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Abstract
Motivation: Biomedical named entity recognition (BioNER) seeks to automatically recognize biomedical entities in natural language text, serving
as a necessary foundation for downstream text mining tasks and applications such as information extraction and question answering. Manually
labeling training data for the BioNER task is costly, however, due to the significant domain expertise required for accurate annotation. The result-
ing data scarcity causes current BioNER approaches to be prone to overfitting, to suffer from limited generalizability, and to address a single en-
tity type at a time (e.g. gene or disease).

Results: We therefore propose a novel all-in-one (AIO) scheme that uses external data from existing annotated resources to enhance the accu-
racy and stability of BioNER models. We further present AIONER, a general-purpose BioNER tool based on cutting-edge deep learning and our
AIO schema. We evaluate AIONER on 14 BioNER benchmark tasks and show that AIONER is effective, robust, and compares favorably to other
state-of-the-art approaches such as multi-task learning. We further demonstrate the practical utility of AIONER in three independent tasks to rec-
ognize entity types not previously seen in training data, as well as the advantages of AIONER over existing methods for processing biomedical
text at a large scale (e.g. the entire PubMed data).

Availability and implementation: The source code, trained models and data for AIONER are freely available at https://github.com/ncbi/
AIONER.

1 Introduction

Large-scale application of automated natural language proc-
essing (NLP) to biomedical text has successfully helped ad-
dress the information overload resulting from the thousands
of articles added to the biomedical literature daily (Sayers
et al. 2021). Biomedical NLP is also increasingly used to sup-
port quantitative biomedical science, by augmenting manual
curation efforts to populate databases via automated extrac-
tion (Singhal et al. 2016), or by making inferences directly,
through tasks such as literature-based knowledge discovery
(Weeber et al. 2001). Biomedical named entity recognition
(BioNER), the task of identifying bio-entities such as chemi-
cals and diseases within the text, provides an important foun-
dation for many biomedical NLP applications, and the
accuracy of the entities identified by BioNER strongly affects
the quality of the downstream applications. However, bio-
medical entities are with much more complicated naming
principles. Compared with NER tasks in the general domain,
such as the recognition of the persons or organizations,
BioNER is more challenging because biomedical entity names
are longer, more complex, and ambiguous (Cariello et al.
2021; Jeong and Kang 2021).

Prior to the deep learning era, conditional random fields
(CRF) (Lafferty et al. 2001) with the rich feature sets were the
most popular method for BioNER, and consistently per-
formed well on a variety of tasks (Leaman et al. 2013;
Leaman et al. 2015; Wei et al. 2015). In recent years, several
deep learning-based methods have been widely applied to
BioNER tasks with promising results, including bidirectional
Long Short-Term Memory with a CRF layer (BiLSTM-CRF)
(Lample et al. 2016), Embeddings from Language Models
(ELMo) (Peters et al. 2018), and Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al.
2019). Most recently, the BERT pre-trained language model
has become among the most popular methods, and several
variants trained on biomedical text have been publicly re-
leased and widely applied to BioNER tasks [e.g. BlueBERT
(Peng et al. 2019), BioBERT (Lee et al. 2020), and
PubMedBERT (Gu et al. 2022)].

The success of these machine-learning based methods relies
heavily on manually annotated gold-standard data for model
training and testing. Hence, significant efforts have been
made to develop BioNER corpora for key biomedical entities
such as diseases (Do�gan et al. 2014) and chemicals (Krallinger
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et al. 2015). However, unlike the general English domain,
manually annotating biomedical text requires domain knowl-
edge and is highly costly. As a result, the current corpora in
BioNER are generally limited in size, with a few hundred
articles on average, and machine learning models trained on
such limited annotations are prone to overfitting. Several re-
cent studies (Galea et al. 2018; Kühnel and Fluck 2022) dem-
onstrate that the accuracy of models trained on individual
corpora decreases significantly when applied to independent
corpora due to the limited generalizability of entity-related
features captured by individual corpora.

Recently, several BioNER methods based on multi-task
learning (MTL) (Crichton et al. 2017; Wang et al. 2019;
Giorgi and Bader 2020; Zuo and Zhang 2020; Rodriguez
et al. 2022) have been proposed, which improve the generaliz-
ability of the model by making use of various publicly avail-
able datasets. These methods generally share the hidden
layers of the deep learning model across the related tasks and
have an output layer specific to each task. In particular, MTL
can improve the model’s generalizability by leveraging
domain-specific information found in the training signals of
related tasks (Caruana 1997). However, several studies (Chai
et al. 2022; Rodriguez et al. 2022) have found that MTL
results are not always stable: MTL can improve performance
compared to single-task learning on some datasets, but does
not do so universally. Moreover, the MTL-based methods
(Wang et al. 2019; Chai et al. 2022) usually require a com-
plex model architecture.

In this work, we propose a novel data-centric perspective to
enhance the accuracy and robustness of BioNER models by
merging multiple datasets into a single task via task-oriented
tagging labels. As a result, our method can achieve better per-
formance more consistently than MTL and is applicable to
various machine learning models.

More specifically, we propose AIONER, a new NER tagger
that takes full advantage of various existing datasets for
recognizing multiple entities simultaneously, despite their in-
herent differences in scope and quality, through a novel all-in-
one (AIO) scheme. Our AIO scheme utilizes a small dataset
recently annotated with multiple entity types [e.g. BioRED
(Luo et al. 2022a)] as a bridge to integrate multiple datasets
annotated with a subset of entity types, thereby recognizing
multiple entities at once, resulting in improved accuracy and
robustness. Experimental results show that external datasets
can help AIONER achieve statistically higher performance
compared to that of the model trained only using the original
BioRED training data. Vice versa, we demonstrate our AIO
scheme can help improve model performance on individual
datasets.

We further show that instead of using the entire BioRED
training data (500 articles) in AIONER, we can use a minimal
set of 10 articles to achieve a competitive result (86.91%)
when external datasets are used. Finally, we demonstrate that
AIONER can be reused in a versatile manner as a pre-trained
model to further improve the performance of other BioNER
tasks, even when the entity types are not previously seen in
the AIONER training data.

2 Materials and methods

The overall architecture of AIONER for multiple named en-
tity recognition is shown in Fig. 1. We first collected multiple
resources for the six target entity types (i.e. gene, disease,

chemical, species, variant, and cell line) which were annotated
in the BioRED dataset. We then propose an effective all-in-
one strategy to merge different resources into a single se-
quence labeling task. Next, a cutting-edge deep learning
model is trained with the merged dataset for this BioNER
task. Finally, the trained model is used to recognize the multi-
ple biomedical entities from unseen documents. Further
details on each step are provided in the following section.

2.1 Publicly available BioNER datasets

To develop such a comprehensive BioNER method, we col-
lected multiple resources within the six most popular entities
in biomedical literature (i.e. gene, disease, chemical, species,
variant, and cell line) as shown in Supplementary Table S1.
We defined two criteria to filter the inconsistent datasets: (i)
The selected datasets should annotate the interchangeable en-
tities consistently. Some concepts are highly relevant and are
usually used interchangeably. For example, a drug is a chemi-
cal substance that affects the functioning of living things and
is frequently represented by a chemical. Besides, the gene and
its products (e.g. RNA and protein) are usually named identi-
cally. There are also some other overlapping concepts, like
phenotypes to diseases and residues to variants. (ii) The data-
sets should annotate the concept identifiers of the entities by
the same resources (e.g. NCBI Gene for gene/protein and
MESH for chemical), which guarantees the definitions of the
curated entities are consistent. The narrowed down resources
are shown in Table 1.

However, a few minor inconsistencies remained in the se-
lected corpora after filtering. First, the annotations in the
BioID (Arighi et al. 2017) dataset are inconsistent internally.
About 30% of the cell line spans with the suffix “cell(s)”. To
make it more consistent, we removed all the suffixes before
the training and evaluation. Besides, Linnaeus (Gerner et al.
2010) and Species-800 (Pafilis et al. 2013) do not annotate
the species relevant clinical terms (e.g. patient). Also, Species-
800 excludes the genus name (e.g. Arabidopsis), and the spe-
cies name which is in the higher level of the taxonomy system
(e.g. Fungal), although those are annotated in BioRED. Third,
GNormPlus (Wei et al. 2015) and NLM-Gene (Islamaj et al.
2021b) distinguish gene/protein family (e.g. Dilps) from the
specific gene names (e.g. Dilp6), but BioRED did not distin-
guish the two types of entities. In our implementation, we
merged the family names to the gene entity type.

2.2 All-in-one scheme

Like most previous studies, we treated BioNER as a sequence
labeling task. Consider a sequence of text
X ¼ ðx1; x2; . . . ;xnÞ, where n denotes the length of the text.
Each x is tagged with a class label y 2 Y, where Y denotes the
tagging scheme set (e.g. BIO scheme). The BIO scheme (Sang
and De Meulder 2003), which contains begin tokens (“B”),
inside tokens (“I”), and background (outside) tokens (“O”),
is the most popular encoding scheme of the BioNER task.
Unlike the traditional BIO scheme, we designed and proposed
a novel all-in-one (AIO) scheme to accept multiple datasets
from different tasks. Specifically, given m tasks and consider-
ing an input sentence X from the task Ti where
i 2 f1; . . . ;mg, we applied an additional pair of tags sur-
rounding the input sentence to indicate the task X ¼
ð< Taski >; x1;x2; . . . ;xn; < =Taski >Þ (e.g. “<Disease></
Disease>” to recognize disease entities, and “<ALL></
ALL>” to recognize all concept entities). The special tokens
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indicating the task tags were added to the beginning and end
of the input sentence. For the label set Y, we defined three
types of labels, which include “B-EntityType”, “I-
EntityType”, and “O-Task”. Note that, the definitions of the
“B” and “I” in the AIO scheme are the same as the traditional
BIO scheme. However, to avoid entity conflict, we flexibly
redesigned the “O” (outside) label since some entities may be
curated in some of the datasets but not others. For example,
in the scenario of recognizing diseases, the original “O” label
is modified to “O-Disease” which can be clearly distinguished
from the “O-Chemical” label for the task of recognizing
chemical entities. Finally, we defined a total of 19 labels in the
label set Y ¼ fB-Gene, I-Gene, O-Gene, B-Disease, I-Disease,
O-Disease, . . ., B-CellLine, I-CellLine, O- CellLine, O-ALLg.

We merged the datasets listed in Table 1 based on the AIO
scheme. Excluding BioRED annotating all entity types, other
datasets only focus on partially annotated entity types. If the
dataset contains multiple partially annotated entity types, we
split it into multiple datasets with a single entity type (e.g.
BC5CDR is split into BC5CDR-Disease and BC5CDR-
Chemical). Then we merged the datasets with the same entity
type into a BioNER task. Figure 2 shows some example sen-
tences annotated based on our tagging scheme. For example,
we merged GNormPlus and NLM-Gene datasets for the gene
recognition task. All sentences in these two datasets are added
“<Gene>” and “</Gene>” tags at the front and end of the
sentence. Only the tokens of the gene entity are labeled as “B-
Gene” (or “I-Gene”). All other tokens are labeled as “O-
Gene”. “B-Gene” represents the status of the first token of the
gene span, “I-Gene” represents the tokens of the gene span
other than the first one, “O-Gene” represents the background
tokens out of the gene spans. Different from other datasets,
BioRED is a resource containing all entity types. We added

“<ALL></ALL>” tags surrounding the input sentence from
BioRED to indicate recognizing all entities of the six entity
types. The tokens of the biomedical entity are labeled to B-
EntityType (or I-EntityType), and all background tokens are
labeled with “O-ALL”. After converting all datasets using the
AIO scheme, the integrated data is used to train NER models.

2.3 Deep learning model for BioNER

The BioNER task has been modulated to a sequence labeling
task via the AIO scheme. We applied cutting-edge biomedical
pre-trained language models (PLMs) [e.g. PubmedBERT (Gu
et al. 2022)] for the implementation of our framework.
Specifically, given an input sentence X ¼ ðx1;x2; . . . ; xnÞ con-
sisting of n tokens, the model aims to map the token sequence
to a corresponding sequence of the label y ¼ ðy1; y2; . . . ; ynÞ,
where y 2 Y. We first used the PLMs to encode the input to a
hidden state vector sequence, then computed the network
score using a fully connected layer with a ReLU (Glorot et al.
2011) activation. Finally, the CRF output layer is added to
optimize the boundary detection of the bio-entities. A score is
defined as:

s X; yð Þ ¼
Xn

i¼1

Tyi�1;yi
þ Pi;yi

� �
(1)

where P is the score matrix of the output from the last fully
connected layer and T is a transition matrix of the CRF layer.
Ti;j represents the score of the transition from the ith label to
the jth label. During the training phase, the objective of the
model is to maximize the log-probability of the correct tag
sequence:

log p yjXð Þð Þ ¼ log
es X ;yð ÞP
~yes X ;~yð Þ

 !
(2)

where ~y denotes all possible tag paths. At inference time, we
predict the tag path that obtains the maximum score given by:

y ¼ argmax~ys X ; ~yð Þ (3)

This can be computed using dynamic programming, and
the Viterbi algorithm (Viterbi 1967) has been chosen for this
inference.

We merged the training and development sets of the data-
sets for model training and evaluated the models on the offi-
cial test sets. Since the official test sets of Linnaeus, Species-
800, and BioID are not available or released, we randomly
split 20% of the dataset as the test set for evaluating the

Figure 1. Overview of our AIONER pipeline.

Table 1. The BioNER datasets used in our study.a

Entity type Dataset Text size Entities

All BioRED(Luo et al. 2022a) 600 abs 20 419
Gene GNormPlus (Wei et al. 2015) 694 abs 9986

NLM-Gene (Islamaj et al. 2021b) 550 abs 15 553
Disease NCBI Disease (Do�gan et al. 2014) 793 abs 6892

BC5CDR-Disease (Li et al. 2016) 1500 abs 12 850
Chemical BC5CDR-Chemical (Li et al. 2016) 1500 abs 15 935

NLM-Chem (Islamaj et al. 2021a) 150 full 40 467
Species Linnaeus (Gerner et al. 2010) 100 full 4259

Species-800 (Pafilis et al. 2013) 800 abs 3708
Variant tmVar3 (Wei et al. 2022) 500 abs 1895
Cell line BioID (Arighi et al. 2017) 570 full 5590

a Abs denotes abstracts; full denotes full-texts. Text genre is scientific
article.
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models. We applied the default PLM parameter settings and
set main hyper-parameters as follows: learning rate of 5e–6,
batch size of 32, and max input length of 256 tokens (split
into multiple sentences if the length of a sentence is over the
max length). To determine the optimal number of training
epochs, we set the patience parameter to 5 with a maximum
of 50 epochs. The training process would terminate if there
were no significant accuracy improvements in five consecutive
epochs. For a detailed account of hyper-parameter settings,
please refer to the Supplementary Material.

After training the model, the trained model can be used for
recognizing the biomedical entities from the unseen input
text. First, the input text was split into sentences and toke-
nized. Then we inserted the special task tags surrounding the
input sentence to indicate the task. Finally, the trained
AIONER model can be used to tag the tokens of the sentence
to extract the task-specific entities according to the inserted
task tags (e.g. “<Disease></Disease>” to only recognize dis-
ease entities, and “<ALL></ALL>” to recognize all concept
entities). It should be noted that the entity scope and defini-
tions in individual corpora may not align completely with
BioRED. Therefore, utilizing the “<ALL> </ALL>” task
tags for identifying all concept entities in BioRED and apply-
ing individual (IND) task tags for identifying entities in the
corresponding individual corpora. Further information can be
found in Supplementary Table S3.

3 Results
3.1 Experimental settings

To demonstrate the effectiveness of AIONER, we performed
four experiments. First, we examined the performance of
AIONER for multiple entity recognition on the BioRED test
set. Second, we evaluated the stability and robustness of
AIONER by analyzing its overall performance on the test set
for each individual dataset. Third, we tested whether
AIONER can be applied to support those BioNER tasks with
new entity types that are not previously seen during AIONER
model training. Finally, we investigated the performance and
efficiency of the different variants of the BERT-based pre-
trained model in our framework for supporting the processing
of PubMed-scale literature data.

In addition, we also implemented the MTL framework
with the same deep learning model and training data for com-
parison. MTL treats each dataset as an individual task, and
its model architecture shares the hidden layers across the dif-
ferent tasks where each task has its own task-specific output
layers. The final loss is calculated by summarizing the losses
of different tasks. In our experiments, we evaluated the model
performance using the entity-level micro F1-score (F1), which
has been widely applied in BioNER tasks. We further applied

the two-sided Wilcoxon signed-rank test to perform statistical
significance testing. Note that a few documents exist in both
BioRED and some other datasets. To accurately evaluate the
performance of different methods, we filtered those over-
lapped documents in the training set if the documents also ex-
ist in the test set.

3.2 Multiple named entity recognition via AIONER

on BioRED

We examined the effectiveness of the AIO scheme and the
contribution of different datasets for multiple named entity
recognition. According to the evaluation in a 2022 study (Luo
et al. 2022a), the PubMedBERT-CRF model achieves state-
of-the-art (SOTA) performance and compares favorably to
other methods such as BiLSTM-CRF and BioBERT-CRF
models on the BioRED dataset. Therefore, we use it as the de-
fault model in our architecture of AIONER and MTL. We
firstly prepared a strong baseline based on the PubMedBERT-
CRF model, which trained on the original BioRED training
set. Then we merged every external dataset and BioRED
training set via our AIO scheme to train the models, respec-
tively. Finally, we integrated all datasets as a union training
set and trained the AIONER model [i.e. BioREDþAll
(AIONER)]. We also implemented two more options to inte-
grate datasets for comparison: (i) BioREDþAll (w/o
AIONER): the model trained on the naive concatenation of
all training datasets. (ii) BioREDþAll (MTL): the multi-task
learning model trained on all datasets, in which each dataset
is treated as an individual task. Table 2 shows the results of
evaluating the models on the BioRED test set.

Compared to the baseline, the models trained on both the
individual external datasets and BioRED training set can ob-
tain better performance on the corresponding entity type with
slightly higher F1-scores in overall performance. The MTL
and AIONER models both perform significantly better than
the baseline when all datasets are used for training.
Particularly, the AIONER model obtained the highest overall
score, improving the F1-score from 89.34% to 91.26%. In
terms of entity types, disease, and chemical are the most im-
proved (4.60% and 2.43%, respectively). We evaluated the
stability and robustness of AIONER and MTL models by
comparing the means and standard deviations of their overall
F-scores across five runs with different random initial seeds.
Our results demonstrate that AIONER achieved a higher
mean F-score and lower standard deviation than MTL, indi-
cating its superior stability and robustness. Specifically, the
mean F-scores for AIONER and MTL were 91.21 6 0.15%
and 90.64 6 0.34%, respectively. Compared with the MTL
model that shares the same hidden layers but uses indepen-
dent CRF output layers, our AIONER model merges all

Figure 2. Some example sentences annotated based on our AIO scheme.
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datasets with the AIO scheme and output results within a sin-
gle output layer. Thus, it may be able to better utilize the in-
formation from the different datasets. Merging all datasets
directly without applying the AIO scheme dropped the F1-
score about 20% due to the large number of missing annota-
tions. For example, gene datasets do not annotate diseases or
chemicals.

In addition, we tested the performance of the AIONER
model trained on partial BioRED training data with all exter-
nal datasets. We set up seven configurations with different
numbers of abstracts (10, 50, 100, 200, 300, 400, and 500
abstracts) as the BioRED training subset. The results are
shown in Fig. 3. Here, the baseline is the model trained on the
BioRED only. The results indicate that both AIONER and
MTL models exhibit similar performances and outperform
the baseline across all configurations of the BioRED training
subset. Furthermore, it is noteworthy that even with only 10
articles, AIONER performs significantly better than MTL,
and it still can achieve a competitive performance compared
with the baseline model trained on the entire 500 articles
(86.91% versus 89.34%).

3.3 Performance of AIONER on the test sets of

individual datasets

The previous experiment demonstrated AIONER successfully
utilized external datasets for the BioRED task. In this experi-
ment, we evaluate the performance of the AIONER on those
external datasets. We trained the PubMedBERT-CRF model
only using the original training data as the baseline 1 (BL1).
We provide an analysis of the performance of the model
(baseline 2, BL2) on each individual corpus by training it on
the combined dataset consisting of the individual corpus and
the sub-corpus obtained by selecting the individual entity type
from BioRED. The MTL model uses the same training data as
AIONER.

As shown in Table 3, we obtained similar results to the pre-
vious experiment, both MTL and AIONER methods achieve
higher average F1-scores than the baselines across those data-
sets. However, the performance of MTL is not stable and it
performs worse than the baseline 1 on 3 out of 10 BioNER
datasets. AIONER brings higher average improvements than

MTL across those datasets. It performs better than the base-
line 1 on 9 out of 10 datasets and obtains significant advan-
tages over the results of baselines and MTL on three datasets.
Furthermore, our experiments revealed that the simple combi-
nation of individual corpus and sub-corpus from BioRED by
selecting the corresponding entity type (i.e. baseline 2)
resulted in an average F1-score lower than that of baseline 1.
This suggests that the performance improvement cannot be
achieved merely through the combination of the datasets.
Notably, we observed a significant drop in the F1-score of
baseline 2 on Linnaeus and Species-800 corpora, which could
be attributed to the inherent differences in scope and quality
between these corpora and BioRED for the species type. This
highlights the challenges in leveraging existing datasets by
combining them, especially when they differ significantly in
scope and quality. In contrast, our proposed AIO schema im-
proved the performance of datasets other than BioRED, dem-
onstrating its high robustness and stability. We also provided
a comparison with the state-of-the-art (SOTA) methods in
terms of F1-scores for each corpus. AIONER achieved com-
petitive performance compared to the SOTA methods. It is
worth noting that a direct comparison with some published

Table 2. F1 scores for multiple named entity recognition on the BioRED test set.a

Dataset Overall Gene Disease Chemical Species Variant CellLine

BioRED 89.34 92.35 83.47 88.55 96.98 87.34 90.53
þNLM-Gene 89.76 92.40 84.03 90.19 97.35 85.89 86.87
þGNormPlus 89.95 92.74 83.57 90.05 96.82 88.98 91.67
þNCBI-Disease 89.55 91.68 85.19 89.46 96.52 86.01 81.72
þBC5CDR-Disease 89.66 91.46 85.34 89.67 96.98 84.86 90.53
þBC5CDR-Chemical 89.40 91.52 84.07 89.09 96.99 88.38 87.50
þNLM-Chem 89.60 91.92 84.15 89.78 97.09 87.16 83.67
þLinnaeus 89.19 91.49 84.04 88.69 96.72 88.16 86.60
þSpecies-800 89.65 92.19 83.34 90.14 97.37 88.79 80.81
þtmVar3 89.01 91.08 83.77 88.09 97.08 89.21 88.66
þBioID 89.69 92.02 84.23 88.83 97.48 88.75 91.67
þAll (w/o AIONER) 69.96 76.85 58.86 84.82 30.57 71.77 27.12
þAll (MTL) 90.84b 92.59 87.01 90.71 96.40 88.25 90.32
þAll (AIONER) 91.26b

(þ1.92)
92.40

(þ0.05)
88.07

(þ4.60)
90.98

(þ2.43)
97.50

(þ0.52)
88.51

(þ1.17)
90.53

(þ0.00)

a The parenthesized numbers are the improvements of AIONER compared to the baseline trained on the BioRED training set only. Bold indicates the best
score for each entity type and overall entity.

b P< 0.05 (two-sided Wilcoxon signed-rank test compared with baseline). There is no significant difference between MTL and AIONER.

Figure 3. The performance of the models trained on different sizes of the

BioRED training data. Baseline: the model trained on the BioRED training

set only; MTL: the multi-task learning model trained on the BioRED

training set along with external datasets; AIONER: our AIONER model

trained on the BioRED training set with external datasets.
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SOTA benchmarks for the BioID task may not be applicable
due to the revised version of the BioID dataset in our experi-
mental setup.

3.4 Using AIONER for new entity types

Although our combined training dataset already covers six
main entity types in the biomedical domain, there are other bi-
ological entities that are outside of our consideration. This ex-
periment investigates whether AIONER can be applied to
support those BioNER tasks with new entity types that are
not previously seen in our AIONER training data. We con-
ducted experiments with AIONER in two ways. (i) AIONER-
Merged: we first merge the training set of the new task with
all datasets via our AIO scheme to train a NER model, and
then we applied the trained model to the task test set. (ii)
AIONER-Pretrained: We utilize the trained AIONER model
as a pre-trained model, and then we further fine-tune this
model on the new task with its training data. We bench-
marked AIONER on three independent datasets with a vari-
ety of entity types different from the six which are our
primary focus: (i) DMCB_Plant (Cho et al. 2017) contains
3985 mentions of plant names (e.g. “Trichosanthes
kirilowii”). (ii) AnEM (Pyysalo and Ananiadou 2014) con-
tains anatomical entities and organism parts between the mol-
ecule and the whole organism, with a total of 11 entity types
(e.g. multi-tissue structure). (iii) BEAR (Wührl and Klinger
2022) annotates seven groups of biomedical entities (e.g. med-
ical conditions, diagnostics, and environmental factors) on
Twitter. More details of these datasets can be found in
Supplementary Table S2. We used the PubMedBERT-CRF
model trained on the original training set as the baseline
method. We also tested the MTL method for comparison.

The overall performances of all models on the three individual
tasks are shown in Fig. 4.

Although none of the entity types in these three tasks are
covered by BioRED, the dataset used to bridge between the
individual datasets, AIONER can still improve the perfor-
mance of the three tasks consistently. The results in Fig. 4 in-
dicate that the entity information gathered from the AIONER
model assists in recognizing other entity types that have not
been observed before. Overall, both the AIONER-Merged
and -Pretrained models achieve better performance compared
to the baseline and the MTL methods. More importantly, the
performance gain is consistent for our AIONER method on
all three tasks while MTL showed inferior performance on
one of the three tasks. Again, this confirms that performance
gain with MTL is somewhat task dependent, a limitation that
was previously discussed in the literature (Chai et al. 2022;
Zhang and Yang 2022).

3.5 Performance of different deep learning model

variants

To process large-scale datasets in real-world settings, we fur-
ther investigated the performance and efficiency of different
deep learning models. The BioBERT (Lee et al. 2020) and
Bioformer (Fang and Wang 2021) models were additionally
evaluated as variants of BERT-based pre-trained language
models (PLMs). For options of the output layer, we also
tested the Softmax function to classify the label for each to-
ken. Table 4 shows the performance of different deep learning
model variants on the BioRED test set.

The result shows that our AIONER scheme can be applied
in various deep learning models and significantly enhances
their performance. In comparison with other PLMs, the
PubMedBERT model obtains the highest F1-scores. The light-
weight Bioformer is more efficient and achieves a close perfor-
mance. The efficiency advantage of the Bioformer has also
been demonstrated in several recent studies (Fang and Wang
2021; Luo et al. 2022b). According to the statistical signifi-
cance analysis, all PubMedBERT models exhibit significant
improvements in performance compared to their

Table 3. F1 scores for the single entity recognition on the test sets of

individual datasets.a

Dataset BL1 BL2 MTL AIO SOTA

NLM-gene 92.09 91.88 92.34 92.51 88.10
GNormPlus 85.09 85.92 85.62 85.98 86.70
NCBI-disease 87.56 88.13 88.41 89.59b 89.71
BC5CDR-disease 87.13 87.12 86.51 87.89b 87.28
BC5CDR-chemical 93.42 92.82 93.93b 92.84 93.83
NLM-Chem 82.40 79.23 82.95 82.51 84.79
Linnaeus 90.36 85.19 90.14 90.63 92.70
Species-800 78.32 76.91 78.76 79.67 76.35
tmVar3 89.66 89.96 90.54 90.98 91.36
BioID 89.07 88.93 88.70 91.13b –
Average 87.51 86.61 87.79 88.37 –

a BL1: the PubMedBERT-CRF model trained on the original training set.
BL2: the PubMedBERT-CRF model trained on a combination of individual
corpora and sub-corpora decomposed from BioRED by selecting specific
entity types. MTL: the multi-task learning model trained on the BioRED
and the external datasets. AIO: the AIONER model trained on the BioRED
and the external datasets. SOTA: the published state-of-the-art F1-score of
each corpus. Bold denotes the best F1-score (except SOTA) on each dataset.

b Denotes statistical significance over Baselines and MTL (two-sided
Wilcoxon signed-rank test with a P-value < 0.05). We list the scores of the
SOTA models on different datasets as follows: the score of Islamaj et al.
(2021b) on NLM-Gene, the score of Wei et al. (2019) on GNormPlus, the
score of Zhang et al. (2021) on Species-800, the scores of Chai et al. (2022)
on BC5CDR, the score of Tong et al. (2022) on NLM-Chem, the score of
Sung et al. (2022) on Linnaeus, the score of Wei et al. (2022) on tmVar3. It
is important to note that we made revisions to the BioID dataset in order to
improve its consistency. As a result, certain previously published SOTA
benchmarks for the BioID task [such as the F1-score of 74.4% reported in
Arighi et al. (2017)] may not be directly comparable to our experimental
setup.

Figure 4. The performance of models on additional BioNER tasks.

Baseline: the model trained on the original training set. MTL: the multi-

task learning model trained on the new dataset and all previous datasets.

AIONER-Merged: the training set of the new task is first merged into all

datasets via the AIO scheme, then the data is used to train the NER

model. AIONER-Pretrained: the trained AIONER model is used as a pre-

trained model, then the model is fine-tuned on the new task. AIONER-

Pretrained significantly outperforms the baseline and MTL on AnEM; and

it significantly outperforms the baseline on BEAR in a two-sided Wilcoxon

signed-rank test with a P-value < 0.05.
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corresponding BioBERT and Bioformer models. This finding
is supported by a two-sided Wilcoxon signed-rank test with a
P-value of less than 0.05. On the other hand, there was no sig-
nificant difference observed between BioBERT and Bioformer
models. In addition, the configuration of using CRF as the
decoding layer obtains the best performance. The Softmax
layer’s performance is slightly lower, but the efficiency is sig-
nificantly higher on GPU. No significant difference was ob-
served between the performance of the same pre-trained
language models with either the CRF or Softmax output
layer. In summary, Bioformer-Softmax presents the highest ef-
ficiency (2- and 3-times improvement on both GPU and CPU
servers respectively) and is very close to the best setting
(PubMedBERT-CRF) in performance (about 1% drop in F-
score). Moreover, Bioformer-Softmax-AIONER achieves
higher performance than PubMedBERT-CRF-Baseline, sug-
gesting it may be a better option for processing the large-scale
datasets. Per our previous experience of extracting entities in
entire PubMed abstracts (>35 Million) and PMC full texts
(>4 Million) in PubTator Central (Wei et al. 2019) by indi-
vidual entity taggers, the whole process took �30 days by us-
ing 300 parallel processes via NCBI computer cluster. As an
estimation of using Bioformer-Softmax-AIONER instead of
the six individual NER tools, the processing time can be re-
duced to less than 10 days. Thus, the implementation of the
AIONER brings significant advantages of entity recognition
on large-scale data.

4 Discussion

As mentioned in Section 1, several MTL methods have been
explored for BioNER tasks to make full use of various exist-
ing resources. These methods share the hidden layers to learn
common features, which are generic and invariant to all the
tasks. MTL is powerful when all the tasks are related, but it is
vulnerable to noisy and outlier tasks, which can significantly
degrade performance (Zhang and Yang 2022). Different from
MTL, our AIONER scheme successfully integrates multiple
resources into a single task via adding task-oriented tagging
labels. The learned features are more informative and flexible.
The results of our experiments demonstrate our AIONER
method achieved performance competitive with the MTL
methods for multiple named entity recognition, and it is more

stable than the MTL method on multiple BioNER tasks.
Moreover, AIONER does not require complex model design
and it can be easily implemented with various machine learn-
ing models.

The main contribution of the AIONER schema is that it
can train on more diverse entity-type corpora. By doing so,
the model can learn different synonyms present in diverse
texts. We analysed the differences between the results of the
AIONER model trained on multiple corpora and the baseline
model trained on the BioRED corpus only. Then, we summa-
rized the three main cases where AIONER performs better
than the baseline. (i) More precise categorization of entity
types: AIONER can better categorize the entity type based on
the context. In PMID:15464247, “HCV genotype 1-infected”
is incorrectly recognized as a species by the baseline, but
AIONER can correctly detect it as a disease. (ii) Better bound-
ary detection: AIONER also presents higher accuracy in
detecting the entity boundaries. For example, in the case of
“Vogt-Koyanagi-Harada (VKH) syndrome”, the baseline
detects the wrong boundaries and wrongly identifies it as two
entities, “Vogt-Koyanagi-Harada” and “(VKH) syndrome,”
while AIONER correctly recognizes it. (iii) Slightly higher re-
call: Some entity spans that are not shown in the training set
may be missed by the baseline, but AIONER can handle those
unseen entities better.

Although AIONER exhibits promising performance for
multiple named entity recognition, there are still some errors
in the results. We have reviewed the errors of the model with
the best performance (BioRED þ All via AIONER) on the
BioRED test set and sorted the errors based on the percen-
tages as shown in Fig. 5. (i) Incorrect boundary (36.0%):
most errors are caused by incorrect boundaries in the
extracted mentions. In this error type, the most critical issue is
which leading or trailing tokens fall within the mention
boundary. For example, “Necrotising fasciitis” (MeSH:
D019115) is the disease mention that should be detected, but
our method missed the first token “Necrotising” which can
help to narrow down the entity more specifically. (ii) Entity
type ambiguity (26.6%): This error type contains two major
errors. First, the same entity mention may have different en-
tity types in the text. For example, Growth hormone is a pro-
tein encoded by the gene, i.e. a member of the somatotropin/
prolactin family which plays an important role in growth con-
trol and is also a drug (chemical) for the treatment of the
growth hormone deficiency. In different context, it can be an-
notated differently. Second, different entities may be ambigu-
ously named. For example, BMD gene is the corresponding
gene of the Becker Muscular Dystrophy (BMD). Both the
gene and the disease are named BMD. (iii) Natural language
mentions (10.4%): Pre-trained language models are trained
on large natural language texts. However, it is still very diffi-
cult to accurately identify the entities written in descriptive
natural language (e.g. the variant of “phenylalanine to the po-
lar hydrophilic cysteine in exon 6 at codon 482”). Similarly,
composite spans—which mention multiple entities—also con-
fuse the models (e.g. D1 or D2 dopamine receptors). Such nat-
ural language mentions are rare in the training set and
individually unique, making recognition challenging. Other
smaller error types include missed entities, which are mostly
abbreviations with insufficient definition, entities not in the
recognition scope which were wrongly detected, multiple
spans of the same entity were detected inconsistently, and
others. Our future work will focus on these problems,

Table 4. The performance of different deep learning model variants on

the BioRED test set.a

PLM Output layer Efficiency F1-score

GPU CPU Baseline AIO

PubMedBERT CRF 27s 116s 89.34 91.26
Softmax 17s 110s 88.98 91.00

BioBERT CRF 29s 120s 88.66 90.29
Softmax 18s 113s 88.33 90.06

Bioformer CRF 21s 43s 88.65 90.28
Softmax 12s 40s 88.35 90.19

a Baseline: the model trained on the original BioRED training set. AIO:
the AIONER model trained on the merged training set. All AIONER models
significantly outperform the corresponding baselines in a two-sided
Wilcoxon signed-rank test with a P-value < 0.05. Bold indicates the best
score in efficiency and F1-score. Note that the numbers of efficiency are the
processing time (seconds) on the BioRED test set (100 abstracts). All models
were evaluated on the same GPU (Tesla V100-SXM2-32GB) and CPU
[Intel(R) Xeon(R) Gold 6226 CPU @ 2.70 GHz, 24 Cores]. The processing
times of the BioBERT and PubMedBERT are almost the same, as their
model architectures and parameters are similar.
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incorporating linguistic information (e.g. part of speech and
syntactic information) and dictionary resources into our
method to further enhance the model’s performance.

AIONER is a reliable method for recognizing the entities of
different types at once. However, AIONER cannot return
multiple entities with overlapping boundaries, such as a
nested entity span. For example, growth hormone deficiency
contains two mentions, “growth hormone”, and “growth
hormone deficiency.” AIONER cannot return both
simultaneously.

5 Conclusion

In conclusion, we present an AIONER method to integrate
heterogeneous corpora for multiple named entity recognition
at once. AIONER can develop a single model for multiple en-
tity types with optimized performance for generalizable usage.
This implementation also significantly reduces the effort of
the process, especially for large-scale data. We also demon-
strate that AIONER can be used to further improve the per-
formance of various BioNER tasks, even when the entity
types have never been observed before. These results suggest
that AIONER is highly robust and generalizable for BioNER.
We released the pre-trained AIONER model for standalone
usage to support the BioNER tasks. In the future, we will ap-
ply the optimized AIONER model on the entire PubMed
(abstracts) and PMC full texts for downstream text mining re-
search (e.g. biomedical relation extraction).

Author contributions

Conception and design: L.L., C.-H.W., and Z.L. Data collec-
tion: L.L., C.-H.W., and P.-T.L. Analysis and interpretation:
L.L., C.-H.W., P.-T.L., R.L., and Q.C. Drafting the manu-
script: L.L., C.-H.W., R.L., and Z.L.

Supplementary data

Supplementary data is available at Bioinformatics online.

Conflict of interest

None declared.

Funding

This research was supported by the Intramural Research
Program of the National Library of Medicine (NLM),
National Institutes of Health; the Fundamental Research
Funds for the Central Universities [DUT23RC(3)014 to L.L.]

Data availability

The AIONER data underlying this article are available at
https://github.com/ncbi/AIONER/tree/main/data.

References

Arighi C, Hirschman L, Lemberger T et al. Bio-ID track overview. In:

BioCreative VI Workshop, Bethesda, MD, USA: BioCreative, pp.

28–31, 2017.
Cariello MC, Lenci A, Mitkov R. A comparison between named entity

recognition models in the biomedical domain. In: Proceedings of the

Translation and Interpreting Technology Online Conference,

Online: INCOMA Ltd, pp. 76–84, 2021.
Caruana R. Multitask learning. Mach Learn 1997;28:41–75.
Chai Z, Jin H, Shi S et al. Hierarchical shared transfer learning for bio-

medical named entity recognition. BMC Bioinformatics 2022;23:

1–14.
Cho H, Choi W, Lee H et al. A method for named entity normalization

in biomedical articles: application to diseases and plants. BMC

Bioinformatics 2017;18:1–12.
Crichton G, Pyysalo S, Chiu B et al. A neural network multi-task learn-

ing approach to biomedical named entity recognition. BMC

Bioinformatics 2017;18:1–14.

Devlin J, Chang MW, Lee K et al. BERT: Pre-training of Deep

Bidirectional Transformers for Language Understanding. In:

NAACL-HLT, Minneapolis, Minnesota: Association for

Computational Linguistics, pp. 4171–4186, 2019.

Do�gan RI, Leaman R, Lu Z et al. NCBI disease corpus: a resource for

disease name recognition and concept normalization. J Biomed

Inform 2014;47:1–10.

Fang L, Wang K. Team Bioformer at BioCreative VII LitCovid track:

multic-label topic classification for COVID-19 literature with a com-

pact BERT model. In: Proceedings of the Seventh BioCreative

Challenge Evaluation Workshop, Online: BioCreative, pp. 272–274,

2021.
Galea D, Laponogov I, Veselkov K et al. Exploiting and assessing multi-

source data for supervised biomedical named entity recognition.

Bioinformatics 2018;34:2474–82.

Gerner M, Nenadic G, Bergman CM et al. LINNAEUS: a species name

identification system for biomedical literature. BMC Bioinformatics

2010;11:1–17.

Giorgi JM, Bader GD. Towards reliable named entity recognition in the

biomedical domain. Bioinformatics 2020;36:280–6.
Glorot X, Bordes A, Bengio Y. Deep sparse rectifier neural networks. In:

Proceedings of the Fourteenth International Conference on Artificial

Intelligence and Statistics, Fort Lauderdale, FL, USA: PMLR, pp.

315–323, 2011.
Gu Y, Tinn R, Cheng H et al. Domain-specific language model pretrain-

ing for biomedical natural language processing. ACM Trans

Comput Healthcare 2022;3:1–23.
Islamaj R, Leaman R, Kim S et al. NLM-Chem, a new resource for

chemical entity recognition in PubMed full text literature. Sci Data

2021a;8:1–12.

Islamaj R, Wei C-H, Cissel D et al. NLM-Gene, a richly annotated gold

standard dataset for gene entities that addresses ambiguity and

multi-species gene recognition. J Biomed Inform 2021b;118:

103779.

Jeong M, Kang J. Regularization for Long Named Entity Recognition.

arXiv preprint arXiv:.07249. 2021.

Figure 5. Error analysis of the AIONER results on the BioRED test set.

8 Luo et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btad310#supplementary-data
https://github.com/ncbi/AIONER/tree/main/data


Krallinger M, Leitner F, Rabal O et al. The CHEMDNER corpus of
chemicals and drugs and its annotation principles. J Cheminform
2015;7:1–17.

Lafferty J, McCallum A, Pereira F. Conditional random fields: probabil-

istic models for segmenting and labeling sequence data. In:
Proceedings of the Eighteenth International Conference on Machine
Learning, San Francisco, CA, USA: Morgan Kaufmann Publishers

Inc., pp. 282–289, 2001.
Lample G, Ballesteros M, Subramanian S. Neural architectures for

named entity recognition. In: NAACL-HLT, San Diego, California,

USA: Association for Computational Linguistics, pp. 260–270,
2016.

Kühnel L, Fluck J. We are not ready yet: limitations of state-of-the-art
disease named entity recognizers. J Biomed Semant 2022;13:26.

Leaman R, Islamaj Dogan R, Lu Z. DNorm: disease name normalization

with pairwise learning to rank. Bioinformatics 2013;29:2909–17.
Leaman R, Wei C-H, Lu Z. tmChem: a high performance approach for

chemical named entity recognition and normalization. J
Cheminform 2015;7:S3.

Lee J, Yoon W, Kim S et al. BioBERT: a pre-trained biomedical language

representation model for biomedical text mining. Bioinformatics
2020;36:1234–40.

Li J, Sun Y, Johnson RJ et al. BioCreative V CDR task corpus: a resource
for chemical disease relation extraction. Database 2016;2016:baw068.

Luo L, Lai P-T, Wei C-H et al. BioRED: a rich biomedical relation ex-

traction dataset. Brief Bioinf 2022a;23:bbac282.
Luo L, Wei C-H, Lai P-T et al. Assigning species information to corre-

sponding genes by a sequence labeling framework. Database 2022b;

2022:baac090.
Pafilis E, Frankild SP, Fanini L et al. The SPECIES and ORGANISMS

resources for fast and accurate identification of taxonomic names in
text. PLoS ONE 2013;8:e65390.

Peng Y, Yan S, Lu Z. Transfer learning in biomedical natural language

processing: an evaluation of BERT and ELMo on ten benchmarking
datasets. In: Proceedings of the 18th BioNLP Workshop and Shared
Task, Florence, Italy: Association for Computational Linguistics, pp.
58–65, 2019.

Peters ME, Neumann M, Iyyer M. Deep contextualized word represen-

tations. In: NAACL, New Orleans, Louisiana: Association for
Computational Linguistics, pp. 2227–2237, 2018.

Pyysalo S, Ananiadou S. Anatomical entity mention recognition at litera-
ture scale. Bioinformatics 2014;30:868–75.

Rodriguez NE, Nguyen M, McInnes BT et al. Effects of data and entity

ablation on multitask learning models for biomedical entity recogni-
tion. J Biomed Inf 2022;130:104062.

Sang ETK, De Meulder F. Introduction to the CoNLL-2003 shared task:
language-independent named entity recognition. In: Proceedings of

the Seventh Conference on Natural Language Learning at HLT-
NAACL 2003, Edmonton, Canada: Association for Computational

Linguistics, pp. 142–147, 2003.
Sayers EW, Beck J, Bolton EE et al. Database resources of the national

center for biotechnology information. Nucleic Acids Res 2021;49:
D10–D17.

Singhal A, Simmons M, Lu Z et al. Text mining genotype-

phenotype relationships from biomedical literature for database
curation and precision medicine. PLoS Comput Biol 2016;12:
e1005017.

Sung M, Jeong M, Choi Y et al. BERN2: an advanced neural biomedical
named entity recognition and normalization tool. Bioinformatics
2022;38:4837–9.

Tong Y, Zhuang F, Zhang H et al. Improving biomedical named entity
recognition by dynamic caching inter-sentence information.

Bioinformatics 2022;38:3976–83.
Viterbi A. Error bounds for convolutional codes and an asymptotically

optimum decoding algorithm. IEEE Trans Inf Theory 1967;13:
260–9.

Wang X, Zhang Y, Ren X et al. Cross-type biomedical named entity rec-

ognition with deep multi-task learning. Bioinformatics 2019;35:
1745–52.

Weeber M, Klein H, de Jong-van den Berg LT et al. Using concepts
in literature-based discovery: simulating Swanson’s Raynaud–fish
oil and migraine–magnesium discoveries. J Am Soc Inf Sci 2001;

52:548–57.
Wei C-H, Allot A, Leaman R et al. PubTator Central: automated con-

cept annotation for biomedical full text articles. Nucleic Acids Res
2019;47:W587–W593.

Wei C-H, Allot A, Riehle K et al. tmVar 3.0: an improved variant con-

cept recognition and normalization tool. Bioinformatics 2022;38:
4449–51.

Wei C-H, Kao H-Y, Lu Z et al. GNormPlus: an integrative approach for

tagging genes, gene families, and protein domains. BioMed Res Int
2015;2015:1–7.
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