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COVID-19 is a contagious disease that affects the human respiratory system. Infected individuals may
develop serious illnesses, and complications may result in death. Using medical images to detect
COVID-19 from essentially identical thoracic anomalies is challenging because it is time-consuming,
laborious, and prone to human error. This study proposes an end-to-end deep-learning framework based
on deep feature concatenation and a Multi-head Self-attention network. Feature concatenation involves
fine-tuning the pre-trained backbone models of DenseNet, VGG-16, and InceptionV3, which are trained
on a large-scale ImageNet, whereas a Multi-head Self-attention network is adopted for performance gain.
End-to-end training and evaluation procedures are conducted using the COVID-19_Radiography_Dataset
for binary and multi-classification scenarios. The proposed model achieved overall accuracies (96.33%
and 98.67%) and F1_scores (92.68% and 98.67%) for multi and binary classification scenarios, respectively.
In addition, this study highlights the difference in accuracy (98.0% vs. 96.33%) and F_1 score (97.34% vs.
95.10%) when compared with feature concatenation against the highest individual model performance.
Furthermore, a virtual representation of the saliency maps of the employed attention mechanism focus-
ing on the abnormal regions is presented using explainable artificial intelligence (XAI) technology. The
proposed framework provided better COVID-19 prediction results outperforming other recent deep
learning models using the same dataset.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

COVID-19 is a deadly and contagious disease that affects the
human respiratory system it was declared as a global pandemic
on March 11, 2020 by the Word Health Organization (WHO)
(Sethy et al., 2020, Al-antari et al., 2021) with its origin traced to
Wuhan province China. It was identified as a coronavirus with
more than 70% similarity with the SARS-CoV and much more than
95% similarity to bat Coronavirus that was identified on January 7,
2020. COVID-19 symptoms range from mild to severe and result in
multi-organ damage related to respiratory illnesses, such as Mid-
dle East respiratory syndrome (MERS) and severe acute respiratory
syndrome (SARS). Symptoms range from cold to fever, breathing
issues, and respiratory syndromes (Danet 2021). So far, health
practitioners have used two distinctive ways to diagnose COVID-
19 patients: (i) diagnostic tests such as reverse transcription poly-
merase chain reaction (RT-PCR) and (ii) antigen testing (Al-antari
et al., 2021). Since the antigen test results are mostly false-
positive, RT-PCR is generally accepted as the most suitable way
to diagnose the disease. However, RT-PCR requires extensive labo-
ratory work and an experienced medical practitioner to obtain and
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analyze the results; as a result, the test is expensive and time-
consuming, thus raising concerns for researchers to address the
issue. Artificial Intelligence (AI) and medical imaging have proven
to be more effective, especially in the assessment of critical body
parts, such as the lungs, heart, and brain (Jacobi et al., 2020, Doo
et al., 2021, Ukwuoma et al., 2022); thus, researchers have focused
on the development of AI-based methods to facilitate cheaper, fas-
ter, and home-based COVID-19 detection to help mitigate the
spread of the disease. However, quicker and more efficient AI tools
are required to detect COVID-19 using limited medical imaging
datasets. Radiological images, such as computed tomography (CT)
(Zheng et al., 2018) and chest radiography (X-ray) (Zheng et al.,
2019) are promising for the diagnosis of lung disease. Extensive
research has been conducted to highlight that COVID-19 is ana-
lyzed using CT (Zheng et al., 2018). However, chest X-rays are pre-
ferred over CT due to the less radiation exposure, low cost (Zheng
et al., 2019), and extensive availability (Zheng et al., 2020). There-
fore, in this study, we have used chest X-Ray to diagnose COVID-
19.

The use of deep learning in vision tasks, especially image detec-
tion (Abubakar et al., 2022, Ukwuoma et al., 2022, Cai et al., 2023)
and classification (Ukwuoma et al., 2022, Ukwuoma et al., 2022),
has received tremendous attention from researchers Moreover, it
is a widely adopted technique for image classification problems
owing to the outstanding results. In medical imaging (Gupta
et al., 2018, Ukwuoma et al., 2022), deep learning has demon-
strated robust and efficient results in computer-aided diagnosis
(Ortiz et al., 2016). Deep learning models are used as feature
extractors to enhance classification accuracy. Diabetic retinopathy,
skin lesions, X-ray bone suppression, and detection of tumor
regions in the lungs are examples of the contribution of deep learn-
ing in medical sector (Chen et al., 2019, Lakshmanaprabu et al.,
2019). For the diagnosis of COVID-19, researchers have proposed
several architectures that use deep learning techniques. Some
researchers developed architectures from scratch or modified the
convolutional neural network (CNN) models, such as
COVIDiagnosis-Net (Ucar et al., 2020), CoroNet (Khan et al.,
2020), and Xception with depthwise separable convolution
(Chollet 2017) while others used transfer learning; that is, using
the pre-trained model as feature weights for the task of COVID-
19, such as CovidGAN (Waheed et al., 2020), transfer learning with
CNN (Apostolopoulos et al., 2020), Deep CNN (Liu et al., 2015), and
MobileNet (Howard et al., 2017).

Several strategies have been developed to automate COVID-19
detection; however, these strategies still face challenges. In addi-
tion, several issues have been identified that result in poor perfor-
mance. These issues can be traced to the extraction of input image
features by the proposed model. Input feature extraction is an
essential step in any AI-based deep learning model. A small and
imbalanced dataset results in poor deep feature generation and
yields a poor diagnostic performance. To mitigate these issues,
researchers have attempted to resolve the use of ensemble models.
Ensemble models are obtained by concatenating two or three mod-
els, whether pre-trained or from scratch, for better feature extrac-
tion from the input image and result generalization. Previous
studies have attempted to solve such challenges using different
scenarios of ensemble models, such as CNN + HOG + VGG19 (Ahsan
et al., 2021), VGG16 + VGG19 (Khan et al., 2022), Xception architec-
ture and ResNet50V2 (Rahimzadeh et al., 2020), and ResNet + SVM
(Sethy et al., 2020). Other studies have used the
SGDM + SqueezeNet architecture for rapid and accurate COVID-
19 prediction (Chowdhury et al., 2020). Despite the promising
results of these ensemble models compared to single models, there
is still a need to improve the outcome of the ensemble model.
Attention mechanism is a current state-of-the-art approach to
visual tasks. It is the process of evaluating the relevance of input
2

features to an assigned task and using this relative weight to assist
in accomplishing the target and identifying significant aspects
from other features of the input images. Ensemble modeling tech-
niques employ convolutional layers to extract visual information
from input images. These convolutional layers either extract unde-
sirable elements with necessary components or ignore vital fea-
tures (Yang 2020). However, because the extracted
characteristics affect the outcome and prediction, ignoring these
factors may result in inaccurate image evaluation. Consequently,
the properties derived from the convolutional layers of the ensem-
ble models are sometimes insufficient for categorizing COVID-19.
Therefore, we have described an attention-based deep learning
system for detecting COVID-19 using global and local
characteristics.

This study proposes an end-to-end deep learning framework
based on deep feature concatenation and a Multi-head Self-
attention network for COVID-19 detection in chest X-ray images.
Because the proposed model involves feature concatenation as
the network backbone, we explored six pre-trained deep learning
models (i.e., InceptionV3, EfficientNetB7, VGG16, Xception, Incep-
tionResNetV2, and DensetNet201 networks) based on a transfer
learning approach on chest X-ray images to select the models for
the proposed network. Among the explored and pre-trained deep
learning models, the results of DenseNet201, InceptionV3, and
VGG-16 architectures were more promising; therefore, we used
them in a concatenating approach as our model backbone. In the
implementation of the Multi-head Self-attention network, this
study followed the implementation techniques of a vision trans-
former. In implementing vision transformers, the input images
are first patch-split before passing them to position embedding.
The learnable position-embedding vectors and patches are joined
before being fed into the transformer encoder. The input and
output must be the same as those of the transformer encoder.
Multi-head Self-attention and Multi-linear Perceptron (MLP) block
computations occur within the encoder network. The output of the
encoder is then fed to the classification layer to output the final
classification result. For the MLP implementation, the output fea-
tures of Multi-head Self-attention are first sent to GlobalAver-
agePooling1D before the normalization layer. Subsequently, a
dense layer (GeLu activation) is considered before the last normal-
ization layer and dense layer (Softmax activation). Our contribu-
tions are summarized as follows:

� This study proposes an end-to-end deep-learning framework
based on the deep feature concatenation and a Multi-head
Self-attention network for rapid and accurate COVID-19 predic-
tion using chest X-ray images.

� The backbone network is built based on a fusion concatenation
strategy to generate excellent and stronger deep features. The
multi-head Self-attention network is built based on positional
embedding and patching mechanisms to mitigate the CNN
max-pooling layers’ issues of discarding important information
about the precise location; that is, the composition and position
of the components contained in an image, whereas MLP is used
for model prediction.

� A comprehensive experimental study was conducted to evalu-
ate the capability of the proposed framework with various data-
set categorizations: binary and multi-class prediction scenarios
with four and three different respiratory disease classes, includ-
ing a Grad-CAM strategy, to visually show the explicable sal-
iency maps and emphasize the capability of the proposed AI
framework to accurately predict different respiratory diseases
simultaneously.

The remainder of this paper is organized as follows; Section 2
highlights related works. Section 3 describes the materials and
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methods in detail, and Section 4 summarizes the experimental
setup, results, and comparisons. Finally, the conclusions and future
work are presented in Section 5.
2. Related works

This section reviews the state-of-the-art research involving
chest X-ray imaging for Deep Learning-based COVID-19 identifica-
tion. Shi et al. (2020) have described different methods that used AI
approaches to assess COVID-19 (Shi et al., 2021). Nayak et al.
examined the MobileNetV2, ResNet-50, InceptionV3, ResNet34,
VGG16, AlexNet, SqueezeNet, and Inception V3 models for the
early identification of COVID-19 infection using chest X-ray images
(Nayak et al., 2021). Parameters, such as learning rate, number of
epochs, and batch size were considered for optimal model selec-
tion. The evaluation results showed that the ResNet34 model, with
an accuracy of 98.33%, surpassed all other evaluated models.
Soares et al. used CNN-based transfer learning (TL) to diagnose
COVID-19 using chest X-ray images (Soares et al., 2020). The
images were fed into the Inception-V3 model with no preprocess-
ing and an accuracy of 96% was achieved. Based on a COVID-19
radiography dataset, Das et al. proposed a COVID-19 test model
(ResNet-50 and VGG-16) with three classes: COVID-19, normal,
and other types of pneumonia (Das et al., 2021). Based on the accu-
racy, VGG-16 model performed better with an accuracy of 97.67%.
In addition, Monshi et al. revealed that employing data augmenta-
tion and adjusting the parameters of the CNN model improved the
COVID-19 detection performance using chest X-ray images
(Monshi et al., 2021). Moreover, this method improves the effi-
ciency of VGG-19 and ResNet-50 models. Furthermore, CovidXray-
Net was proposed by the authors which is based on optimization
and EfficientNet-B0, thus recording an accuracy of 95.82% when
evaluated using two distinct databases. The COVID-19 multi-class
detection problem was studied by (Rajpal et al., 2021). The pro-
posed structure was divided into three experiments. First,
ResNet-50 with TL was used to obtain 2048 parameters. Second,
principal component analysis (PCA) was employed to select 64 fea-
tures from the 252 chosen features. The characteristics gathered in
the previous two sections were integrated and categorized in the
third module, thus achieving a classification accuracy of 98%.
Kumar et al. proposed SARS-Net for identifying COVID-19 using
chest X-ray (Kumar et al., 2022). The accessible COVIDx database
comprising chest X-ray data was employed in that investigation.
A quantitative study has shown that the proposed approach exhib-
ited higher accuracy of 97.60%.

Transfer learning plays a pivotal role in medical imaging by
leveraging pre-trained deep learning models on large datasets to
extract meaningful features, enhance model performance, and
enable efficient training on limited medical image data, ultimately
aiding in more accurate and efficient diagnosis and treatment.
Using a resampling technique and five-fold cross-examination
approach, Ali et al. implemented an experiment using the
ResNet50 on a small database (50 COVID-19 and 50 normal), thus
achieving an accuracy of 98% (Alimadadi et al., 2020). CNN were
employed by (Saba et al., 2021) to detect COVID-19 instances via
TL (Xception, VGG-16, and ResNet models). The collection included
175 COVID-19, 100 pneumonias, and 100 normal chest X-ray
images. Their findings demonstrated that all algorithms functioned
well, thus exhibiting high accuracy, with the VGG-16 model per-
forming better than the others. However, they proposed further
research to improve the methods proposed by them in terms of
‘‘evaluating variations architectures, variables, and databases that
apply augmentation techniques”. Linda et al. introduced Covid-
Net based on TL by constructing a dataset with 8066 (normal),
183 (COVID-19), and 5538 (pneumonia) samples, whereas the test
3

set comprised 100 (normal and pneumonia) and 31 (COVID-19)
samples (Linda Wang et al., 2020). An accuracy of 92% was
achieved. It was specifically mentioned that there was no duplica-
tion between the exam and training sets of the participants, which
is critical while performing such tasks (Farooq et al., 2020) fine-
tuned the ResNet-50 model using TL for COVID-19 identification
using chest X-ray images. They employed a three-class dataset
consisting of COVID-19, bacterial pneumonia, and viral pneumonia
data. (Minaee et al., 2020) applied TL to create a deep COVID-19
detector using chest X-ray images. They employed a subset of
5000 chest X-ray images to train four CNNs: Squeeze-Net,
DenseNet-121, ResNet-18, and ResNet50. Ucar et al. proposed a
Squeeze-Net + Bayesian optimization additive to diagnose
COVID-19 (Ucar et al., 2020). Because of the fine-tuned parameters
and additional datasets, they exhibited improved performance and
increased COVID-19 diagnostic accuracy. Novitasari et al. inte-
grated CNNs and SVM to detect COVID-19 using chest X-ray
images (Novitasari et al., 2020).

Data augmentation and the use of attention mechanism plays a
crucial role in medical imaging by enhancing the diversity and vol-
ume of training data, improving the robustness and generalization
of deep learning models, and facilitating more accurate and reliable
diagnosis and analysis. Rajaraman et al. demonstrated a method
for augmenting COVID-19 chest X-ray images using weakly labeled
data (Rajaraman et al., 2020). Khan et al. proposed CoroNet for
COVID-19 detection using chest X-ray images (Khan et al., 2020).
They employed Xception model pretrained using TL and evaluated
using a four-fold cross-validation approach. Classifiers, such as
SVMs, decision trees, KNNs, and random forests were used in a fea-
ture extraction network (InceptionV3). Pereira et al. classified the
chest X-ray images used to detect COVID-19 such that F1_Score
of 89% was achieved using a stratified analysis (Pereira et al.,
2020). Hussain et al. used chest X-ray images to distinguish
COVID-19 from non-COVID-19, bacterial pneumonia, and viral
pneumonia (Hussain et al., 2020). A recently published paper by
(Ukwuoma et al., 2022) employed a dual-path CNN, attention
mechanism, and second-order pooling for COVID-19 detection
from images. The dual path serves as feature extraction (RGB and
grey image features), whereas second-order pooling is employed
to capture the second-order derivative of the generated features
before passing it into the attention model, thus achieving a signif-
icant result for both datasets tested. Deep_Pachi (Ukwuoma et al.,
2022) implemented the same idea as proposed by us; however, it
was implemented in a different scenario. Deep_Pachi was used
for breast cancer multi-classification. Thus, feature concatenation
is based on the channel and spatial features. An image enhance-
ment technique was considered in (Ukwuoma et al., 2022,
Ukwuoma et al., 2022) before passing the model to the proposed
deep learning model. The recorded results show that image
enhancement improves detection accuracy. Khan et al. developed
a new channel-based network to improve CNN models and
achieved an accuracy of 96.5 binary classifications and F1_score
of 95% (Khan et al., 2022). Regarding the issue of accurate feature
extraction for computer vision tasks, research has shown that fea-
tures of palm print with a two-dimensional discrete cosine trans-
form to constitute a dual-source space resulted in improved
performance of recognition models (Leng et al., 2017). In addition,
deep learning models are prone to adversarial attacks; hence, secu-
rity guidance is necessary (Leng et al., 2017). We intend to inte-
grate these ideas into a model, which is a part of future research.
3. Material and methods

The proposed architecture is shown in Fig. 1. The benchmark
dataset is first split into training (training and validation) and test



Fig. 1. Framework of the proposed deep learning model for COVID-19 prediction from chest X-Ray images.

Fig. 2. Backbone ensemble network of the proposed framework based on DenseNet,
VGG-16, and InceptionV3.
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set, followed by augmentation of the training set because it con-
tains a large number of unequal sample size among the classes.
The training sets are further preprocessed using different image-
processing strategies, such as rotation, resizing, cropping, and nor-
malization. The processed data are fed into selected pretrained
models (DenseNet, VGG-16, and InceptionV3), which are originally
trained on a large-scale ImageNet dataset. The features of the pre-
trained models are concatenated at their last convolutional layer.
The output shape of the last convolutional layer of DenseNet201
is (None, 7, 7, 1920), VGG-16 is (None, 7, 7, 512) while that of
InceptionV3 is (None, 5, 5, 2048). Since the output shapes have dif-
ferent sizes, concatenation of outputs of the three models results in
an error; hence, we have employed a zero-padding layer to the out-
put, thus resulting in an output shape of (None, 7, 7, 2048. After
concatenation, the output feature shape becomes (None, 7, 7,
4480), which is a strong and deep feature for further prediction.
Because it has been proven that most CNNs ignore vital features
(Yang, 2020) of the input image due to the max-pooling layer,
we have employed a Multi-head Self-attention network to pre-
cisely distinguish the different symptoms and focus on the regional
and global deep features simultaneously. The concatenated fea-
tures are then passed through the attention block. Finally, we have
adopted the multi-layer perceptron (MLP) block to improve false
symptom prediction, classify the different respiratory diseases,
and prove the final prediction score per class. Finally, the trained
model is saved and used to evaluate the test class as shown in
Fig. 1.
3.1. Concatenated features framework

While training a deep learning network, the convolutional layer
selects the extracted characteristics used to perform the classifica-
tion procedure. Therefore, it is essential to acquire only the useful
characteristics to achieve high classification efficiency (Al-antari
et al., 2021, Ukwuoma et al., 2022).

Fig. 2 shows the proposed backbone model, which incorporates
the concatenation of multiple deep features extracted from three
deep learning models (DenseNet, VGG-16, and InceptionV3) using
4

the concatenation feature strategy. The models are originally
trained on ImageNet, which is first introduced in the ImageNet
Large Scale Visual Recognition Challenge (ILSVRC) for image classi-
fication/detection tasks. The concatenated deep features from the
pretrained DenseNet, VGG-16, and InceptionV3 are computed in
Equation (1).

FPre�trained ¼ f DenseNet; f VGG16; f InceptionV3 � � � ; f 1�n

� �
; ð1Þ

where n is the number of selected pre-trained models and f signifies
the extracted features. The extracted features are concatenated and
represented in a single vector given in Eq. (2).
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FConcat ¼
Xn
i¼1

f Pre�trainedf g: ð2Þ
3.2. The proposed framework

FConcat is passed through Conv2D, Kernal_size = 1, padding =
‘‘same” and Activation = ‘‘ReLU.” The output of the convolution
layer is zero-padded with Zeropadding2D (padding = {(0, 5), (0,
5)}. Thus, the deep feature entering the Multi-head Self-attention
is expressed in Eq. (3).

Extracted Features ¼ FConcat þ Conv2Dþ Zeropadding ð3Þ
Fig. 1 shows that the extracted features are implemented by

integrating two networks, namely the Multi-head Self-attention
network and MLP layer. This hybrid paradigm supports the pro-
posed model in achieving promising prediction performance. Each
layer in the proposed model is constructed with a skip connection
and normalization layer to generate the output given by Eq. (4).

xiþ1 ¼ f LN xi þ f xið Þð Þ; ð4Þ
where xi denotes the output of layer i� 1 (indicating the extracted
features) in Eq. (3) and input of layer i, f LN depicts the norm layer,
and f �ð Þ is the functionality of multi-head attention f ATT �ð Þ, which
is also depicted as MLP f FFN �ð Þ. f ATT �ð Þ is used to extract the input
dependency among tokens, which is implemented using scaled
dot-product attention (to identify the data pertinent to the target
order from the source order).

Assuming that n is the span of the source and target order andm
is the hidden dimension, the target order query is formulated as
Q 2 Rn�m whereas the source order is demonstrated by key as
K 2 Rn�m and value as V 2 Rn�m. The scaled dot-product attention
(Q, K, and V) output is deduced in Eq. (5).

f Scaled Dot�Product Attention Q ;K;Vð Þ ¼ softmax
Q � KTffiffiffiffiffi

m
p

 !
V ð5Þ

where the row-wise regression function of Softmax is represented
by softmax �ð Þ. Each Q, K, and V attend to only one position in each
row (i.e., each target token has one position in a row) because the
Fig. 3. Building blocks of

5

Softmax output is one-dimensional (larger than other individual
row dimensions). For multiple position settings, f ATT �ð Þ is employed
via multiple Q, K, and V in parallel as seen in Fig. 3(a). This can be
mathematically represented as given below in Eq. (6).

f ATT Q ;K;Vð Þ ¼ head1; � � � ;headh½ �W Oð Þ ð6Þ

whereheadi ¼ f Scaled Dot�Product Attention QW Qð Þ
i ;KW Kð Þ

i ;VW Vð Þ
i

� �
,h=num-

ber of attention heads, and W �ð Þ represents the learnable weight
parameters. The MLP layer setting is defined in Eq. (7) where the
non-linear function = £ �ð Þ and W �ð Þ = learnable features.

f FFN xð Þ ¼ £ xW 1ð Þ
� �

W 2ð Þ; ð7Þ

The GeLU activation function is used in the first layer after the
GAvP whereas the second block is built using the Softmax activa-
tion function after the batch norm as shown in Fig. 3(b). From
the AI model perspective, GeLU stands for Gaussian Error Linear
Unit, GAvP stands for global average pooling, and BN is batch nor-
malization. Therefore, the output of the previous layers is more
realistic, scales the activations of the input layer, enables subse-
quent levels of the model to adapt more autonomously, and serves
as a model regularizer to overcome overfitting. The proposed
experiment consists of two optimizers: Adam and stochastic
gradient descent (SGD). The two loss functions are: categorically
cross-entropy and categorical smooth loss (Cengil et al., 2022).
We typically run across the following issues when employing deep
learning algorithms for classification: overconfidence and overfit-
ting. Overfitting has been extensively investigated and can be pre-
vented through early termination, dropouts, and weight
regulation. However, we do not have many resources to combat
this overconfidence. Both issues are addressed using a regulariza-
tion method known as label smoothing. Categorical smooth loss
represents the addition of the label-smoothing function to cross-
entropy loss function as expressed in Eq. (8).

L hð Þ ¼ � 1
N

XN
i¼1

yT
i log byt

� �þ 1� ytð ÞTlog 1� byt

� �þ labelsmoothing

� �
:

ð8Þ
the proposed model.
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The attention layer setup computes outputs as given in Eq. (9),
whereas the MLP layer setup computes outputs as stated in Eq.
(10).

x2iþ1 ¼ f LN x2i þ f ATT x2i; x2i; x2ið Þð Þ: ð9Þ

x2iþ2 ¼ f LN x2iþ1 þ f FFN x2iþ1ð Þð Þ: ð10Þ
From Eq. (9), the attention layer sets Q ;K; andV values are equal

to x2i, thus capturing the dependency among the tokens within the
same sequence, which is referred to as Self-attention.

3.3. Dataset

The chest X-ray medical dataset used in this study is the COVID-
19_Radiography_Dataset (Chowdhury et al., 2020). For research
purpose, this dataset is open source and consists of four classes:
COVID-19, pneumonia, lung opacity, and normal. Fig. 4 depicts
the examples of chest X-ray images with a pictorial view for each
class. Table 1 lists the randomly balanced partitions of the dataset
distribution for each class using the training, validation, and test
sets. This dataset contains 3,616 COVID-19 samples, 1,345 viral
pneumonia samples, 6,012 lung opacity samples (i.e., non-COVID
lung infection), and 10,192 normal samples. All chest X-ray images
are saved in portable network graphics ‘‘png” file format with a
spatial resolution of 299� 299 pixels. An augmentation strategy
is used to enlarge the pneumonia samples to match the target bal-
anced size of 3,000 chest X-ray images per class. The data transfor-
Fig. 4. Pictorial representation of the chest X-Ray image sam

Table 1
Dataset arrangement used to build and evaluate the proposed approach.

Partition COVID-19 Pneumonia Lun

Training 3000 3000 300
Validation 300 300 300
Testing 300 300 300
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mation includes a rotation range set to 1, horizontal flip set to true,
and zoom range set to 0.2. For the other classes, a balanced sample
size is randomly extracted from the original dataset. A total of
3,000 training samples are chosen to match the scarce samples of
the COVID-19 chest X-ray images.

3.4. Experimental setup

� Loss Function: A loss function is crucial in training a deep learn-
ing model because it estimates the forecasting efficiency of the
model using a specified set of variables. Loss is the computed
outcome, which is the difference between the model’s estimate
and measured ground truth. This study uses a predetermined
loss called ‘‘categorical cross-entropy loss” and modified loss
called ‘‘categorical smooth loss”.

� Optimizer: The basic aim of training a neural network is to min-
imize the error in the network estimation, which is accom-
plished by adjusting the weights. The optimizer minimizes the
loss function by updating the model parameters according to
the loss function outcome, thus resulting in a global minimum
with the smallest and most precise outcome. In this study, we
have used two optimizers: Adaptive moment estimation
(Adam) and stochastic gradient descent (SGD).

� Learning Rate: The learning rate is a variable that controls the
model’s response with respect to the weight change over the
yielded error. As a result, learning rate selection is very chal-
lenging because, neither too low nor too high is good for the
ples of COVID-19, pneumonia, lung opacity, and normal.

g Opacity Normal Total Total

0 3000 12,000 14,400
300 1,200
300 1,200



Table 2
Experimental hyper-parameters.

Model parameters Loss
functions

Categorical cross-entropy loss
and Categorical smooth loss

Optimizers Adam and SGD
Learning
rates

0.0001 and 0.001

Input size 224 � 224
Epoch 100
Batch size 8

Multi-head attention model
Parameters

Patch size (2, 2)
Window size Window Size//2
Number of
heads

8

Number of
MLP

256

Embed_dim 64
Drop rate 0.01

Learning rate selection
regulating parameters

Reduce
learning rate

0.2

Verbose 1
Epsilon 0.001
Es-Callback
(Patience)

10

Clip value 0.2
Patience 10
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model. We used learning rates of 1 � 10�4 and 1 � 10�3 in this
study. Other training hyper-parameters used are summarized in
Table 2.

3.5. Evaluation metrics

In this study, we have used the widely accepted classification
task evaluation metrics, which are mathematically expressed as
given in Eqs. (11) to (15). TP = True positive, TN = True negative,
FP = False positive, FN = False negative, N = Negative and P = Posi-
tive. In addition, the receiver operating characteristic (ROC) curve
with its area under the curve (AUC) and precision-recall (PR)
curves were used to assess and evaluate the AI models.

Accuracy ACCð Þ ¼ TP þ TN
TP þ TNð Þ þ FP þ FNð Þ : ð11Þ

Precision PREð Þ ¼ TP
TP þ FP

: ð12Þ

Specificity SPEð Þ ¼ TN
N

� 100 ¼ TN
TN þ FP

: ð13Þ

Sensitivity SENð Þ ¼ TP
P

� 100 ¼ TP
TP þ FN

: ð14Þ

F1 score ¼ SEN�1 þ PRC�1

2

 !�1

¼ 2� TP
2� TPþ FPþ FN

: ð15Þ
3.6. Execution environment

All the experiments in this study were conducted using a per-
sonal computer (PC) with an Intel(R) Core (TM) i9-10850 K CPU
@ 3.60 GHz, 64.0 GB RAM, and NVIDIA GEFORCE RTX-3080 Ti
10 GB graphical processing unit. Open-source libraries Keras and
TensorFlow (Abadi et al., 2016) are used for implementation.

4. Experimental results

This section presents the prediction results of all the experi-
ments conducted in this study. First, an optimization parameter
study is conducted using various pre-trained AI models to select
7

the best combination for the ensemble strategy. Multiple optimiz-
ers, learning rates, and loss functions are also investigated. Second,
the experimental results of the ensemble AI model are compared
with those of the proposed AI framework. Finally, the experimental
results for binary and multi-class prediction scenarios are pre-
sented and summarized.
4.1. Backbone model selection

The backbone model is selected based on six pretrained models:
DenseNet201, EfficientNetB7, InceptionV3, InceptResNetV2, VGG-
16, and Xception to select the most prominent combination of
models to build the proposed backbone network. The results for
all the models are evaluated using Adam and SGD optimizers.
The experiment was repeated twice for learning rates of 0.001
and 0.0001 with the same training settings and model structures.
Table 3 presents the evaluation performance of all the models. It
is clear that DenseNet201 achieves the best evaluation results
because it exhibits its superiority by using different optimizers
and different learning rates. However, InceptionResNetv2 records
the second-best evaluation results followed by InceptionV3.
4.2. Backbone concatenated features against the proposed model

A comparison of the evaluation results of the backbone model
and proposed framework is summarized in Table 4. This experi-
ment was conducted using two different optimizers (Adam and
SGD), two learning rates (0.001 and 0.0001), and two loss functions
(categorical smooth loss and categorical cross-entropy). The results
obtained using the learning rate of 10�3 are better than those using
10�4 in both implemented loss functions and optimizers. Compar-
ing the results of the employed optimizers, the Adam optimizer
supersedes the SGD optimizer with the same learning rate and loss
function. For a learning rate of 0.001 and categorical smooth loss,
the Adam optimizer exhibits a lower performance than the SGD
optimizer. For categorical cross-entropy, the Adam optimizer per-
forms better than the SGD optimizer. In all other settings, a learn-
ing rate of 10�4 and categorical cross-entropy are preferred for the
Adam optimizer, whereas a learning rate of 10�3 and categorical
cross-entropy loss are preferred for the SGD optimizer.

These results were also validated using the ROC and PR evalua-
tion curves as shown in Table 5 and Table 6 using the Adam and
SGD optimizers, respectively. ROC and PR curves are used to esti-
mate the exact prediction rate of different respiratory diseases,
namely COVID-19, lung opacity, and pneumonia against the nor-
mal class. However, the exact prediction rate of the models is
highly influenced by the hyper-parameters because, the Adam
optimizer settings performed better than the SGD settings except
at 10�3 learning rate and categorical smooth loss where the SGD
performance superseded the Adams performance. In general, the
Adam optimizer with other settings performed significantly better
than the SGD optimizer. The prediction of COVID-19 received bet-
ter ROC and AP AUCs for most of the optimized settings.

Fig. 5 depicts the graphical ROC and AP evaluation curves for
this study as presented in Tables 5 and 6. To analyze the proposed
AI model further, Hit Rate matrices are used as shown in Fig. 6. ‘‘Hit
Rate” is derived by the entire order number division when the
changes are made (subtracting the targets from mistakes). ‘‘Miss
Rate” is expressed as 1� HitRate. COVID-19 has a hit rate of 38
for both the Adam and SGD Optimizers. The experiment with the
Adam optimizer, 10�4 learning rate, and categorical cross-entropy
loss is preferred because the normal class hit rate is 38 against
the SGD optimizer, 10�3 learning rate, and categorical smooth loss
function.



Table 3
Evaluation performance of the backbone AI model selection with different optimizers and learning rates. The evaluation results are derived as an average over all classes: COVID-
19, pneumonia, lung opacity, and normal.

AI Models Optimizer ACC SEN SPE PRE F1_Score AUC

DenseNet201 Adam, Learning Rate:10�4 0.96 0.92 0.97 0.92 0.92 0.95
EfficientNetB7 0.87 0.75 0.92 0.83 0.74 0.83
InceptionV3 0.93 0.86 0.95 0.87 0.86 0.91
InceptResNetV2 0.95 0.89 0.96 0.91 0.89 0.93
VGG-16 0.91 0.82 0.94 0.87 0.82 0.88
Xception 0.90 0.80 0.93 0.83 0.80 0.87
DenseNet201 Adam, Learning Rate:10�3 0.92 0.85 0.95 0.86 0.85 0.90
EfficientNetB7 0.86 0.71 0.90 0.78 0.72 0.81
InceptionV3 0.89 0.78 0.93 0.81 0.78 0.85
InceptResNetV2 0.93 0.86 0.95 0.87 0.86 0.90
VGG-16 0.90 0.79 0.93 0.82 0.80 0.86
Xception 0.89 0.77 0.92 0.80 0.78 0.85
DenseNet201 SGD, Learning Rate:10�4 0.90 0.79 0.93 0.83 0.80 0.86
EfficientNetB7 0.84 0.67 0.89 0.81 0.67 0.78
InceptionV3 0.87 0.74 0.91 0.76 0.75 0.83
InceptResNetV2 0.87 0.73 0.91 0.79 0.74 0.82
VGG-16 0.86 0.72 0.91 0.76 0.73 0.81
Xception 0.89 0.79 0.93 0.82 0.79 0.86
DenseNet201 SGD, Learning Rate:10�3 0.95 0.90 0.97 0.91 0.90 0.93
EfficientNetB7 0.86 0.73 0.91 0.80 0.73 0.82
InceptionV3 0.89 0.78 0.93 0.80 0.78 0.85
InceptResNetV2 0.91 0.82 0.94 0.84 0.82 0.88
VGG-16 0.88 0.75 0.92 0.80 0.76 0.83
Xception 0.88 0.76 0.92 0.81 0.77 0.84

Table 4
Comparison of evaluation results of the backbone model against the proposed model.

AI Model Optimizer Learning Rate/Loss Function ACC SEN SPE PRE F1_Score AUC

Backbone Adam 10�4/Categorical smooth loss 0.95 0.91 0.97 0.91 0.91 0.94
Proposed 0.96 0.92 0.97 0.93 0.92 0.95
Backbone 10�3=Categorical smooth loss 0.94 0.88 0.96 0.89 0.88 0.92
Proposed 0.97 0.93 0.98 0.94 0.93 0.96
Backbone 10�4/Categorical cross-entropy 0.96 0.93 0.98 0.93 0.93 0.95
Proposed 0.98 0.96 0.97 0.96 0.96 0.97
Backbone 10�3=Categorical cross-entropy 0.84 0.67 0.89 0.78 0.65 0.78
Proposed 0.98 0.95 0.99 0.96 0.95 0.97
Backbone SGD 10�4/Categorical smooth loss 0.94 0.88 0.96 0.89 0.88 0.92
Proposed 0.94 0.88 0.96 0.89 0.88 0.92
Backbone 10�3=Categorical smooth loss 0.94 0.88 0.96 0.90 0.88 0.92
Proposed 0.97 0.94 0.98 0.94 0.94 0.96
Backbone 10�4/Categorical cross-entropy 0.94 0.89 0.96 0.90 0.89 0.92
Proposed 0.95 0.89 0.96 0.91 0.90 0.93
Backbone 10�3=Categorical cross-entropy 0.70 0.40 0.80 0.58 0.32 0.60
Proposed 0.95 0.89 0.96 0.92 0.89 0.93

Table 5
Comparison of the evaluation performances of ROC and PR curves for backbone and proposed models using Adam optimizer.

Learning Rate/Loss Function Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia

(1) ROC Evaluation Curve
Backbone 10�4/Categorical smooth loss 0.94 0.94 0.95 0.97 0.91 0.93

Proposed 0.95 0.95 0.99 0.98 0.93 0.89
Backbone 10�3/Categorical smooth loss 0.92 0.92 0.95 0.90 0.93 0.91

Proposed 0.96 0.96 0.96 0.98 0.96 0.93
Backbone 10�4/Categorical cross-entropy 0.95 0.95 0.96 0.99 0.94 0.91

Proposed 0.97 0.97 0.96 0.99 0.97 0.97
Backbone 10�3/Categorical cross-entropy 0.78 0.78 0.68 0.89 0.83 0.73

Proposed 0.94 0.94 0.90 0.98 0.95 0.94
(2) Precision-Recall (PR) Evaluation Curve
Backbone 10�4/Categorical smooth loss 0.85 0.92 0.84 0.77 0.87

Proposed 0.87 0.95 0.93 0.77 0.84
Backbone 10�3/Categorical smooth loss 0.80 0.83 0.81 0.75 0.86

Proposed 0.89 0.92 0.95 0.83 0.87
Backbone 10�4/Categorical cross-entropy 0.88 0.92 0.95 0.81 0.85

Proposed 0.93 0.94 0.97 0.89 0. 93
Backbone 10�3/Categorical cross-entropy 0.54 0.50 0.64 0.52 0.59

Proposed 0.90 0.97 0.95 0.80 0.87
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Table 6
Comparison evaluation performances of ROC and PR curves for backbone and proposed models using SGD optimizer.

Learning Rate/Loss Function Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia

(1) ROC Evaluation Curve
Backbone 10�4/Categorical smooth loss 0.92 0.92 0.87 0.96 0.91 0.92

Proposed 0.92 0.92 0.86 0.96 0.93 0.93
Backbone 10�3/Categorical smooth loss 0.92 0.92 0.96 0.97 0.89 0.86

Proposed 0.96 0.96 0.99 0.96 0.95 0.95
Backbone 10�4/Categorical
cross-entropy 0.92 0.92 0.90 0.92 0.86 0.92
Proposed 0.93 0.93 0.92 0.97 0.93 0.89
Backbone 10�3/Categorical cross-entropy 0.60 0.60 0.63 0.53 0.47 0.77

Proposed 0.93 0.93 0.88 0.96 0.94 0.93
(2) Precision-Recall (AP) Evaluation Curve
Backbone 10�4/Categorical smooth loss 0.79 0.77 0.88 0.70 0.88

Proposed 0.80 0.75 0.82 0.77 0.90
Backbone 10�3/Categorical smooth loss 0.80 0.92 0.88 0.67 0.80

Proposed 0.90 0.93 0.91 0.85 0.92
Backbone 10�4/Categorical cross-entropy 0.81 0.81 0.86 0.74 0.88

Proposed 0.82 0.83 0.93 0.74 0.84
Backbone 10�3/Categorical cross-entropy 0.31 0.31 0.29 0.25 0.65

Proposed 0.82 0.82 0.86 0.76 0.90

Fig. 5. Optimized multi-class scenario for ROC and PR evaluation curves (a) and (b) depict the curves using 10�4 learning rate, categorical cross-entropy loss, and Adam
optimizer. (c) and (d) depict the curves using 10�3 learning rate, categorical smooth loss, and SGD optimizer.
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Fig. 6. Examples of the HIT Rate (Batch size of 4) diagram of some chest X-ray images from the testing sets. (a) The Adam optimizer is used with learning rate of 10�4 and
categorical cross-entropy loss function. (b) The SGD optimizer is used with learning rate of 10�3 and categorical smooth loss.
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4.3. Binary vs. multi-class prediction evaluation results

To further evaluate the robustness of the proposed model for a
more confined class, the employed dataset was decomposed into
binary and multi-class scenarios. For the binary scenario, we inves-
tigated the capability of the proposed AI model for normal and
COVID-19 classes. For the multi-class scenarios, the dataset was
decomposed into three major classes: COVID-19, pneumonia, and
normal.

4.3.1. Binary prediction Scenario: Normal vs. COVID-19
Table 7 presents the evaluation prediction performance of the

binary scenario with respect to different optimization conditions.
Table 8 presents the binary classification results of the ROC and
PR curves using the Adam and SGD optimizers. This clearly shows
that the prediction evaluation result for COVID-19 class performed
better than the other classes using the proposed framework. This
indicated that the proposed model is sufficiently robust, reliable,
and feasible for predicting COVID-19 when compared with normal
cases.

4.3.2. Multi-class prediction Scenario: Normal vs. COVID-19 vs.
Pneumonia

Table 9 presents the comparison of the results of the backbone
model with those of the proposed model. The results are recorded
for multi-class category performance; however, the performance
was influenced by the reduced number of training sets because,
the deep learning model requires larger training samples for bet-
ter performance. In this study, the classification results of multi-
class scenarios are derived using Adam and SGD optimizers, 10�4

and 10�3 learning rates, and categorical cross-entropy functions.
The ROC and PR evaluation curves of the proposed and backbone
models are derived using both the Adam and SGD optimizers as
shown in Table 10. It is clear that the COVID-19 class can be iden-
tified easily compared to other respiratory diseases, such as pneu-
monia, or even normal classes. This implies that the proposed
model is also acceptable for practical applications in multi-class
scenarios.
10
4.4. Discussions

The capability of the proposed model was investigated by con-
ducting a comprehensive evaluation under different scenarios:
four (COVID-19 vs. Pneumonia vs. Lung Opacity vs. Normal), three
(COVID-19 vs. Pneumonia vs. Normal), and two (COVID-19 vs. Nor-
mal). Each category was implemented using the Adam and SGD
optimizers. We investigated the effect of the employed loss func-
tions for Adam optimizer versus SGD optimizer and a learning rate
of 10�4 over 10�3. The experimental results indicated that the
Adam optimizer performed better than SGD when trained with
categorical cross-entropy loss and 10�3 learning rate whereas the
SGD optimizer performed significantly better when trained with
categorical cross-entropy loss and 10�4 learning rate. The results
indicate that the proposed model exhibits better performance
using the categorical cross-entropy loss; thus, it is neither overfit-
ting nor overconfidence. As stated earlier, various studies have sug-
gested that label smoothing prevents the model from overfitting;
however, in our case, the use of batch normalization at the MLP
block solved the overfitting issues; thus, the proposed model is
robust in predicting the outcome. Fig. 7 shows the comparison of
the evaluation results of this study in terms of precision, F1_score,
sensitivity, accuracy, area under the ROC curve, and specificity.

The proposed model uses patches and positional embedding,
which enables it to concentrate on all the affected regions in a sin-
gle patch while considering the possibilities for restoration. The
concatenated features that serve as the backbone use a patch-
and-attention strategy to obtain global features that assist and
improve the prediction performance of the model. We also
observed that using the SGD optimizer, the proposed model per-
formed better with the label smoothing loss function technique.
This is because, using easy targets, which are a cumulative total
of the specific targets and homogeneous distribution across labels,
may significantly increase the adaptability and learning pace of a
multi-class deep learning model. This label smoothing rendered
the network overly optimistic. However, because the proposed
model’s performance using label smoothing strategy works better
with 10�3 learning rate compared to 10�4, we need to first



Table 7
Comparison of the evaluation results of the binary scenario using the backbone model against the proposed approach.

AI Model Optimizer Learning Rate/Loss Function ACC SEN SPE PRE F1_Score AUC

Backbone Adam 10�3=categorical cross-entropy 0.81 0.82 0.82 0.86 0.81 0.82
Proposed 0.89 0.89 0.89 0.91 0.89 0.89
Backbone SGD 10�3=categorical cross-entropy 0.92 0.92 0.92 0.93 0.92 0.92
Proposed 0.99 0.99 0.99 0.98 0.99 0.99

Table 8
Performance of ROC and PR curves for the binary scenario depicting the backbone against the proposed model using the Adam and SDG optimizers.

Learning Rate/Loss Function Macro-Average Micro-Average COVID-19 Normal Macro-Average Micro-Average COVID-19 Normal

(1) ROC Evaluation Curve
Adam Optimizer SGD Optimizer

Backbone 10�3/Categorical cross-entropy 0.81 0.82 0.82 0.82 0.92 0.92 0.92 0.92
Proposed 0.89 0.89 0.89 0.90 0.99 0.99 0.99 0.99
(2) Precision-Recall (AP) Evaluation Curve
Backbone 10�3/Categorical cross-entropy 0.75 0.82 0.73 0.87 0.90 0.85
Proposed 0.85 0.90 0.82 0.98 0.99 0.97

Table 9
Comparison of the evaluation results of the multi-class scenario using the backbone model against the proposed approach.

AI Model Optimizer Learning Rate/Loss Function ACC SEN SPE PRE F1_Score AUC

Backbone Adam 10�4/Categorical cross-entropy 0.93 0.89 0.95 0.91 0.89 0.92
Proposed 0.96 0.93 0.98 0.93 0.93 0.95
Backbone 10�3=Categorical cross-entropy 0.88 0.82 0.91 0.85 0.82 0.87
Proposed 0.95 0.93 0.96 0.93 0.92 0.94
Backbone SGD 10�4/Categorical cross-entropy 0.92 0.88 0.94 0.90 0.88 0.90
Proposed 0.95 0.92 0.96 0.93 0.92 0.94
Backbone 10�3=Categorical cross-entropy 0.79 0.69 0.84 0.80 0.69 0.77
Proposed 0.93 0.89 0.95 0.91 0.90 0.90

Table 10
Evaluation Performance of ROC and PR Curves for multi-class scenario depicting the backbone model when compared with the proposed model using the Adam and SDG
optimizers.

Learning Rate/Loss Function Micro -Average COVID-19 Normal Pneumonia Micro -Average COVID-19 Normal Pneumonia

(1) ROC Evaluation Curve
Adam Optimizer SGD Optimizer

Backbone 10�4/Categorical cross-entropy 0.92 0.97 0.93 0.86 0.94 0.93 0.95 0.95
Proposed 0.94 0.98 0.94 0.90 0.95 0.95 0.95 0.93
Backbone 10�3/Categorical cross-entropy 0.87 0.85 0.90 0.85 0.77 0.81 0.77 0.73
Proposed 0.95 0.95 0.96 0.94 0.92 0.89 0.92 0.95
(2) Precision-Recall (AP) Evaluation Curve
Backbone 10�4/Categorical cross-entropy 0.83 0.94 0.77 0.82 0.87 0.89 0.82 0.93
Proposed 0.93 0.95 0.89 0.92 0.89 0.92 0.84 0.91
Backbone 10�3/Categorical cross-entropy 0.73 0.71 0.72 0.80 0.58 0.70 0.51 0.64
Proposed 0.93 0.95 0.93 0.90 0.83 0.83 0.77 0.93
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investigate the model hyper-parameter settings (such as learning
rate and optimizer), which will be in accordance with the label
smoothing optimal performance. The learning rate of the model
has a greater influence on the model performance for particular
loss functions and optimizers. Compared with other loss functions,
the optimal models trained using categorical cross-entropy had the
fewest trainable parameters. Based on our findings, the proposed
model achieved the best performance by employing a categorical
cross-entropy loss, Adam optimizer, and 10�4 learning rate. By uti-
lizing the appropriate parameters for the proposed approach,
excellent classification results were achieved. This study highlights
the significance of feature extraction and hyper-parameter adjust-
ment for deep learning models before adding more sophisticated
deep layers to the network structure.

We have summarized our discussion by presenting the opti-
mized setting performance of the proposed model on the two opti-
mizers for both binary and multi-class (four and three classes)
scenarios as shown in Fig. 7. Our research could be useful for the
11
rapid formation of approachable AI frameworks for swift, accurate,
and economical identification of COVID-19 infections.

4.4.1. Ablation study of the proposed model
The visually explicable results in terms of heat maps or saliency

maps could provide a better interpretation of the disease locations
that are focused by the deep learning model to provide the final
prediction decision. Such results are important for providing logi-
cal reasons for decisions taken using the black model. In addition,
the visual results can make models readable and understandable in
terms of delivering more explicable clinical results to the end user.
In this study, we used Grad-CAM to generate saliency maps for the
input chest X-ray images. It uses the gradients from the target idea
and feeds them into the final convolution layer of deep learning
models. Fig. 8 depicts some of the heat maps generated for each
deep learning model in comparison with the proposed model. It
is clearly shown in Fig. 8 that the proposed model achieved the
best visually explicable results in terms of identifying the proper



Fig. 7. Comparison of the evaluation results of the proposed model to optimize the training parameters via different dataset categories.

Fig. 8. Visual explainable saliency maps of the proposed model against other individual ones. These depicted heat maps are generated using the Grad-CAM technique for the
abnormal images: COVID-19, Lung-Opacity, and Pneumonia.
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location of respiratory diseases. It shows reliable and feasible
visual saliency maps compared to individual deep learning models
(i.e., DenseNet, VGG16, or InceptionV3) or even the backbone
model (concatenated features). Fig. 9 summarizes the internal
working structure of the proposed model attention mechanism,
which assists the visual semantic features used for the model’s
predictions.

4.4.2. Comparison of evaluation results with the state-of-the-art deep
learning models

This section presents a comparison of the results obtained in
this study with those by other researchers using the same dataset.
To determine the efficacy of the proposed model, it is reasonable to
compare it with other models that use the same dataset. We
compared the results based on the given task (i.e., class-class clas-
sification, three-class classification, and binary classification). For
12
multi-classification involving four classes (COVID-19 vs. pneumo-
nia vs. lung opacity vs. normal), we computed the F1_Score, accu-
racy, sensitivity, and precision evaluation metrics as shown in
Table 11. The results obtained are then compared with those
reported in other studies. Wang et al. introduced the use of COVID-
Net network (Wang et al., 2020) whereas (Khan et al., 2020) pro-
posed the CoroNet for the same task. Based on their reported
result, the COVIDNet architecture had a better result in terms of
accuracy, precision, and F1_Score (90.78 vs 89.60%, 91.10 vs.
90.0%, and 90.81 vs. 89.80%) while in terms of sensitivity, the Cor-
oNet result was better (96.40 vs. 90.56%). Additionally, both mod-
els explored the use of pre-trained models similar to our research
on enhanced feature extraction (initially trained on the ImageNet
dataset). In accordance with our earlier claims that CNN layers
overlook some vital features of the input images (Yang 2020;
Mondal 2022; Lee et al., 2019; Shi et al., 2021) employed an



Fig. 9. Visual feature information generated based on the internal structure of the proposed model starting from the input image, patch splitting of the input image, addition
of positional embedding to the patches, and different visual features of the employed attention mechanism.

Table 11
Comparison of evaluation performance of the proposed model against the state-of-the-art models that used the same dataset. This comparison is conducted using the multi-class
prediction scenario with four respiratory class diseases: COVID-19 vs. Pneumonia vs. Lung Opacity vs. Normal.

Reference AI Architecture ACC PRE SEN F1_Score

(Khan et al., 2020) CoroNet 0.89 0.90 0.96 0.90
(Wang et al., 2020) COVIDNet 0.90 0.91 0.91 0.91
(Lee et al., 2019), Multiscale Attention Guided Network 0.92 0.93 0.92 0.92
(Shi et al., 2021) Teacher Student Attention 0.91 0.92 0.91 0.91
(Mondal 2022) Local Global Attention Network 0.96 0.96 0.96 0.96
(Khan et al., 2022) (Strategy 1) EfficientNetB1 0.92 0.92 0.95 0.93

NasNetMobile 0.89 0.89 0.92 0.91
MobileNetV2 0.90 0.92 0.92 0.92

(Khan et al., 2022) (Strategy 2) EfficientNetB1 0.96 0.97 0.97 0.98
NasNetMobile 0.95 0.95 0.95 0.95
MobileNetV2 0.94 0.94 0.95 0.95

Ours (2023) The Proposed XAI Model 0.98 0.96 0.96 0.96
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attention mechanism, which is also in line with our proposed
model, to improve the features extracted from the convolutional
layers. Shi et al. termed this approach as the teacher-student atten-
tion (Shi et al., 2021). The results exhibited an accuracy of 91.38%,
which is higher than previously implemented approaches. This
approach referred as a multiscale attention-guided network. The
reported result was higher than that reported by (Shi et al.,
2021) for all evaluation metrics, with an accuracy of 92.35%.

Mondal et al. introduced a local–global attention network that
performed better than the previously implemented models (accu-
racy = 95.87%, sensitivity = 95.99%, precision = 95.56%, and
F1_score = 95.74% (Mondal 2022). Khan et al. tackled the issue of
multi-classification of COVID-19 disease with other lung diseases
using two strategies (Khan et al., 2020). However, both strategies
involved the use of TL from pretrained models, such as Effici-
ientNetB1, NasNetMobile, and MobileNetV2.) The results of strat-
egy two were higher compared to those of strategy one with the
EfficientNetB1 having the best performance in terms of F1_score,
accuracy, sensitivity, and precision (97.50%, 96.13%, 96.50%, and
97.25%). However, the results of second strategy by (Khan et al.,
2022) using the were slightly higher than the results obtained in
this study, except for accuracy where we had a better result with
98% against 96%, which means that the proposed classifier rarely
identifies a COVID-19 negative sample as a positive sample.
13
To compare models that used the same dataset as ours in a
three-class scenario (i.e., COVID-19 vs. pneumonia vs. normal),
we deployed the experimental models presented by (Pham
2020), which are Inception-V3 and MobileNetV2. The MobileNetV2
architecture yielded the best classification performance. However,
the Inception-V3 architecture’s sensitivity performance was supe-
rior to that of MobileNetV2 with 0.91 vs. 0.89. Popular pre-trained
models were used to perform the COVID-19 classification task in a
modified version. Luz et al. employed EfficientNet-B0 (Luz et al.,
2021), Wu et al. employed the ResNet-V2 model (Wu et al.,
2020), Perumal et al. employed the VGG-16 architecture
(Perumal et al., 2021), Khan et al. employed the Xception model
(Khan et al., 2020), and Oh et al. employed the DenseNet-121
architecture (Oh et al., 2020). Among the architectures employed,
Xception architecture recorded the highest accuracy of 0.90, preci-
sion of 0.92, and an F1_score of 0.90. However, its sensitivity was
poor (0.87). EfficientNet-Bo yielded the best sensitivity of 0.89.
Attention techniques have received considerable interest in com-
puter vision, especially in the medical field. Shome et al. (Shome
et al., 2021) used the COVID-transformer network to attain accu-
racy, precision, sensitivity, and F1_score of 0.92, 0.93, 0.89, and
0.91, respectively.

Furthermore, in line with our proposed approach, (Chowdhury
et al., 2021) introduced an ensemble-based architecture using
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EfficientNet and a CNN termed ECOVNet. The EfficientNet model
serves as the feature extractor because it is trained on a large Ima-
geNet Dataset. Following several model frames, the derived attri-
butes were moved to a specially designed fine-tuned layer. The
projections of the model frames were aggregated using two
ensemble techniques to boost classification performance.
(Chowdhury et al., 2021) recorded the same performance results
as our proposed model, except for accuracy, where we obtained a
better result. Chakraborty et al. (Chakraborty et al., 2022) sug-
gested the use of ResNet18 via TL based on the idea that ResNet18
uses the idea of skip connections in the deep layers to address the
issue of disappearing gradients, thus recording accuracy, sensitiv-
ity, and F1_score of 96, 94, and 93%, respectively. Perumal et al.
combined InceptionNet and CNN models to search for fast and
robust predictions (Perumal et al., 2022). This approach recorded
a 94% of all the evaluation metrics. According to (Ho et al., 2022),
merging shallow handmade features, texture-based features, and
feature levels from models that have already been trained is effec-
tive and performs better than methods that simply employ these
features separately. Thus, the proposed model exhibits better per-
formance with F1_score, accuracy, sensitivity, and precision of
0.95, 0.96, 0.95, and 0.95, respectively. Table 12 summarizes this
comparison using recently published findings.

Considering a more compact classification task (Binary Classifi-
cation), (Sethy et al., 2020) employed ResNet50 + SVM classifiers
and achieved accuracy and F1_score of 95.33% and 95.34%, respec-
tively as shown in Table 13. Ismael et al. used an SVM classifier and
several pretrained models as feature extractors (leveraging the
pretrained weights from ImageNet) (Ismael et al., 2021). Among
the several implemented models, the ResnET50 Feature extrac-
tor + SVM classifier exhibited the highest accuracy of 94.7%. Like-
wise, Hemdan et al. employed several deep learning models
(Hemdan et al., 2020). Among them, the performances of VGG19
and DenseNet201 were a highlight with F1_score, recall, precision
Table 12
Multi-class prediction task comparison of three respiratory class diseases: COVID-19 vs. P

Reference AI Architecture

(Pham 2020) Inception-V3
MobileNet-V2

(Wu et al., 2020) ResNet-V2
(Khan et al., 2020) Xception
(Oh et al., 2020) DenseNet-121
(Luz et al., 2021), EfficientNet-B0
(Perumal et al., 2021) VGG-16
(Shome et al., 2021) COVID-Transformer
(Chowdhury et al., 2021) ECOVNet (pre-trained EfficientNet)
(Chakraborty et al., 2022) ResNet18 + TransferLearning
(Perumal et al., 2022) INASNET (Inception Nasnet)
(Ho et al., 2022) Feature-based Ensemble
Ours (2023) The Proposed XAI Model

Table 13
Binary prediction task scenario with two respiratory classes: COVID-19 vs. Normal.

Reference AI Architecture

(Sethy et al., 2020) ResNet50 + SVM
(Hemdan et al., 2020) VGG-19

DenseNet201
(Kumar et al., 2021) DeQueezeNet
(Jaiswal et al., 2020) COVIDPEN
(Ismael et al., 2021) ResNet50 + SVM
(Das et al., 2021) DenseNet201 + Resnet50V2 + Inceptionv3
(Sahinbas et al., 2021) VGG16
(Ji et al., 2021) VGG19 + Xception + ResNet152 + InceptionResNe
(Khan et al., 2022) New Channel Boosted CNN
Ours (2023) Proposed Model
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and accuracy of 91.5%, 90%, 90%, and 92%, respectively. Sahinbas
et al. are of the opinion that the VGG16 architecture is not an effi-
cient detector of COVID-19 using chest X-Ray images based on
their experimental result (Sahinbas et al., 2021).

Das et al. achieved 91.62% accuracy using a cascade network
comprising DenseNet201, Inception v3, and ResNet50V2 (Das
et al., 2021). Kumar et al. suggested DeQueezeNet (integration of
DenseNet121 and SqueezeNet features), which achieved 94.52%
precision and 90.48% accuracy (Kumar et al., 2021). Jaiswal et al.
introduced a strategy-based TL using the EfficientNet framework
with an accuracy of 96% and lower F1_score, precision, and recall
performance (Jaiswal et al., 2020). Ensemble network is used by
(Ji et al., 2021) in two scenarios, in which the model achieved a per-
centage classification accuracy of over 96%. A recently published
study by (Khan et al., 2022) used a new channel-addition strategy
to boost the performance of CNN Models. Based on their reported
findings, the proposed model yielded an accuracy of 96% and
F1_score of 95%. Thus, based on our reported results, the proposed
model can discriminate COVID-19 positive instances more accu-
rately than the state-of-the-art models in all class instances.
5. Conclusion, limitations, and future works

COVID-19 identification is a vital phase in the epidemic diagno-
sis, and numerous computer-aided analytical methodologies have
recently been applied for faster and more accurate analyses. Effec-
tive extraction of chest X-ray characteristics contributes to the
accurate diagnosis of COVID-19, thus allowing for early detection
and therapy. In this study, we presented an end-to-end deep learn-
ing framework with excellent capability to generate and extract
strong deep features via a backbone feature concatenation strat-
egy. Meanwhile, the attention mechanism employed was a
multi-head Self-attention network with an MLP block that was
neumonia vs. Normal.

ACC PRE SEN F1_Score

0.90 0.89 0.91 0.89
0.90 0.90 0.89 0.90
0.88 0.87 0.86 0.86
0.90 0.92 0.87 0.90
0.88 0.90 0.85 0.87
0.89 0.88 0.89 0.88
0.87 0.87 0.85 0.86
0.92 0.93 0.89 0.91
0.95 0.95 0.95 0.95
0.96 – 0.94 0.93
0.94 0.94 0.94 0.94
0.94 0.95 0.94 0.94
0.96 0.95 0.95 0.95

ACC PRE SEN F1_Score

0.95 0.95 – –
0.90 0.90 0.92 0.90
0.90 0.90 0.92 0.92
0.95 – 0.90 0.97
0.96 0.94 0.92 0.96
0.95 0.95 – 0.91
0.96 – – 0.96
0.80 0.80 0.80 0.80

tV2 0.96 0.96 0.96 0.96
0.96 – – 0.95
0.99 0.99 0.99 0.99
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adapted specifically for better prediction performance of COVID-19
identification. First, the original chest X-ray images were processed
using pretrained models (DenseNet, VGG-16, and InceptionV3)
trained on a large-scale ImageNet dataset that considered generic
attributes. Next, the model features were concatenated at the last
convolutional layer. The attention network was then used to ana-
lyze the regional characteristics before the generated features were
processed through a novel MLP block for improved, more accurate,
and generalized prediction. A comprehensive experiment was con-
ducted using dual optimizers, learning rates, and loss functions to
verify the robustness of the model and develop an optimum setup
for the proposed model. We trained the model in an end-to-end
manner using the COVID-19 radiography dataset and evaluated it
using several evaluation metrics. The proposed model performed
well in the experiments, thus yielding sensitivity, specificity, preci-
sion, accuracy, F1_score, and ROC score of 96.01%, 98.67%, 96.20%,
98.00%, 96.03%, and 97.34%, respectively. Furthermore, the pro-
posed model’s binary and multi-class (three classes) classification
performance as well as that of the six pre-trained models were
investigated in this study. In accordance with our findings, the pro-
posed model performed better than all the other suggested net-
works, providing superior classification performance outcomes
when compared to other recent models that used the same dataset.
The attention visualization approach validated the multi-head Self-
attention model’s capacity to learn correct characteristics rather
than features of the imaging procedure itself or other pointless
data because the choice was made based on the supplied generic
and regional aspects of the chest X-ray images.

The proposed model can be used to classify additional medical
imaging modalities, such as magnetic resonance imaging, ultra-
sound, and CT for the prediction of skin cancer, breast cancer, oral
cancer, and pneumonia. It is noteworthy that the experiment was
evaluated using only chest X-ray images. Regarding the issue of
accurate feature extraction for computer vision tasks, research
has shown that features of palm print with a two-dimensional dis-
crete cosine transform to constitute a dual-source space resulted in
improved performance of recognition models. In addition, deep
learning models are prone to adversarial attacks; hence, security
guidance is necessary. We intend to integrate these ideas into a
model, which is a part of future research.
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