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 ABSTRACT 

Purpose: This cross-sectional study determines the sensitivity of muscle architecture and fat measurements of the rectus femoris (RF) and vastus lateralis 
(VL) muscles from ultrasound images acquired with varying transducer tilt, using a novel transducer attachment, in healthy adults. Secondary objectives 
were to estimate intrarater and interrater reliability of image measurement and acquisition, respectively. Methods: Thirty healthy adults participated (15 
women and 15 men; 25 [SD 2.5] y). Ultrasound image acquisition was conducted by two raters at different transducer tilts relative to the skin: estimated 
perpendicular, and five measured angles (80°, 85°, 90°, 95°, 100°) using the transducer attachment. Muscle thickness (MT), subcutaneous fat thickness 
(FT), pennation angle (PA), and fascicle length (FL) were measured. Sensitivity and reliability were assessed using intra-class correlation coefficients (ICCs) 
and standard error of measurements (SEMs). Results: MT and FT for RF and VL were not sensitive to transducer tilt. However, PA and FL were sensitive to 
transducer tilt. MT and FT for both muscles showed high ICCs and low SEMs for intrarater and interrater reliability. For PA of both muscles, standardizing 
transducer tilt improved interrater ICCs and lowered SEMs. Conclusion: MT and FT measurements of RF and VL acquired at 60° knee flexion are robust to 
varying transducer tilt angles. PA measurements benefit from standardizing transducer tilt. 

Key Words: anatomy, cross-sectional; muscle, skeletal; reproducibility of results; ultrasonography.

 RÉSUMÉ 

Objectif: étude transversale pour déterminer la sensibilité de l’architecture musculaire et des mesures lipidiques du muscle droit antérieur de la cuisse 
(MDAC) et du muscle vaste externe (MVE) à partir des images échographiques acquises chez des adultes en santé par diverses inclinaisons du transducteur, 
au moyen d’un nouveau dispositif. Les objectifs secondaires consistaient à évaluer la fiabilité intraévaluateurs et interévaluateurs des mesures et de 
l’acquisition des images, respectivement. Méthodologie: au total, 30 adultes en santé ont participé (15 femmes et 15 hommes de 25 [ÉT 2,5 ans]). Deux 
évaluateurs ont acquis des images échographiques à des inclinaisons différentes du transducteur par rapport à la peau : mesure perpendiculaire estimative 
et mesure à cinq angles (80°, 85°, 90°, 95°, 100°) au moyen du dispositif du transducteur. Ils ont mesuré l’épaisseur des muscles (ÉM), l’épaisseur de 
la graisse sous-cutanée (ÉG), l’angle de pennation (AP) et la longueur des fascicules (LF). Ils ont aussi évalué la sensibilité et la fiabilité au moyen de 
coefficients de corrélation intraclasse (CCI) et de l’écart-type des mesures (ÉTM). Résultats: l’ÉM et l’ÉG du MDAC et du MVE n’étaient pas sensibles à 
l’inclinaison du transducteur, mais l’AP et la LF l’étaient. La fiabilité intraévaluateur et interévaluateur de l’ÉM et de l’ÉG des deux muscles présentait un 
CCI élevé et un ÉTM faible. Pour ce qui est de l’AP des deux muscles, la standardisation de l’inclinaison du transducteur améliorait la CCI et réduisait l’ÉTM 
interévaluateurs. Conclusion: les mesures de l’ÉM et de l’ÉG du MDAC et du MVE acquises à une flexion du genou de 60° sont probantes à des angles 
d’inclinaison variables du transducteur. Les mesures de l’AP tirent profit d’une inclinaison du transducteur standardisée. 

Mots-clés: anatomie, transversale; échographie; muscle, squelettique; reproductibilité des résultats 
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The force potential of skeletal muscle is directly related 
to the number of available sarcomeres. Therefore, the 
macroscopic arrangement of muscle fascicles (i.e, mus­
cle architecture) is foundational to force production, as 
well as control of movement, disease, and injury.1 Muscle 
architectural features that are commonly reported include 
muscle thickness (MT), pennation angle (PA) (i.e., fascicle 
angle relative to force-generating axis of muscle), and fas­
cicle length (FL).1,2  Fat accumulations in and around skel­
etal muscle can interfere with force production. 3–5 

Ultrasonography is a relatively inexpensive, non-inva­
sive modality that is useful for measuring muscle architec­
ture and subcutaneous fat accumulations. Not only does 
this technology advance the study of muscle architecture 
in un derstanding force production, it offers an important 
capacity for clinical practice. For example, MT measure­
ments from ultrasound images have tracked muscle wast­
ing in critically ill patients, 6,7 body composition change 
after exercise, 8,9  and age-related sarcopenia and fall 
risk. 10,11 This capacity to quantify muscle and fat outcomes 
has the potential to advance physiotherapy (PT) practice. 

Ultrasound produces reliable data on features of mus­
cle architecture and fat, 12  including on the vastus lateralis 
(VL) 13,14  and rectus femoris (RF) 15  in healthy adults. To date, 
most of these reliability studies occur at rest, close to full 
knee extension.12,16,17  In this joint position, the quadriceps 
are at a mechanical disadvantage because sarcomeres are 
shorter than their optimal length. 18  Since significant fasci­
cle rotation occurs during muscle contraction, 19  we can­
not generalize muscle architectural features near full knee 
extension to understand how the muscle fascicles contrib­
ute to its greatest force generation at its optimal length. 

Furthermore, the quality of measurements of mus­
cle and fat acquired from ultrasound is likely sensitive 
to the orientation of the transducer. 20,21 Typically, an 
ultrasound transducer is oriented perpendicular to the 
skin.12,22 We are aware of only one study that standardized 
transducer tilt. Konig and colleagues used a foam cast to 
standard ize transducer tilt to 90 degrees relative to the 
skin when imaging the gastrocnemius in healthy adults. 23 

MT from images acquired using the cast had lower error 
(SEM 0.05 cm) than without (SEM 0.1 cm).23 

We examined the sensitivity of muscle architecture 
and subcutaneous fat measurements from ultrasound 
images to variations in transducer tilt. The primary pur­
pose of this study was to determine the sensitivity of mus­
cle architecture (MT, PA, and FL) and subcutaneous fat 
thickness (FT) measurements to acquisition with five dif­
ferent ultrasound transducer tilt angles: 80°, 85°, 90°, 95°, 
and 100°, as well as at an angle estimated to be perpendic­
ular to the skin. This work was conducted in the RF and 
VL while resting at the optimal length in healthy adults. 
To achieve this objective, we created a novel 3D-printed 
ultrasound transducer attachment with an affixed pro­
tractor ( Figure 1 ). A secondary purpose was to estimate 

the intrarater reliability of post hoc muscle architecture 
measurements and interrater reliability of image acqui­
sition by two different raters with novice imaging expe­
rience. We hypothesized that muscle archi tecture and FT 
measurements would be sensitive to large deviations of 
the transducer tilt angle from the perpendicular. We also 
expected data acquisition (interrater) and measurement 
analysis (intrarater) to be reliable. 

METHODS 

Design 

This cross-sectional study included ultrasound image 
acquisition of the RF and VL using multiple transducer tilt 
angles, with and without the novel transducer attachment, 
in healthy adults during a single visit. To answer the primary 
research question, sensitivity to different ultrasound trans­
ducer tilt angles was determined. The reliability of both 
image acquisition (interrater) and measurement analysis 
(intrarater) were estimated for images acquired under each 
tilt condition. To estimate interrater image acquisition reli­
ability, ultrasound images (for each muscle, tilt angle) were 
captured by two different raters (BDB, JNCH) at the same 
visit. To estimate intrarater measurement reliability, mus­
cle architecture measurements were conducted twice, sep­
arated by three weeks, by one rater (BDB). 

The Hamilton Integrated Research Ethics Board 
ap proved this study, and all participants provided written, 
informed consent. 

 Participants 

We recruited a convenience sample of 30 healthy 
adults (15 women, 15 men) aged 20–29 years using elec­
tronic advertisements to the university community and 
by word of mouth. Reliability studies typically require 30 
participants. 24,25 We included those who self-reported a 
healthy status on the Get Active Questionnaire. Exclusion 
criteria were self-reported lower extremity pain or injury 
over the past year; heart, lung, kidney, gastrointestinal, or 
liver disease; cancer; or low back pain. 

Landmarking and positioning 

We asked the participants to avoid strenuous physical 
activity within 24hours of the visit and to wear loose-fitting 
shorts and athletic shoes. The study limb was selected using 
a random number generator to include 15 right legs and 15 
left legs. Body height and mass were measured while bare­
foot. Participants warmed up using the six-minute walk 
test.26,27  Care was taken to ensure that the scanning sites 
remained consistent. 28 The greater trochanter, lateral fem­
oral condyle, anterior superior iliac spine (ASIS), and the 
superficial border of the patella were palpated and marked 
with indelible ink by a research assistant (EGW). To stan­
dardize RF measurements, the midpoint between the ASIS 
and the superior border of the patella was demarcated, 28–30 

and the distance between the ASIS and superior border of 

© Canadian Physiotherapy Association, 2023 



76 Physiotherapy Canada, Volume 75, Number 1 

 Figure 1  The novel transducer attachment is secured to the ultrasound transducer by neodymium magnets and features an affixed protractor with demarcations 
in five-degree increments between eighty and one-hundred degrees. The bottom of the wedge fits along the thigh. These images show the transducer with the 
attachment imaging the vastus lateralis. 

© Canadian Physiotherapy Association, 2023
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the patella was recorded. The septum of the RF was first 
located in the transverse view for reference; if the septum 
interfered with clarity (e.g., if it was aligned through the 
centre of the image), the transducer was moved modestly 
medial at the same superior/inferior location, and this new 
placement was marked. To standardize VL measurements, 
the midpoint between the greater trochanter and lateral 
femoral epicondyle of the thigh was demarcated, 30–32 
and the distance between the greater trochanter and lat­
eral femoral condyle was recorded. 

To standardize positioning, participants were seated on 
a dynamometer (Biodex System 4, Biodex Medical Systems, 
49 Natcon Drive, Shirley, NY). The lateral femoral condyle 
was centred to the axis of rotation. The leg was secured 
using a Velcro strap just proximal to the lat eral malleolus. 
The knee was positioned at 60 degrees of flexion, coinciding 
with the optimal quadriceps length for adults. 33–35  Isokinetic 
contractions confirmed that 60.0 (SD 4.8) degrees of flexion 
corresponded with peak torque production in this sample.

 Image acquisition 

A high frequency linear probe (12L-RS) and ultrasound 
were used for imaging (Vivid Q, GE Healthcare, 9900 Inno­
vation Drive, Wauwatosa, WI). Water-soluble gel was used 
for acoustic coupling.36  Raters applied minimal pressure 
during imaging. Acquisition parameters included a signal 
depth of 5.5 cm, frequency of 11 MHz, and 2 focus points. 

Two raters acquired sets of three images of the RF 
and VL at every transducer tilt angle (80°, 85°, 90°, 95°, 
and 100°) plus one image at an estimated 90° angle. All 
images were acquired in the longitudinal plane for each 
muscle. 37–39 To standardize this acquisition, one region of 
interest for each muscle was traced on the skin. For each 
rater, the first image acquired for each muscle was at an 
angle they estimated to be 90 degrees to the skin. The 
actual angle was measured by a research assistant (EGW). 
The raters were blinded to the actual angle until after 
study completion. Both raters acquired sets of 3 images 
for each measured transducer tilt angles of 80°, 85°, 90°, 
95°, and 100° to the skin, where 80° and 85° were lateral to 
perpendicular, and 95° and 100° were medial to perpen­
dicular. The order of muscles, transducer angle, and rater 
was block randomized. The transducer was removed from 

  Table 1  Demographics of Participants 

the skin between every acquisition. Before conducting 
analyses, images with poor clarity (of the whole image, 
aponeuroses, and/or fascicles) were removed. All image 
acquisitions (one set by each rater, BDB and JNCH) were 
conducted on the same day. 

Muscle architecture measurements 

Muscle architecture measurements were retrieved 
using definitions described in previous literature for MT, 40 

FT, 41 PA, 42 and FL43 (online Supplemental Figure 1 ). A 
custom, semi-automated Python programme calculated 
these measurements from user-identified points on the 
images. Rater 1 (BDB) analyzed all images twice in ran­
dom order, separated by three weeks, and was blinded to 
participant, muscle, and transducer tilt angle. The aver­
age of the three acquired images for each angle, muscle, 
and rater was used for analysis. 

 Statistical analyses 

To address the primary purpose, sensitivity was as­
sessed between 90 degrees and every other tilt condition 
for MT, subcutaneous FT, PA, and FL for RF and VL. The 
standard error of measurement (SEM) was the standard 
deviation of differences divided by the square root of two. 
Two-way random, intra-class correlation coefficients (ICCs) 
were used. 44  Next were the secondary analyses. For intr­
arater reliability of measurements, SEMs and ICCs were 
calculated between repeated muscle measurements from 
the same underlying images by one rater (BDB). For the 
interrater reliability of the acquisition of images, SEMs 
and ICCs were calculated between the images acquired 
by Rater 1 and the images acquired by Rater 2; all images 
were analyzed by the same rater (BDB). Statistical analy­
sis was completed with IBM SPSS Statistics, version 25.0 
(IBM Corporation, Armonk, NY), and a p-value < 0.05 was 
considered significant. 

 RESULTS 

The demographics of the participants are summarized 
in Table 1 . Of the 1,920 images acquired, 1,732 images 
(90%) could facilitate all measurements and were included 
in the analyses. Of the 1,920 images, there were 99 images 
with unclear aponeuroses and 89 with unclear fascicles, 

  All participants ( N = 30)    Women ( n = 15)    Men ( n = 15) 


  Mean (SD)  Range, min-max   Mean (SD)  Range, min-max   Mean (SD)  Range, min-max


 Age (y)  25 (2.5) 20 – 29  25 (2.6) 22 – 29  24 (2.2) 20 – 29 
 BMI (kg/m 2)  22.6 (3.0) 17.2–29.4  22.2 (2.5) 19.4–27.5  23.0 (13.0) 17.2–29.4 
 RF length (cm)  44.2 (2.9) 36.4–49.3  42.9 (2.4) 36.4– 46  45.6 (2.6) 40.4–49.3 
 VL length (cm)  46.1 (3.0) 40.3 – 55.5  45.1 (2.6) 40.3 – 48.7  47.1 (3.1) 40.8–55.5 
 6MWT (m)  679 (91) 453 – 940  662 (67) 537–762  697 (110) 453–940 

RF = rectus femoris; VL = vastus lateralis; 6MWT = six-minute walk test. 
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eliminating the measurement of PA and FL. For only RF, 
there were 155 images with extrapolated FLs that exceeded 
the actual distance measured from origin to insertion. 
These erroneous FLs were observed most frequently at 80- 
and 85-degree transducer tilt angles. 

Varying transducer tilt angles 

Mean muscle architecture measurements for the RF 
and VL are summarized in online Supplemental Table 1 . 
When the rat ers estimated a perpendicular transducer tilt 
position, the actual transducer angles were near 90° for 
the RF (mean 90.0° [SD 4.8°] by Rater 1; mean 91.5° [SD 
4.0°] by Rater 2) and the VL (mean 86.5 [SD 3.0]° by Rater 1; 
mean 85.5° [SD 3.0°] by Rater 2). 

Table  2  displays the SEMs and ICCs that evaluate the 
sensitivity of measurements at each of the five tilt angles 
relative to a measured 90° transducer tilt angle for RF 
(online Supplemental Figure 2). SEM for RF MT and FT 
were < 0.16 cm for all tilt angles for both Raters 1 and 2. MT 
and FT displayed ICCs between 0.82 and 0.99 for all trans­
ducer tilt angles and both raters, compared to the mea­
sured 90° position. The lower limits of the 95% CIs for these 
ICCs were 0.87–0.98 for FT, and 0.58–0.92 for MT. However, 
PAs and FLs were sensitive to variations in transducer tilt, 
showing poor ICCs and high SEMs when compared to the 
measured 90-degree trans ducer tilt angle. Less sensitivity 

was observed with smaller deviations in transducer tilt 
from 90 degrees, where im ages of the RF acquired at 85- 
and 95-degree transducer tilt angles generally displayed 
better reliability for PA and FL compared to other angles. 

Table 3  shows the SEMs and ICCs that evaluate the sen­
sitivity of measurements at each of the 5 tilt angles relative to 
a measured 90° transducer tilt angle for VL (online Supple­
mental Figure 3). Transducer tilt angles of 80° produced the 
highest error for VL MT (highest SEM, lowest ICC). However, 
FT measurements appeared consistent across angles, with 
ICCs of 0.97–0.99 and SEMs < 0.09 cm. PAs and FLs were 
sensitive to varia tions in transducer tilt, showing poor ICCs 
and high error (SEMs) for PA compared to the measured 90° 
transducer tilt angle (100° and estimated 90° the worst).

 Secondary purposes 

Intrarater reliability of measurements 

SEM and ICCs for intrarater reliability of RF and VL 
measurements are displayed in online Supplemental 
Table 2 . Excellent reli ability was demonstrated with ICCs 
> 0.87 and low error (particularly for MT and FT). 

Interrater reliability of image acquisition 

SEMs and ICCs assessing interrater reliability of RF and 
VL images are displayed in online Supplemental Table 3 . 
High interrater reli ability was demonstrated for MT and FT

  Table 2  Sensitivity of RF Measurements from Images Acquired at Varying Transducer Tilts 

  Rater    EP vs. 90°    80° vs. 90°    85° vs. 90°    95° vs. 90°    100° vs. 90°  

 MT (cm) 1 SEM  0.15 (0.08–0.21)  0.10 (0.07–0.13)  0.07 (0.04–0.10)  0.16 (0.04–0.26)  0.09 (0.06–0.11) 
ICC  0.82 (0.65–0.91)  0.90 (0.83–0.98)  0.96 (0.89–0.98)  0.82 (0.65–0.91)  0.91 (0.78–0.96) 
n 28 26 29 29 28 

2 SEM  0.16 (0.08–0.22)  0.09 (0.06–0.11)  0.06 (0.04–0.07)  0.10 (0.05–0.14)  0.12 (0.06–0.16) 
ICC  0.83 (0.68–0.92)  0.92 (0.77–0.97)  0.97 (0.92–0.99)  0.92 (0.84–0.96)  0.85 (0.58–0.94) 
n 30 29 29 30 30 

 FT (cm) 1 SEM  0.06 (0.04–0.07)  0.07 (0.03–0.10)  0.05 (0.03–0.07)  0.06 (0.03–0.08)  0.05 (0.02–0.07) 
ICC  0.98 (0.96–0.99)  0.97 (0.94–0.99)  0.99 (0.98–1.0)  0.98 (0.95–0.99)  0.99 (0.97–0.99) 
n 29 26 29 29 28 

2 SEM  0.09 (0.04–0.13)  0.07 (0.03–0.10)  0.10 (0.03–0.14)  0.07 (0.02–0.11)  0.05 (0.03–0.06) 
ICC  0.95 (0.90–0.98)  0.97 (0.94–0.99)  0.94 (0.87–0.97)  0.97 (0.93–0.98)  0.98 (0.97–0.99) 
n 30 29 29 30 30 

 PA (°) 1 SEM  3.03 (1.84–4.23)  2.56 (1.85–3.14)  1.84 (1.34–2.25)  2.18 (1.56–2.68)  2.85 (2.17–3.37) 
ICC  0.25 (−0.09–0.55)  0.10 (−0.16–0.41)  0.55 (0.18–0.77)  0.43 (−0.01–0.71)  0.35 (0–0.63) 
n 26 24 28 28 27 

2 SEM  3.31 (2.32–4.13)  2.80 (1.99–3.42)  2.14 (1.24–2.98)  1.81 (1.33–2.21)  2.56 (1.88–3.06) 
ICC  0.11 (−0.21–0.43)  0.09 (−0.22–0.41)  0.42 (0.08–0.67)  0.50 (0.15–0.74)  0.44 (0.08–0.70) 
n 29 29 29 28 27 

 FL (cm) 1 SEM  8.32 (5.03–10.77)  6.38 (2.72–7.78)  5.98 (2.33–9.07)  4.96 (3.06–6.16)  9.00 (5.90–11.00) 
ICC  0.21 (−0.29–0.60)  0.19 (−0.16–0.68)  0.44 (−0.02–0.76)  0.65 (0.20–0.85)  0.17 (−0.25–0.56) 
n 19 8 15 18 19 

2 SEM  6.09 (3.88–7.73)  8.29 (3.83–10.33)  4.09 (3.01–4.83)  4.76 (3.15–6.05)  4.90 (3.42–5.97) 
ICC  0.51 (0.10–0.78)  0.26 (−0.30–0.73)  0.75 (0.43–0.89)  0.45 (0.04–0.74)  0.51 (−0.04–0.80) 
n 30 30 30 30 26 

RF = rectus femoris; EP = estimated perpendicular; SEM = mean (95% confidence interval) of standard error of measurement; ICC = intra-class correlation 
coefficient; n = sample size; MT = muscle thickness; FT = fat thickness; PA = pennation angle; FL = fascicle length. 
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  Table 3  Sensitivity of VL Measurements from Images Acquired at Varying Transducer Tilts 

  Rater    EP vs. 90°    80° vs. 90°    85° vs. 90°    95° vs. 90°    100° vs. 90°  

 MT (cm) 1 SEM  0.15 (0.10–0.19)  0.21 (0.15–0.25)  0.12 (0.09–0.15)  0.12 (0.09–0.14)  0.16 (0.11–0.20) 
ICC  0.88 (0.76–0.94)  0.72 (0.49–0.86)  0.91 (0.82–0.96)  0.92 (0.85–0.96)  0.84 (0.66–0.93) 
n 30 30 30 29 24 

2 SEM  0.22 (0.14–0.29)  0.25 (0.19–0.30)  0.20 (0.13–0.26)  0.16 (0.09–0.20)  0.16 (0.10–0.20) 
ICC  0.70 (0.47–0.85)  0.49 (0.17–0.72)  0.69 (0.45–0.84)  0.82 (0.65–0.92)  0.79 (0.58–0.91) 
n 30 30 30 30 26 

 FT (cm) 1 SEM  0.09 (0.06–0.11)  0.07 (0.04–0.10)  0.06 (0.03–0.08)  0.07 (0.03–0.10)  0.05 (0.03–0.06) 
ICC  0.97 (0.94–0.99)  0.98 (0.94–0.99)  0.99 (0.97–0.99)  0.98 (0.95–0.99)  0.98 (0.95–0.99) 
n 30 30 30 29 24 

2 SEM  0.09 (0.06–0.12)  0.05 (0.03–0.07)  0.06 (0.03–0.08)  0.08 (0.04–0.12)  0.04 (0.03–0.05) 
ICC  0.97 (0.94–0.99)  0.99 (0.97–0.99)  0.99 (0.97–0.99)  0.98 (0.95–0.99)  0.99 (0.98–1.00) 
n 30 30 30 30 26 

 PA (°) 1 SEM  2.78 (2.03–3.45)  3.68 (2.40–4.66)  2.46 (1.78–2.97)  2.99 (2.05–3.68)  5.09 (3.87–6.04) 
ICC  0.56 (0.26–0.76)  0.22 (−0.13–0.53)  0.61 (0.33–0.80)  0.45 (0.12–0.69)  0 (−0.57–0.14) 
n 30 30 30 29 24 

2 SEM  3.77 (2.03–5.51)  3.51 (2.46–4.35)  3.23 (2.07–4.35)  3.10 (1.82–4.15)  4.03 (2.55–5.47) 
ICC  0.10 (−0.28–0.45)  0.25 (−0.13–0.56)  0.27 (−0.11–0.57)  0.36 (0.01–0.63)  0 (−0.38–0.35) 
n 30 30 30 30 26 

 FL (cm) 1 SEM  2.19 (1.40–2.74)  1.16 (0.85–1.39)  1.24 (0.80–1.61)  1.52 (1.08–1.82)  3.08 (1.55–4.07) 
ICC  0.33 (−0.03–0.61)  0.49 (0.09–0.74)  0.50 (0.18–0.72)  0.55 (0.03–0.80)  0.20 (−0.10–0.52) 
n 30 30 30 29 24 

2 SEM  3.12 (1.34–4.69)  3.00 (1.19–4.70)  2.58 (0.75–4.15)  1.74 (1.00–2.42)  3.61 (1.60–5.54) 
ICC  0.13 (−0.23–0.46)  0.08 (−0.24–0.40)  0.23 (−0.10–0.52)  0.78 (0.58–0.89)  0.17 (−0.16–0.50) 
n 30 30 30 30 26 

VL = vastus lateralis; EP = estimated perpendicular; SEM = mean (95% confidence interval) of standard error of measurement; ICC = intra-class correlation coef­
ficient; MT = muscle thickness; FT = fat thickness; PA = pennation angle; FL = fascicle length. 

measurements of RF and VL (ICC > 0.88, SEM < 0.18 cm). 
RF PA was most reliable at the 80° transducer tilt angle, as 
evidenced by the highest ICC (0.82) and lowest SEM (1.18°), 
while VL PA was most reliable at the 85° tilt angle (ICC 0.85, 
SEM 1.84°). Reliability was poorest at 100 degrees and 
estimated per pendicular conditions. RF FL reliability was 
considerably lower at the 85-degree angle relative to other 
angles, with a low ICC (0.33) and high SEM (7.24 cm). VL FL 
reliability was fairly consistent across tilt angles, also show­
ing the highest reliability for the 85-degree tilt condition. 

DISCUSSION 

We explored the impact of altering ultrasound trans­
ducer tilt angles on measurements of muscle architec­
ture and subcutaneous FT, from quadriceps positioned 
at the optimal length in healthy adults. Our results sug­
gest that measurements of MT and subcutaneous FT of 
the RF and VL are not sensitive to different transducer tilt 
angles during acquisition or to different raters. However, 
PA measurements benefit from standardizing transducer 
tilt angle and staying within 10 degrees of the perpen­
dicular (i.e., acquiring images 85°–95°) to the skin surface. 
Beyond this range of transducer tilt (i.e., at 80° or 100°), 
or when raters estimated a perpendicular transducer tilt, 
lower ICCs and higher SEMs were observed. Importantly, 
estimations of FL extrapolated from the images did not 

appear trustworthy. Finally, interrater reliability on im age 
acquisition and intrarater reliability (considering both the 
lower limit of the ICC confidence intervals and the upper 
limit of the SEM confidence intervals) on mea surement 
analysis were acceptable for MT and FT mea surements. 

A novel transducer attachment that standardizes the 
ul trasound transducer tilt angle improves the acquisition of 
PA of RF and VL in healthy, young adults. First, estimating a 
transducer tilt angle during acquisition is inaccurate. In this 
study, low ICCs and high SEM (Tables 2 and 3 ) for PA (of RF 
and VL) were observed when comparing the estimated per­
pendicular angles with the measured 90-degree transducer 
tilt angle. This inability to reliably estimate transducer tilt is 
confirmed by the recent work of Ishida and colleagues who 
found that while intrarater reliability of estimates of trans­
ducer tilt were strong, interrater reliability between two rat­
ers was poor, with ICC of 0.40 and a SEM of 4°. 45  Second, the 
attachment improves data consistency for some but not all 
measurements. Interrater reliability of PA is improved by 
us ing the attachment compared to estimating transducer 
po sitioning ( online Supplemental Table 3 ). Furthermore, 
as the angle of the trans ducer deviates farther from the 
perpendicular to the skin, the SEM and ICCs worsen. Pre­
vious work found five-degree deviations from the perpen­
dicular produced muscle architecture values (MT, PA, FL) 
of the gastrocnemius with low error (4%); but deviations 
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greater than five degrees produced high error (up to 25%). 46 

Finally, the transducer attachment features a wedge to 
accommodate the curvature of the thigh, which may dis­
tribute contact forces and thereby lower pressure of the 
transducer head on the region of interest. Future work 
should explore this hypothesis. It is important to note that, 
while it is currently unconventional to capture specific 
muscle architecture measurements us ing ultrasound in 
PT practice, there is growing interest in using this relatively 
accessible, inexpensive technology in measuring sarcope­
nia (e.g., with aging, prolonged immobi lization, clinical 
conditions) and fatty accumulation. Find ings from this 
study suggest that MT and FT measurements are robust 
to variations in transducer tilt which has great potential 
for advancing PT practice. Measures of FL and PA, which 
appear sensitive to protocol, may be more difficult to stan­
dardize in a clinical environment. 

Interrater and intrarater reliability of image acquisi­
tion and measurement, respectively, depend on the spe­
cific outcome of interest from the ultrasound images. 
The protocols used in this study resulted in reliable data 
on thicknesses (muscle, fat), regardless of transducer tilt 
angle or rater. These data complement recent work. High 
to very-high test-retest reliability of quadriceps MT mea­
surements were observed in 20 healthy, young par- tici­
pants. 47  Similarly, excellent reliability of subcutaneous 
FT has been shown in lean, overweight, and obese adults 
at eight sites, including overlying the quadriceps, in 38 
adults. 48  Our intrarater ICC values for FT over the RF are 
the same as a previously reported. 35 The robustness of 
these thickness measurements enables exploration of the 
mechanisms underlying pathologies in which voluntary 
movements are either compromised or unattainable (e.g., 
among critically ill), 49–51 and enables applications in clini­
cal practice. It is important to note, though, that samples 
that are older or with disease may not produce the same 
results. Unlike tissue thickness measurements, anisotropy 
(property of being directionally dependent) explains why 
PA measurements appear sensitive to transducer tilt an- 
gle. 52  Nonetheless, the relative and absolute reliabilities of 
PA measurements (intrarater and interrater at estimated 
perpendicular and 90° acquisition angles) exceeded the 
minimum documented in a systematic review of archi­
tectural measurements of ultrasound, which were always 
ICC > 0.50. 12  Strasser and colleagues also reported high 
reliability for MT (ICC > 0.96) and lower ICC values for FL 
(ICC 0.57–0.62) and PA measurements (ICC = 0.53) in RF 
and VL.53 Together, these data suggest that PA measure­
ments require great care to derive quality data. 

The extrapolation technique used to quantify FL from 
images acquired with the knee positioned at the optimal 
length of the quadriceps produces data that is sensitive 
to transducer tilt angle and, unfortunately, is of ques­
tionable accuracy. While intrarater reliability values are 
excellent and interrater reliability values at measured 
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transducer tilts are good or better, the restricted field of 
view of the ultrasound required estimations of FLs that 
likely introduced error. Extrapolation resulted in FLs that 
exceeded the actual length of the muscle in 10% of RF 
images. These erroneously long FLs were removed from 
the analyses; however, it is likely that overestimates of 
FL that did not exceed the muscle length remained in 
the data set. This er ror is likely reflected in the relatively 
large interrater SEMs; that is, at 90° the SEM was 22% of 
mean FL for VL, and 32% for RF. Average lengths exceed 
those reported in previous literature.6,9,49  For example, 
our findings (16.7–27.7 cm) far exceeded those of Moreau 
and colleagues, who report mean 9.75 (SD 2.3) cm FLs 
in the RF. 15 This discrepancy is not as obvious in the VL 
as values remained within plau sible ranges (range, min­
max, 9.4–14.1 cm) similar to those found in the literature 
(range, min-max, 9.9–15.21 cm). 14,54,55 These discrepan­
cies reflect differences in positioning; previous litera­
ture placed the quadriceps in the shortest position (at or 
near full knee extension), and the current study placed 
the quadriceps at optimal length (60° of knee flexion). 
Caution should be taken in interpreting the FLs reported 
here, particularly for RF. Future work should repeat these 
analyses of FL using an ultrasound with an extended 
field of view. 

Regarding limitations, first, the pressure of the trans­
duc er was not quantified. Excessive pressure of the trans­
ducer against the skin was minimized by using a generous 
amount of gel.36,56,57  Second, given the two-dimensional 
nature of ultrasound, there was no way to confirm that 
the trans ducer head was aligned to the fascicles. An 
attempt to overcome this was made by scout-scanning to 
find an optimal alignment. Third, participants were rec­
reationally active university-aged students, which limits 
the generalizability to other populations, such as those 
with higher subcutane ous FTs. Fourth, the reliability of 
anatomical landmarking for ultrasound transducer place­
ment was not assessed, with all landmarking performed 
by one rater. Future research should investigate the effect 
of anatomical landmark palpa tion on muscle architecture 
measurements. As well, while patients in clinical environ­
ments are typically positioned using pillows, participants 
in this research were seated on a dynamometer. While we 
expect the reliability outcomes of this study to translate 
to clinical practice, the impact of variations in patient 
positioning could be a focus of future work. Fifth, the 
wide confidence intervals noted for PA and FL measure­
ments suggest that our sample size (particularly in light 
of removing unclear images) was likely small. Final ly, the 
acquisition of muscle architectural features did not occur 
during an isometric contraction, which would have pro­
vided greater insight into muscle fascicle arrangement 
during the greatest peak torque production. Future work 
should use the novel ultrasound transducer attach­
ment to explore the measurement properties of muscle 
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architec tural features during isometric and, potentially, 
dynamic contractions using ultrasound. 

CONCLUSION 

Measurements of RF and VL thickness and subcutane­
ous FT acquired at 60° knee flexion are robust to varying 
transducer tilt angles. PA measurements benefit from the 
standardization of the transducer tilt angle, which in this 
study was achieved using a novel ultrasound transducer 
attachment. 

 KEY MESSAGES 

What is already known on this topic 

Ultrasonography is a commonly used medium for 
quantifying muscle and fat properties. 

What this study adds 

We present a novel approach to standardizing MSK 
ultrasound image acquisition and highlight that MT and 
subcutaneous FT measurements are more reliable than 
PA and FL measurements of the quadriceps when the 
muscle is placed in the optimal position. 
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