Skip to main content
. 2023 May 25;35(7):101596. doi: 10.1016/j.jksuci.2023.101596

Table 6.

Comparison evaluation performances of ROC and PR curves for backbone and proposed models using SGD optimizer.

Learning Rate/Loss Function Macro-Average Micro-Average COVID-19 Lung Opacity Normal Pneumonia
(1) ROC Evaluation Curve
Backbone 10-4/Categorical smooth loss 0.92 0.92 0.87 0.96 0.91 0.92
Proposed 0.92 0.92 0.86 0.96 0.93 0.93
Backbone 10-3/Categorical smooth loss 0.92 0.92 0.96 0.97 0.89 0.86
Proposed 0.96 0.96 0.99 0.96 0.95 0.95
Backbone 10-4/Categorical
cross-entropy 0.92 0.92 0.90 0.92 0.86 0.92
Proposed 0.93 0.93 0.92 0.97 0.93 0.89
Backbone 10-3/Categorical cross-entropy 0.60 0.60 0.63 0.53 0.47 0.77
Proposed 0.93 0.93 0.88 0.96 0.94 0.93
(2) Precision-Recall (AP) Evaluation Curve
Backbone 10-4/Categorical smooth loss 0.79 0.77 0.88 0.70 0.88
Proposed 0.80 0.75 0.82 0.77 0.90
Backbone 10-3/Categorical smooth loss 0.80 0.92 0.88 0.67 0.80
Proposed 0.90 0.93 0.91 0.85 0.92
Backbone 10-4/Categorical cross-entropy 0.81 0.81 0.86 0.74 0.88
Proposed 0.82 0.83 0.93 0.74 0.84
Backbone 10-3/Categorical cross-entropy 0.31 0.31 0.29 0.25 0.65
Proposed 0.82 0.82 0.86 0.76 0.90