Skip to main content
. 2023 May 25;35(7):101596. doi: 10.1016/j.jksuci.2023.101596

Table 4.

Comparison of evaluation results of the backbone model against the proposed model.

AI Model Optimizer Learning Rate/Loss Function ACC SEN SPE PRE F1_Score AUC
Backbone Adam 10-4/Categorical smooth loss 0.95 0.91 0.97 0.91 0.91 0.94
Proposed 0.96 0.92 0.97 0.93 0.92 0.95
Backbone 10-3/Categorical smooth loss 0.94 0.88 0.96 0.89 0.88 0.92
Proposed 0.97 0.93 0.98 0.94 0.93 0.96
Backbone 10-4/Categorical cross-entropy 0.96 0.93 0.98 0.93 0.93 0.95
Proposed 0.98 0.96 0.97 0.96 0.96 0.97
Backbone 10-3/Categorical cross-entropy 0.84 0.67 0.89 0.78 0.65 0.78
Proposed 0.98 0.95 0.99 0.96 0.95 0.97
Backbone SGD 10-4/Categorical smooth loss 0.94 0.88 0.96 0.89 0.88 0.92
Proposed 0.94 0.88 0.96 0.89 0.88 0.92
Backbone 10-3/Categorical smooth loss 0.94 0.88 0.96 0.90 0.88 0.92
Proposed 0.97 0.94 0.98 0.94 0.94 0.96
Backbone 10-4/Categorical cross-entropy 0.94 0.89 0.96 0.90 0.89 0.92
Proposed 0.95 0.89 0.96 0.91 0.90 0.93
Backbone 10-3/Categorical cross-entropy 0.70 0.40 0.80 0.58 0.32 0.60
Proposed 0.95 0.89 0.96 0.92 0.89 0.93