to tension, it is assumed 

that different generations of bone deposition all share the same reference configuration Xs. 
Let ρr

s denote the referential mass density of trabecular bone. A popular constitutive model 

for bone growth and remodeling [35, 78] can be expressed as a constitutive model for ρ̂r
s, of 

the form

ρr
s = B Ψr

ρr
s − ψ0 (24)

where ψ0 is a set point for the specific strain energy, above which the bone grows and 

below which it resorbs (hence, growth and remodeling), and B is the remodeling rate. 

The constitutive model for the trabecular bone strain energy density Ψr = ρr
sψs Fs, ρr

s  may 

be given by the formulation of Example 1. Here, we use the FEBio software (febio.org) 
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to simulate a rectangular beam, 10cm × 2cm × 1
2 cm, fixed at both ends, and subjected to a 

uniform pressure of 106dyn/cm2 on its top surface. Assuming that the true mass density of 

bone is ρT
s = 2g/cm3, and that the initial value of ρr

s is uniformly 1g/cm3, we can evaluate 

the temporal evolution of ρr
s by letting B = 10−3 in consistent CGS units (with time units 

being arbitrary), and ψ0 = 65.4erg/g (which is the average value of ψs over the entire beam 

in its initial loaded configuration). We let E = E0 ρr
s/ρT

s 2, with E0 = 1.2 × 1011dyn/cm2. The 

evolution of ρr
s over time is displayed in Figure 4.

Example 4. Solid Mass Growth With Shape Change

In biological tissue growth, shape changes are often induced by osmotic swelling, which 

causes the interstitial fluid of porous cellular and tissue structures to pressurize, leading 

to the swelling of the porous solid matrix as fluid is drawn into the pore space. For 

example, cell proliferation typically occurs when a parent cell divides into two daughter 

cells of the same size as the parent, thus doubling the volume of cells (in an unconstrained 

environment). This mechanism involves doubling the ‘solid’ mass of cells (nuclear 

materials, such as DNA, and cytoskeletal structures, such as actin, myosin and microtubules) 

by drawing soluble nutrients and building materials from the interstitial fluid, as well as 

drawing extracellular water into the cells via osmotic gradients. In a mixture framework 

we may incorporate this osmotic swelling mechanism by letting the mixture stress include 

the osmotic fluid pressure p, such as σ = − pI + σs, where σs is the stress resulting from 

constrained solid mixture constituents such as the cytoskeleton. A constitutive model may 

then relate the pressure p to the concentration of the intracellular ‘solid’ mass content 

in relation to extracellular osmolarity, and recalling that the intracellular concentration 

becomes diluted when water is drawn into the cell. Thus, the pressure p may only rise 

transiently during cell proliferation, until the final intracellular concentration of ‘solid’ 

mass content of daughter cells matches that of the parent cell, or equivalently, when the 

intracellular osmolarity matches that of the extracellular environment [6, 8]. This transient 

rise in p only needs to overcome the stress σs of intracellular cytoskeletal structures to 

produce significant cell volume increase. Since it is well known that cytoskeletal structures, 

such as fibrillar actin, actively remodel in a cell (i.e., they break down into soluble form 

and regrow into fibrillar form in new reference configurations), the cytoskeletal stress σs

may return to zero after a cell division event. Illustrations of solid mass growth with shape 

changes, and solid matrix remodeling, are provided in [6, 8, 11, 56], using the growth 

framework outlined here.

Example 5. Multigenerational Growth

In this example, using FEBio, we illustrate a material with a ground matrix (compressible 

neo-Hookean [17], with Young’s modulus of 1 MPa and Poisson ratio of 0.3), and four 

generations of fiber bundles (tensile modulus of 5 MPa) being deposited over time in 

a mixture, with the first generation s already present at time ts − ∞, and subsequent 

generations α deposited at times tα, with t 1 = 0.25, t 2 = 0.50 and t 3 = 0.75. The tissue 

is subjected to a tensile strain of 10% over the time range 0  ≤  t  ≤  1.0, so that fiber 
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generations (1) through (3) come into existence (are synthesized) as the tissue is being 

loaded. Each fiber generation is oriented along the loading direction and is deposted in a 

stress-free but uncrimped state. Thus, each fiber bundle becomes immediately engaged in 

the monotonically increasing loading response. The Cauchy stress-versus-time and Cauchy 

stress-versus-Hencky strain responses for this illustrative example are shown in Figure 5. 

Though each fiber behaves linearly in this range of strains, the mixture exhibits a nonlinear 

response, due to the multigenerational growth process. The prescribed strain on this tissue 

is decreased back to zero over the time range 1.0 < t ≤ 2.0. The complete temporal response 

in Figure 5a shows that the stress returns to zero in this material, implying that no residual 

stresses are produced during the growth process. The absence of residual stresses in this 

example can be attributed to the assumption that the fibers can only sustain tension but 

buckle in compression. Thus, as the tissue recoils during unloading, none of the fibers of the 

various generations can resist their compressive strains.

5. Reactive Damage Mechanics

As our cartilage tissue engineering culture conditions improved over time, we came 

to realize that negatively-charged proteoglycans, synthesized by chondrocytes at a hyper-

physiologic rate, were producing excessive Donnan osmotic swelling. This type of osmotic 

swelling occurs when cations in the culture bath (such as Na+) transport into the tissue 

to neutralize the negatively-charged proteoglycans, causing an imbalance in osmolarity 

that drives water into the tissue, causing it to pressurize and swell. We hypothesized 

that this Donnan swelling-induced stretching of the fledgling, newly-synthesized collagen 

matrix, might produce levels of collagen stress that could cause it to get damaged. To 

test this hypothesis, we formulated a reactive damage theory consistent with reactive 

constrained mixture theory. This damage theory was then used to compare experimental 

tissue engineering results against model predictions of tissue swelling and damage, and 

verify if the model could properly predict experimental observations of excessive swelling, 

along with the observation that the equilbrium compressive modulus reached a plateau over 

time, even though matrix synthesis (proteoglycans and collagen) continued unabated [61].

We strived to formulate a theory that remained consistent with classical formulations of 

isotropic damage mechanics [20, 45], which generally rely on the framework of internal 

variable theory [26]. However, we aimed to formulate a damage framework, based on 

observable state variables, that would remain valid for anisotropic materials. Indeed, in our 

tissue engineering study, we compared our theoretical predictions of damage against an 

observable measure, obtained using a biochemical assay that could characterize the fraction 

of damaged collagen [14].

Here, we summarize the reactive damage mechanics framework resulting from that study. 

At a molecular level, consider that damage represents the permanent breaking of covalent 

bonds within collagen molecules. Therefore, the reaction being modeled in this theory is as 

follows:

 intact covalent bonds loading
  

 broken covalent bonds  (25)
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where the reaction is triggered by some measure related to tissue loading. If we denote 

intact bonds by α = s, and broken bonds by α = b, this reactive process only involves two 

solid mixture constituents in its simplest embodiment. Consistent with classical damage 

frameworks, we propose that a scalar failure criterion measure Ξs Fs  determines the 

threshold of loading at which intact bonds break. For example, Ξs may represent the von 

Mises stress or the maximum principal stress in intact bonds. More specifically, damage 

progresses when Ξs at the current time t exceeds the maximum value Ξm
s  achieved over the 

prior history of loading,

Ξm
s = max

−∞ < s ≤ t
Ξs F s . (26)

The referential mass concentrations of molecules associated with intact and broken bonds 

are, respectively, ρr
s and ρr

b. According to eq.(9), they satisfy

ρr = ρr
s + ρr

b, (27)

where ρr is constant, but ρr
α’s evolve in response to loading. For notational simplicity, we may 

refer to these as ‘bond concentrations’, though it should be understood that ρr
α refers to the 

mass of constituents that are associated with such bonds. More specifically, ρr
α’s represent 

number densities of bonds α, multiplied by ρr. We may thus define the mass fraction wα of 

each bond family as

wα = ρr
α

ρr
. (28)

Based on eq.(9), it follows that mass fractions sum to unity, ∑α wα = 1.

A primary assumption of this reactive damage process is that intact bonds typically break 

progressively with increasing Ξm
s . The probability that intact bonds will break at a particular 

value of Ξm
s  is given by the probability density function fs Ξm

s , which is postulated by 

constitutive assumption. Then, the mass fraction of broken bonds at any given time is equal 

to the cumulative distribution function Fs Ξm
s  associated with the p.d.f. fs Ξm

s ,

wb = Fs Ξm
s . (29)

In analogy to classical theories of isotropic damage, we can define this mass fraction wb of 

broken bonds to be the damage variable D.

We assume that broken bonds cannot sustain any stress, thus ψb = 0 is the constitutive model 

for these bonds. Consequently, it is not necessary to formulate a constitutive model for Fsb in 

this damage framework, since we never need to evaluate a putative Fb. Based on eq.(10), we 

find that the strain energy density of this mixture is Ψr = ρr
sψs. In this damage framework we 

assume that the specific strain energy of intact bonds is independent of the concentrations ρr
α, 

thus ψs ≡ ψ Fs . Now, we can rearrange the expression for Ψr as
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Ψr = wsΨr
s = 1 − wb Ψr

s = 1 − D Ψr
s, (30)

where Ψr
s = ρrψ Fs  is the strain energy density of the material when all its bonds are intact. 

The associated mixture stress σ is given by eq.(11),

σ = 1 − D J−1∂Ψr
s

∂Fs ⋅ Fs T , (31)

where D = wb is given in eq.(29). It is noteworthy that the expressions for Ψr in eq.(30) and σ
in eq.(31) are consistent with classical relations of isotropic damage mechanics [20, 45].

To model damage in anisotropic materials, we may propose that the intact solid s consists 

of a multitude of solid constituents σ, all sharing the same master reference configuration 

Xs, such that Ψr = ∑σ ρr
σψσ Fs . Each constituent σ may undergo damage based on its own 

distinct failure criterion Ξσ Fs , with its distinct c.d.f. Fσ Ξσ , such that its mass fraction 

wσ evolves with damage according to wσ = w0
σ 1 − Fσ Ξσ , where w0

σ is the initial mass 

fraction of σ in the mixture, prior to damage. Then, Ψr = ∑σ wσΨr
σ, where Ψr

σ = ρr
σψσ Fs , 

and the mixture damage is given by D = ∑σ w0
σFσ Ξσ . Unlike classical damage theories for 

anisotropic materials, the damage variables remain scalar in this formulation, representing 

the fraction of intact bonds that have broken.

Example 6. Multigenerational Growth with Damage

In this example we reprise the illustrative multigenerational growth model of Example 5. 

Now, we allow each fiber bundle α in the multigeneration mixture to undergo damage in 

response to the magnitude Ξ Fα  of the principal normal stress in that fiber generation, 

however we assume that the ground matrix does not get damaged in this simulation. We 

adopt a common Weibull distribution for the c.d.f. of all fiber bundles,

F Ξα = 1 − exp Ξα
κ

γ
,

with κ = 2.5MPa and γ = 5. The loading conditions remain the same as described in that 

earlier example. Here, the Cauchy stress-versus-Hencky strain response during loading and 

unloading is reported in Figure 6a. The stress-strain response of the damageable mixture 

evidently exhibits a hysteresis loop, as would be expected from the energy dissipated 

during the bond-breaking reactions. For comparison purposes, the intact response originally 

displayed in Figure 5b is superposed on the graph of Figure 6a, to better emphasize the 

change in tissue stress when damage is taking place. The corresponding damage D which is 

the fraction of broken bonds in the mixture under the assumption that all four fiber bundles 

contribute an equal fraction of covalent bonds, is presented in Figure 6b. In this example, 

the damage D accumulates monotonically during the loading phase 0 ≤ t ≤ 1.0 , but remains 

constant during the unloading phase 1.0 < t ≤ 2.0 , as would be expected.

Ateshian et al. Page 16

Eur J Mech A Solids. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



6. Reactive Viscoelasticity

A viscoelastic material dissipates some of its stored strain energy into heat during loading. 

Green and Tobolsky [33] proposed that

…the internal processes of relaxation that are occurring in the material are 

characterized by equal rates of breaking and reforming of the bonds which 

constitute the network chain…

Based on this concept, we proposed a reactive theory of viscoelasticity where a material 

consists of strong bonds, which impart the elastic response to a viscoelastic material, and 

weak bonds, which break and reform according to Green and Tobolsky’s above description 

[5]. In an isothermal framework, it is implicitly assumed that the heat dissipated due to bond 

breaking-and-reforming in viscoelasticity is radiated away, while keeping the material at 

constant and uniform temperature.

At a molecular level, we may consider that covalent bonds represent the strong bonds 

in a viscoelastic material, whereas hydrogen bonds represent the weak bonds. Hydrogen 

bonds result from electrostatic attractive forces between electronegative and electropositive 

moieties of a single molecule, or multiple adjacent molecules, such as long polymeric chains 

that may fold, even when the net electric charge of those molecules is zero. It would 

be reasonable to assume that hydrogen bonds can break when loaded, without producing 

permanent damage to a polymeric network. They can reform in a stress-free state when 

electronegative and electropositive moieties come into sufficiently close proximity.

Damage to strong bonds can be described by the reactive damage framework outlined in 

Section 5. Therefore, the only reaction that needs to be taken into account in reactive 

viscoelasticity is the breaking-and-reforming of weak bonds. The general assumption of 

reactive viscoelasticity is that a reactive viscoelastic solid consists of a mixture of strong 

bonds α = e and weak bonds α = s at the resting start (master generation) of a loading 

analysis, both of which are in a stress-free state whose common reference configuration 

is Xs. Upon loading, the loaded weak bonds in the s—generation begin to break and 

reform into a new, stress-free generation u. We denote the time of loading that initiates the 

u—generation as tu. This breaking-and-reforming process is time-dependent, governed by 

reactive kinetics embodied in the constitutive model for ρ̂r
α as per eq. (7). Therefore, the 

concentration ρr
s of weak bonds in generation s decreases progressively with increasing time 

t, while the concentration ρr
u of stress-free bonds increases accordingly, such that ρr

s + ρr
u = ρr

remains constant and equal to the initial mass concentration of weak bonds. If the loading 

is changed again at time tv, a new generation of stress-free bonds starts forming, called 

the v—generation, resulting from the breaking of extant u—generation bonds, such that 

ρr
s + ρr

u + ρr
v = ρr. Thus, at times t ≥ tu, we have the single reaction

s — generation stress‐free hydrogen bonds loading u
— generation stress‐free hydrogen bonds (32)

wherease at times t ≥ tv, we have another ongoing reaction,
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u — generation stress‐free hydrogen bonds loading v
— generation stress‐free hydrogen bonds (33)

For now, let us consider that the reactive mixture of weak bonds only consists of these three 

constituents, α = s, u, v. We postulate that the constitutive models for ρ̂r
α’s produce a solution 

for ρr
s expressed in terms of its mass fraction ws as given in eq. (28), where

ws = g Fs
tu, t − tu , t ≥ tu . (34)

Here, g is a reduced relaxation function whose functional form is a constitutive model. Thus, 

g decreases monotonically from unity to zero as its time argument increases from zero to 

infinity. The explicit dependence of g on the deformation gradient at the time of loading tu

makes it possible to accommodate nonlinear viscoelasticity, via strain-dependent relaxation. 

According to eqs.(28) and (8), the corresponding solution for wu is wu = 1 − ws.

At time tv, a second loading event takes place, which starts to break all the bonds that have 

reformed so far in a stress-free state. At this particular time, the mass fraction of stress-free 

reformed bonds is just wu
tv, therefore the solution for the now-breaking wu takes the form

wu = fu
tvg Fs

tv, t − tv , t ≥ tv, (35)

where fu
tv ≡ wu

tv = 1 − ws
tv is the fraction of stress-free reformed bonds available to break 

at time tv.

Now, for any number of consecutive generations, we can generalize this solution for wα at 

time t ≥ tβ, where β is the generation that follows α, as

wα = fα
tβg Fs

tβ, t − tβ , t ≥ tβ, (36)

where

fα = 1 −
γ < α

wγ t ≥ tα
(37)

represents the fraction of stress-free reformed bonds available at any given time. This 

framework implies that the number of generations α in a reactive viscoelastic mixture 

may increase to infinity if there are infinite incremental changes in loading over time (as 

determined by changes in Fs). These formulas also assume that wα = 0 for t < tα

The strain energy density of the mixture may now be evaluated from eq.(10), under the 

constitutive assumption that all generations α of weak bonds belonging to the same ‘family’ 

share the same functional form of the specific strain energy, ψα F ≡ ψ F  for all α, which is 

independent of bond concentrations ρr
β,
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Ψr = Ψr
e Fs + ∑

α

wαΨ0
a Fα . (38)

Here, Ψ0
a = ρrψ is the strain energy density of weak bonds and Ψr

e is that of the strong 

bonds. In this framework, since we assume that each generation α forms in a stress-free 

state starting at tα, the constitutive model for Fαs may be derived from eq.(6) under the 

assumption that Uα
tu = I, thus

Fαs = R ⋅ Us
tα, (39)

where R remains to be specified by constitutive assumption. The simplest constitutive model 

is to let R = I, implying that the reference configurations of line elements in Xα need not 

rotate relative to Xs. This assumption is generally valid for isotropic materials. However, 

when a material is fibrous, we may account for the fact that the referential unit vector 

nr
s of each fiber bundle in the master generation may have rotated to nr

α in the reference 

configuration Xα of the α—generation. Thus, we may consider that R tα is the relative rotation 

between nr
s and nr

α, for each fiber bundle in the mixture.

For completeness, we may also argue that a symmetry plane in any anisotropic material, 

with outward normal nr
s, may also shift its orientation to nr

α in generation α. This shift may 

alter the degree of anisotropy of the reformed generation α, relative to that of the master 

generation s, often reducing the material symmetry. For example, a material that starts 

out orthotropic, with three orthogonal planes of symmetry in generation s, may end up 

exhibiting triclinic anisotropy when the three planes no longer remain orthogonal to each 

other. By that argument, it would be necessary to formulate the constitutive model for the 

strain energy density ψ of each generation such that it can accommodate the lowest possible 

symmetry that may be expected upon deformation. Indeed, this adjustment is properly 

accounted for when modeling a biological tissue as a mixture of an isotropic ground matrix 

and any number of fibers, as long as the formulation for ψ of each fiber is properly set to 

depend on nr
α

Given our assumption here, that ψ for each generation α does not depend on concentrations, 

it follows from eq.(16) that the chemical potential μα of each generation is equal to ψ Fα . 

When generation α comes into existence at time tα, its ρ̂r
α is positive by definition, but since 

these α—generation bonds are in a stress-free state it follows that μα is zero and the residual 

dissipation statement in eq.(17) is satisfied at tα. For subsequent times t > tα, if follows from 

(36) that ρ̂r
α < 0 since the concentration of loaded α—bonds decays monotonically over time. 

And since ψ Fα > 0 any time that these bonds are loaded, the residual dissipation statement 

is similarly satisfied for all times t > tα. In other words, the residual dissipation statement 

is satisfied if and only if generation α is produced in a stress-free state and the relaxation 

function g decreases monotonically with time.
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Implementation details for this reactive viscoelasticity framework have been presented 

recently [10], providing a reasonably efficient numerical scheme that caps the increasing 

number of generations with increasing time. A code implementation has been made 

available in the open-source finite element software FEBio (febio.org) [48, 49].

7. Reactive Plasticity

In a recent study [81], we reported our implementation of a reactive plasticity framework 

based on constrained reactive mixtures, which we proposed to model plasticity and elasto-

plastic damage of amorphous materials. In this section we summarize the salient points of 

this formulation, in the context of the equations presented above.

To provide a molecular-level interpretation of plasticity and plastic damage, we may 

consider this inelastic material response in the context of metallic bonds, though other 

interpretations, such as Coulomb frictional sliding between intertwined microscopic fibrillar 

strands [69], may be adopted as well.

Below a certain threshold of loading, metallic bonds behave as ordinary covalent bonds 

(elasticity). In our conceptual approach, we consider that loaded metallic bonds can break 

and reform in a stressed state: This process occurs when a dislocation propagates through 

a material, allowing some atoms to change positions while still maintaining metallic bonds 

with neighboring atoms due to sharing of their outer electron shell (plasticity). Metallic 

bonds are in a stressed state because the dislocations occur only at some locations.

Damage occurs when a dislocation inserts sufficient distance between some of these atoms 

to prevent the sharing of electrons. In that case, we consider that the dislocated metallic 

bond has broken (plastic damage). We also consider that some atoms never dislocate during 

loading, thus maintaining their original reference configuration and producing a standard 

elastic response. Finally, we acknowledge that some of these bonds may break without prior 

dislocation of their associated atoms (elastic damage).

To model plasticity in a reactive framework, we first consider the simplest case when all 

intact metallic bonds present in a material (the master generation α = s) yield at the same 

threshold Φm of the scalar yield measure Φ Us) (such as the von Mises stress). As noted 

previously [81], this assumption produces an elastic-perfect plasticity response. The reaction 

modeled in this process is

 intact metallic bonds s loading  yielded metallic bonds u, (40)

with the yielding taking place at time tu, when the u—generation comes into existence 

in a stressed state, implying that Uu
tu ≠ I. Instead, based on eq.(6), we need to provide a 

constitutive model for Fαs of each generation α, to allow the evaluation of

Uα
tα = Us

tα ⋅ Fαs −1, (41)
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under the constitutive assumption that R = I for isotropic amorphous plasticity. In a 

simplified quasi-static framework we assume that this yielding reaction is instantaneous, 

thus ws = 1 − H t − tu  and wu = H t − tu , where H ⋅  is the Heaviside unit step function.2

A yield surface may be defined for the master generation, in the conventional manner 

of plasticity theory [41], as the surface φ Us = Φ Us − Φm whose tensorial normal is 

Ns = ∂φ/ ∂Us. Similarly, the yield surface for the u—generation is φ Uu = Φ Uu − Φm, with 

surface normal Nu = ∂φ/ ∂Uu. If loading of u—generation bonds pushes against this yield 

surface, a new generation v will be produced at time tv, by further yielding of generation u:

yielded metallic bonds u loading  yielded metallic bonds v.  (42)

Here again, in this elastic-perfect plasticity model of reactive plasticity, we assume that 

all u—generation bonds yield simultaneously at time tv to produce v—generation bonds. 

Thus, at any given time, the mixture only contains one extant constituent, which we denote 

generically by α. Its reactive mass supply is given by the constitutive model

ρr
α = ρr(δ(t − tα) − δ(t − tβ)), (43)

where δ ⋅  is the Dirac delta function, and generation β represent the next yielded generation 

in this reactive plasticity process. This expression shows that yielded generation α comes 

into existence at time tα, and is completely replaced with constituent β at the next yielding 

time tβ, thus ρr
α = ρr H t − tα − H t − tβ  and wα = H t − tα − H t − tβ .

The plastic consistency condition, which says that the material must remain on the yield 

surface φ during consecutive yielding events from time tα to time tβ, produces the constraint

Nα
tα: Uβ

tβ
− Uα

tα = 0, (44)

As shown in our earlier study [81], classical plasticity could be recovered by selecting the 

following constitutive model for Fαs in consecutive generations,

Fβs −1 = Fαs −1 ⋅ I − λN̂β , (45)

where

N̂β ≡ Nβ

Nβ:Nβ (46)

is the tensorial unit normal to the yield surface for generation β, and λ is a non-dimensional 

scalar whose value is obtained by satisfying the plastic consistency condition of eq.(44) 

2To model viscoplasticity, we would assume that this reaction is time-dependent, with an associated reduced relaxation function as 
illustrated in Section 6.

Ateshian et al. Page 21

Eur J Mech A Solids. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



using eqs.(41) and (45). The recursive relation of eq.(45) starts with Fαs = I (since α = s), 

when β = u is the first generation to yield. Accordingly, based on eq.(41), it follows that 

Uu
tu = Us

tu for this first yielded generation of bonds. If desired, isochoric plastic flow can be 

enforced by satisfying det Fαs = 1 for all yielded generations α [81].

The strain energy density in this reactive plasticity framework may be reduced from eq.(10) 

to

Ψr = Ψ0 Fα , (47)

where α is the sole extant generation (either intact or yielded) at any given time, implying 

that wα = 1, and Fα is evaluated from eq.(4). Here, Ψ0 = ρrψ where ψ is the constitutive model 

for the specific strain energy density, assumed to have the same functional form for each 

generation α, and assumed to be independent of bond concentrations.

As mentioned above, this basic formulation of reactive plasticity accommodates elastic-

perfect plasticity responses. We can generalize this formulation in two simple ways: (1) We 

can include a fraction we of elastic bonds that never yield, in which case the strain energy 

density takes the slightly more general form

Ψr = weΨ0 Fs + 1 − we Ψ0 Fα , (48)

which describes an elastic-linear plasticity response. (2) We can consider that a material 

consists of multiple metallic bond families γ, each of which has a different yielding 

threshold Φm
γ . The superposition of these bond families produces the characteristic “strain-

hardening” behavior, similar to prior approaches in the plasticity literature [58, 79].

Finally, if we substitute eqs.(43) and (47) into the residual dissipation statement of eq.(17) 

and consider the time interval tα ≤ t ≤ tβ for consecutive yielding events, we find that

ρrδ t − tα ψ Fα − ρrδ t − tβ ψ Fα − ψ Fβ ≤ 0 .

In particular, at time tβ, this statement requires that ψ Fα
tβ ≥ ψ FD20 Fβ

tβ
. In other words, 

the specific strain energy of the yielded generation β must be less than the specific strain 

energy that the preceding generation α would have sustained, had it not yielded.

Extensive verifications, and validations of this reactive plasticity framework against 

experimental data, were reported in our previously-published study [81]. For an easy-

to-access illustrative example, we refer the reader to the case study published on the 

febio.org website [1], which compares FEBio reactive plasticity results against experimental 

measurements for the square-cup deep-drawing benchmark problem described in [28] 

(Figure 7).
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8. Discussion

This study reviews the modeling of various inelastic responses in solids, using the 

framework of constrained reactive mixtures. The presentation of governing equations in 

Section 3 provides the general formulation for these various inelastic responses. This 

formulation employs only observable state variables, namely the deformation gradient Fs

and referential mass concentrations ρr
α in an isothermal context, in contrast to classical 

formulations of inelastic responses which rely on internal state variable theory [26]. In 

this framework, multiple solid generations α can co-exist at any given time in the mixture, 

constrained to share the same velocity vs but distinct reference configurations Xα.

An important element of this formulation is that the time-invariant mapping Fαs between 

these reference configurations Xα and the observable master reference configuration Xs is a 

function of state, whose mathematical formulation is postulated by constitutive assumption 

as illustrated for growth in eq.(20), viscoelasticity in eq.(39), and plasticity in eq.(45). 

Accordingly, by definition, the configurations Xα are not observable, consistent with the 

classical understanding of inelastic solid responses [65]. The function of state Fαs is needed 

only to calculate the relative deformation gradient Fα for generation α; this treatment is 

consistent with the modern approach to inelasticity that recognizes measures of inelastic 

deformation are ill-defined and do not represent valid state variables [57, 68, 76] In the 

constrained reactive mixture approach, it is the observable composition ρr
α that evolves over 

time, as governed by the axiom of mass balance in eq.(7), which requires constitutive 

models for the mass density supplies ρ̂r
α as illustrated for growth models in eq.(22) and 

eq.(24), and plasticity in eq.(43), or the solution to the mass balance relation of eq.(7) as 

given for damage in eq.(29) and viscoelasticity in eq.(36), using mass fractions defined in 

eq.(28). We have provided a more detailed context of how our approach fits within more 

recent theories of plasticity in [81], particularly in relation to the work of [58, 79].

In essence, the classical approach and the constrained reactive mixture approach share 

considerable mathematical analogies, to the extent that they both introduce a multiplicative 

decomposition of the deformation gradient, and they both require evolution equations to 

track some of the state variables. However, they also differ at a fundamental level, since one 

adopts only observable state variables while the other introduces hidden state variables.

Another fundamental difference is that the mapping Fαs in the constrained reactive mixture 

approach is time-invariant. Therefore, in a strict sense, Ḟαs = 0. Hence, it would be 

inappropriate to claim that the reference configuration of the mixture, or its constituents, 

“evolves” over time, since there is no single reference configuration in this type of 

mixture, nor is there a velocity associated with the evolution of each generation’s Xα. By 

extension, the temporal evolution of the response of a constrained reactive mixture can 

only be captured in the infinite summation of eq.(10). In contrast, in classical frameworks 

of quasilinear viscoelasticity [32, 34, 70], Boltzmann’s linear superposition principle has 

been employed to convert infinite summations to integrals over the time domain. However, 

the theoretical limitation imposed by this principle is the inability to model nonlinear 

Ateshian et al. Page 23

Eur J Mech A Solids. Author manuscript; available in PMC 2024 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



responses, such as nonlinear viscoelasticity. Nevertheless, many authors have proposed 

successful nonlinear viscoelasticity formulations based on internal variable theory, which 

adopt assumptions that allow them to incorporate nonlinear evolution equations [3, 44, 66, 

80], or strain-dependent relaxation functions [63].

The drawback from Boltzmann’s linear superposition principle does not exist in the 

constrained reactive mixture approach, since the summation of eq.(10) can easily 

accommodate nonlinear viscoelasticity, as indicated in Section (6). In practice, it is easy 

to convert the summation formulation into numerical implementations, as illustrated in the 

open-source finite element software FEBio. However, as acknowledged in our recent study 

[10], these numerical schemes are not as efficient as those employed using integrals based 

on the principle of linear superposition [64, 72], including those that use Prony series to 

approximate the solution to nonlinear evolution equations [80].

In summary, this review presents an alternative foundational approach to the modeling of 

inelastic responses in solids, grounded in the classical framework of mixture theory [15, 37, 

74]. Applications to growth, damage mechanics, viscoelasticity and plasticity, demonstrate 

that this foundational approach is versatile and able to reproduce classical formulations, 

while also acommodating more complex behaviors, such as nonlinear viscoelasticity, that 

have been more difficult to formulate otherwise.
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Highlights

• This study reviews the progression of our research, from modeling growth 

theories for cartilage tissue engineering, to the formulation of constrained 

reactive mixture theories to model inelastic responses in any solid material, 

such as theories for damage mechanics, viscoelasticity, plasticity, and elasto-

plastic damage.

• The framework used in this study is the theory of constrained reactive 

mixtures of solid constituents.

• Classical and constrained reactive mixture approaches share considerable 

mathematical analogies. However, they also differ at a fundamental level, 

since one adopts only observable state variables while the other introduces 

hidden state variables.
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Figure 1: 
(a) Front and sectional side views of relatively healthy adult human femoral condyle (knee 

joint), showing articular cartilage as the white tissue covering the end of this long bone 

(vertical dimension ≈ 8 cm). (b) Osteoarthrtitic adult human humeral head (shoulder joint) 

cartilage looks more yellowish. In this image, cartilage has worn down to the bone at two 

locations. The radius of the humeral head articular surface is approximately 2.5 cm.
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Figure 2: 
Cartilage tissue engineering results from the study of Mauck et al. [55]. (a) Constructs did 

not change significantly in size over 6 weeks in culture. (b) Equilibrium Young’s modulus, 

(c) mass fraction wGAG of proteoglycan content, and (d) mass fraction wCOL of collagen 

content all increased significantly over time in culture. The mass fraction of interstitial fluid 

in these porous constructs can be deduced from wf ≈ 1 − wAG − wGAG − wCOL, as collagens 

and proteoglycans make up the vast majority of solid matrix constituents in cartilage, and 

the mass fraction of the agarose scaffold, wAG ≈ 0.02, remained fixed over time in culture.
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Figure 3: 
Engineered cartilage tissue construct from the study of Cigan et al. [21], after 56 days in 

culture. The holes served as nutrient channels during tissue culture. This construct grew 

from a diameter of 40 mm and thickness of 2.5 mm, to a diameter of 52 mm and a thickness 

of 4 mm by day 56. Its size was comparable to some of the largest articular layers in the 

human body.
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Figure 4: 

Finite element simulation of trabecular bone remodeling for a 10cm × 2cm × 1
2 cm beam, 

fixed at both lateral ends, and subjected to a uniform pressure of 106dyn/cm2 on its top 

surface (plane strain analysis). The referential apparent density ρr
s is displayed at times 0 to 

1000, clockwise from top left (arbitrary time units). Steady state was achieved at time 500 

approximately. See Example 3 for additional details.
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Figure 5: 
Multigenerational growth of fibers as described in Example 5. Cauchy stress versus (a) 

time, and (b) Hencky strain, showing normal stress and strain components along the 

loading direction, which coincides with the common orientation of all fibers. One fiber 

is present at the start of the analysis and the remaining three fibers are synthesized at times 

t 1 = 0.25, t 2 = 0.50 and t 3 = 0.75, respectively. Fibers behave linearly in this range of 

strains, but the mixture response is nonlinear due to the multigenerational growth process.
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Figure 6: 
Multigenerational growth of fibers with damage, as described in Example 6. (a) Cauchy 

stress versus strain during loading and unloading, and (b) damage D versus time. All fibers 

exhibit the same damage response, however individual fiber damage have different reference 

configurations due to multigenerational growth, implying that the maximum normal stress in 

each bundle is different. The hyesteresis loop in the stress-strain response reflects the energy 

dissipated due to damage.
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Figure 7: 
Square-cup deep-drawing benchmark problem in plasticity [28], solved using the reactive 

plasticity framework described in Section 7, using the FEBio open-source finite element 

software (febio.org). Details of the implementation can be found online [1]. (a) A flat square 

sheet, compressed between a rigid die and holder, turns into a cup when subjected to a 

deep-drawing deformation using a rigid square punch with rounded edges. This figure shows 

the final shape of the cup after the punch has been retrieved, and the color map shows the 

octahedral plastic strain. (b) Drawing force applied on punch to produce the cup. (c) Finite 

element (solid lines) and experimental (dashed lines) distribution of engineering strains 

along the diagonal line from the center of the plate to one of its corners, showing good 

agreement between model predictions (principal values ℎ1, ℎ2 and ℎ3 of the left Hencky strain 

tensor) and measurements (e-min, e-max for in-plane strains, and e-t for out-of-plane strain).
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