Table 11.
Comparison of evaluation performance of the proposed model against the state-of-the-art models that used the same dataset. This comparison is conducted using the multi-class prediction scenario with four respiratory class diseases: COVID-19 vs. Pneumonia vs. Lung Opacity vs. Normal.
Reference | AI Architecture | ACC | PRE | SEN | F1_Score |
---|---|---|---|---|---|
(Khan et al., 2020) | CoroNet | 0.89 | 0.90 | 0.96 | 0.90 |
(Wang et al., 2020, Wang et al., 2020) | COVIDNet | 0.90 | 0.91 | 0.91 | 0.91 |
(Lee et al., 2019), | Multiscale Attention Guided Network | 0.92 | 0.93 | 0.92 | 0.92 |
(Shi et al., 2021) | Teacher Student Attention | 0.91 | 0.92 | 0.91 | 0.91 |
(Mondal 2022) | Local Global Attention Network | 0.96 | 0.96 | 0.96 | 0.96 |
(Khan et al., 2022a, Khan et al., 2022b) (Strategy 1) | EfficientNetB1 | 0.92 | 0.92 | 0.95 | 0.93 |
NasNetMobile | 0.89 | 0.89 | 0.92 | 0.91 | |
MobileNetV2 | 0.90 | 0.92 | 0.92 | 0.92 | |
(Khan et al., 2022a, Khan et al., 2022b) (Strategy 2) | EfficientNetB1 | 0.96 | 0.97 | 0.97 | 0.98 |
NasNetMobile | 0.95 | 0.95 | 0.95 | 0.95 | |
MobileNetV2 | 0.94 | 0.94 | 0.95 | 0.95 | |
Ours (2023) | The Proposed XAI Model | 0.98 | 0.96 | 0.96 | 0.96 |