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Landmark genome-wide association studies (GWAS) identified that mutations in autop-
hagy genes correlated with inflammatory bowel disease (IBD), a heterogenous disease
characterised by prolonged inflammation of the gastrointestinal tract, that can reduce a
person’s quality of life. Autophagy, the delivery of intracellular components to the lyso-
some for degradation, is a critical cellular housekeeping process that removes damaged
proteins and turns over organelles, recycling their amino acids and other constituents to
supply cells with energy and necessary building blocks. This occurs under both basal
and challenging conditions such as nutrient deprivation. An understanding of the relation-
ship between autophagy, intestinal health and IBD aetiology has improved over time, with
autophagy having a verified role in the intestinal epithelium and immune cells. Here, we
discuss research that has led to an understanding that autophagy genes, including
ATG16L, ATG5, ATG7, IRGM, and Class III PI3K complex members, contribute to innate
immune defence in intestinal epithelial cells (IECs) via selective autophagy of bacteria
(xenophagy), how autophagy contributes to the regulation of the intestinal barrier via cell
junctional proteins, and the critical role of autophagy genes in intestinal epithelial secre-
tory subpopulations, namely Paneth and goblet cells. We also discuss how intestinal
stem cells can utilise autophagy. Importantly, mouse studies have provided evidence that
autophagy deregulation has serious physiological consequences including IEC death and
intestinal inflammation. Thus, autophagy is now established as a key regulator of intes-
tinal homeostasis. Further research into how its cytoprotective mechanisms can prevent
intestinal inflammation may provide insights into the effective management of IBD.

Introduction
Inflammatory bowel disease (IBD) is considered a modern disease, having only emerged in the last
150 years [1] and being of higher prevalence in socio-economically advantaged populations [2].
Studies show that prenatal or perinatal exposure to antibiotics, use of oral contraceptives, or a
Westernised diet of highly processed foods and high sugar content, can correlate with IBD [3–6].
These are factors that may explain how IBD disproportionately affects individuals in urbanised
regions, although whether these are causative of IBD is yet to be proven unequivocally [3–6].
Approximately 6.8 million cases of IBD were reported across the globe in 2017 [2]. There are two clin-
ically distinct classes of IBD — ulcerative colitis (UC) and Crohn’s disease (CD) — although 5–15%
of cases are classed as ‘indeterminate colitis’ [7]. The current paradigm for IBD aetiology is that indi-
viduals with genetic predispositions are exposed to triggering substances, for instance, bacteria or
viruses, resulting in unresolved chronic inflammatory conditions driven by deregulated immune activ-
ity. Treatment options for IBD thus include an arsenal of both broad-acting and targeted
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immunosuppressive or immune-modulatory drugs that act to reduce inflammation. Still, the precise
mechanisms of IBD aetiology remain unclear, and complete remission rates are generally reported to be below
50% [8–10].
In 2007, genome-wide association studies (GWAS) uncovered the core autophagy gene ATG16L to be a CD

susceptibility locus [11–14]. Similarly, polymorphisms in other autophagy genes and autophagy-associated
genes have been shown to be IBD-associated, including in MTMR3 and GPR65 [15,16], and also in ULK1,
IRGM, NDP52 and PTPN2 for CD in particular [14,17–20]. This discovery of a link between ATG16L and CD
catalysed research into the role of autophagy in the intestine and IBD. Here, we provide an updated review of
the concepts that have emerged from this research, specifically the mechanisms and functions of autophagy
proteins in intestinal epithelial cells (IECs) and intestinal stem cells (ISCs) and how these contribute to intes-
tinal homeostasis and pathophysiology. We refer readers to other excellent reviews on how autophagy in
immune cells contributes to IBD [21,22].

Molecular features of autophagy
Autophagy is defined as the lysosomal degradation of intracellular entities. This pathway can selectively
degrade a diverse range of cargo, for example, protein aggregates or entire organelles such as mitochondria.
Alternatively, non-specific targets can be degraded in bulk [23]. Three types of autophagy have been described
based on the route of cargo delivery to the lysosome. Whilst chaperone-mediated autophagy (CMA) and
microautophagy involve direct translocation through, or invagination of, the lysosomal membrane, respectively,
macroautophagy (hereafter referred to as autophagy) is arguably more complex as it involves the formation of
a de novo double membrane that encloses cargo. Cargo-enclosed vesicles can then mature and fuse with the
lysosome. The overall pathway is summarised in Figure 1. The full names of all proteins are provided in the
Abbreviations section.

Autophagy initiation
Low energy or nutrient status of cells may be detected by AMPK to initiate autophagy via phosphorylation at
distinct sites on ULK1. Conversely, the phosphorylation of ULK1 by TOR at a different site can restrict autop-
hagy under high nutrient conditions [24]. Initiation of autophagy drives the serine/threonine kinase activity of
ULK1/2, which is stabilised as a multimeric complex consisting of ULK1/2, FIP200, ATG101, and ATG13 to
phosphorylate itself, ATG9 and members of the Class III PI3K complex [25–33]. The Class III PI3K complex,
consisting of the lipid kinase VPS34, and subunits BECLIN1, VPS15 and either ATG14 or UVRAG, is then
activated to convert phosphatidylinositol (PtdIns) to PtdIns3P, an important lipid constituent of autophago-
some double membranes that recruits downstream effectors such as the tether WIPI2, and DFCP1 [34–41].
ATG2 has recently been uncovered to be a lipid translocase [42–44], whilst ATG9 is a transmembrane protein
located on various vesicular compartments and described to have scramblase activity [45]. Together, ATG2 and
ATG9 traffic lipids to supply the growing autophagosome membrane [42–44].

Autophagosome expansion
Cargo sequestration and membrane expansion are supported by two ubiquitin-like conjugation systems that are
localised to the autophagosome nucleation site by the ULK complex [46–49] and WIPI2 [40,50–53]. Firstly,
the E1-like enzyme ATG7 activates and transfers ATG12 to the E2-like protein ATG10. This catalyses the con-
jugation of ATG12 to ATG5. ATG16L then interacts with ATG5 and self-associates to enable the formation of
a multimer consisting of two ATG12–ATG5:ATG16L dimers [54]. Secondly, ATG4 cleaves pro-ATG8 proteins
(LC3 or GABARAP) which enables them to be activated by the E1-like enzyme ATG7, passed onto the E2-like
ATG3, before finally being conjugated to phosphatidylethanolamine (PE) by the E3 activity of the ATG12–
ATG5:ATG16L multimer [54]. Lipidated ATG8s are incorporated into the growing phagophore membrane and
serve to bind cargo with the assistance of cargo receptors and adaptors such as p62 and NDP52 [55,56].

Autophagosome maturation and fusion
Steps following the sealing of the autophagosome are considered part of the maturation process. This can
include the removal of some (but not all) ATG proteins from the phagophore surface [57], the transport of
autophagosomes to, and fusion with, late endosomes and/or lysosomes, and the acquisition of amphisome
(autophagosome fused with endosome) and autophagolysosome acidity and degradative hydrolase activity [58].
The molecular machinery employed in the transport and fusion processes is shared with the endosomal
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trafficking network and includes SNAREs, tethers, adaptor proteins, and RAB proteins. Here, SNARES on the
autophagosome (for example, STX17 and YTK6) form complexes with those on the late endosome or lysosome
(for example, VAMP8 and STX7), typically using the SNARE SNAP29 as an intermediary [58]. Tethers
(including the HOPs complex, PLEKHM1 and EPG5) are SNARE chaperones that interact with autophago-
some membrane components (for instance PtdIns, GABARABs, WIPI proteins), to promote SNARE complexes
formation, but can also be multifunctional, particularly as RAB7 modulators. RAB7, a late endosome and lyso-
somal marker which interacts with LC3, PtdIns, NRBF (a subsidiary of PI3K complex 1), and others, appears
essential to autophagosome maturation through its GTP hydrolysis function mediated by a range of effectors
[59,60], and is additionally involved with autophagosome positioning due to its interactions with the transport
adaptor protein FYCO1 [61].

Other players
Several other proteins that are not directly involved in the generation of autophagosome membranes or the
capture of cargo but can regulate some of these ‘core’ proteins to enhance or inhibit autophagy have also been
investigated. Myotubularin phosphatases (MTMRs) are lipid phosphatases that can dephosphorylate PtdIns3P

Figure 1. Schematic of the autophagy molecular network showing the major complexes involved in autophagosome

initiation (ULK and PI3K Class III) and the two ubiquitin-like conjugation systems (ATG12–ATG5–ATG16L, and ATG8

lipidation) required for autophagosome expansion and capture of cargo.
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(and other lipids), to either promote autophagosome formation or reduce autophagic flux [62]. IRGM is an
interferon (IFN)-inducible protein with pro-autophagic activity through interactions with both ULK1 and
BECLIN1 to promote the assembly of autophagy initiation complexes [63]. Interactions between BECLIN1 and
other proteins, such as pro-survival BCL-2 family members or AMBRA1, inhibit or promote autophagy,
respectively [64]. The PI3K complex also binds additional auxiliary proteins such as NRBF2, forming subcom-
plexes that can be pro-autophagic or autophagy-inhibiting [64]. LRRK2, which harbours both GTPase and
RAB-targeting kinase activity, is associated with both autophagy and endosomal trafficking, with context-
dependent repression or activation of autophagy [65,66]. A G protein-coupled receptor involved in cAMP and
Rho signalling pathways, and proton sensing, GPR65, was shown to be important for controlling lysosomal pH
and the degradative capacity of this organelle [16]. Finally, the tyrosine phosphatase PTPN2 is required for effi-
cient autophagosome formation but the mechanisms are still poorly understood [67].

Intestinal physiology
The small intestinal mucosa is organised into repeating crypt-villi structural units where a monolayer of
polarised intestinal epithelial cells (IECs) reside over the stroma (Figure 2). Intestinal stem cells (ISCs) in the
crypt divide and differentiate to give rise to the absorptive and secretory IEC lineages which perform different
functional roles. Enterocytes are the most abundant IEC subtype and carry out digestive and
nutrient-absorptive functions. Microfold (M) cells reside over intestinal lymphoid patches and sample the intes-
tinal lumen, thus regulating immunotolerance to luminal antigens.
There are four secretory IEC subpopulations. Paneth cells reside in the crypt interspersed between ISCs and

secrete antimicrobial peptides (AMPs) such as lysozyme, as well as growth factors to support the stem cell
niche. Goblet cells are critical for generating mucins, which form the principal component of the protective
physicochemical mucous barrier between the lumen and IECs. Enteroendocrine cells (EECs) secrete hormones
in response to luminal conditions, contributing to gut mobility, nutrient absorption, satiety, and other effects.
Finally, tuft cells have a chemosensory role and can secrete IL-25 to initiate type 2 innate immune responses,
ultimately resulting in the expulsion of invasive helminths and protozoan parasites from the intestinal lumen
[68].
Intestinal barrier permeability is also a key factor determining intestinal homeostasis and affects the develop-

ment, pathogenicity and severity of IBD [69]. Maintenance of this barrier is controlled largely by intercellular
junctional complexes (and their associated transmembrane proteins). This consists of adherens junctions (cate-
nins, cadherins), tight junctions (ZO-1, claudin-2, occludins, Junctional Adhesion Molecules), and desmosomes
(desmoglein, desmocollins, etc.). Junctional complexes regulate intercellular contact between adjacent IECs,
sealing the intercellular space to protect the host from potentially harmful luminal agents, whilst being select-
ively permeable to water, nutrients, and electrolytes [70,71].
Structural support for IECs is provided by the underlying stromal cells that can also secrete factors to regu-

late IECs in a paracrine fashion. The relationship between IECs and the stroma is also bi-directional, where
IECs can also, in turn, regulate stromal activity. Immune cells are also present in the mucosa as intraepithelial
lymphocytes (IELs) residing between adjacent IECs, as well as the presence of both the myeloid and lymphoid
immune compartments in the stroma. These three branches, IECs, stroma and immune cell-mediated effects,
together with the microbiome, form a system that enables the intestine to perform its digestive and absorptive
functions whilst maintaining intestinal barrier integrity and immunity against the pathogenic or noxious agents
they might be exposed to in the lumen.
While the symptoms of UC and CD are similar (bloody stool, weight loss, abdominal pain), the diseases are

characterised by several different features. UC is localised to the colon and rectum, and inflammation is
restrained to the mucosal layer, resulting in an ulcerated appearance of the intestinal wall with complications
that can include toxic megacolon. The UC inflammatory cytokine signature consists of those involved in the
immune pathways for Th2 (IL-5, IL-6, IL-13, IL-33 and TNF), Th9 (IL-9, IL-33), and Th17 (IL-1β, IL-6, IL-17,
IL-23, (tumour necrosis factor) TNF) response [72]. In contrast, CD can affect any part of the gastrointestinal
tract from the mouth to the rectum in a non-contiguous manner. Inflammation is transmural and can result in
the intestinal wall having a ‘cobblestone’ appearance with fistulas as likely complications. CD is considered to
be characterised to have a Th1 (IL-6, IL-12, IL-18, INFγ, TNF) as well as a Th17 response [72]. Microbiota
appears to have less diversity for both UC and CD patients compared with healthy subjects, although dysbiosis
is reportedly greater in CD than UC [73–75]. Different genetic risk variants and likely further heterogeneity
even within these two IBD entities [76] underscore aetiological differences that may drive the development of
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these different features. Interestingly, from GWAS alone, autophagy gene polymorphisms appear to be more
strongly linked to CD.

Xenophagy in IECs is an innate defence mechanism against
pathogens and pathobionts
Perhaps the most straightforward mechanism by which autophagy protects the intestinal epithelium is through
xenophagy in IECs, or the autophagic degradation of bacteria that have invaded IECs. This can be visualised by
the colocalisation of LC3 puncta with bacteria, which can become diminished when autophagy proteins are
compromised. Expression of mutant ATG16L harbouring the CD-associated risk polymorphism, ATG16LT300A,
in the Caco2 colorectal carcinoma line shows that these cells have impaired capture of Salmonella typhimurium
in LC3-positive autophagosomes [77], a bacteria that causes gastroenteritis and is associated with an increased
risk of CD or UC [78]. Loss of Atg5 in the intestinal epithelium was also associated with increased S. typhimur-
ium burden in IECs and the extraintestinal dissemination of this pathogenic bacteria [79]. Similarly, the expres-
sion of IRGM (which also harbours CD risk variants) is associated with autophagic flux and attenuating the
replication of the CD-associated adherent-invasive Escherichia coli (AIEC) in cell lines [80]. The capture of bac-
teria appears to utilise the intracellular sensors NOD1 and NOD2, which recruit ATG16L to the plasma mem-
brane at the site of bacterial entry (Figure 3). Cells homozygous for a CD-associated NOD2 frameshift
mutation fail to recruit ATG16L to the plasma membrane and show impaired bacterial capture in autophago-
somes [81]. The major signalling adaptor molecule of the toll-like-receptors (TLRs) family, MyD88, also

Figure 2. Anatomy and physiology of the small intestinal mucosa showing the major cell types and their relative

locations within the repeating crypt-villi structures.
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appears essential in IECs for the xenophagy response to S. typhimurium (Figure 3). In mice deficient for
MyD88, a challenge with S. typhimurium does not induce the formation of LC3 puncta [79]. Thus, carrying
CD risk variants of autophagy genes that impair clearance of IBD-associated pathogens appears to be an under-
lying contributor to Crohn’s development.

ATG16L and the conjugation machinery maintain Paneth
cells
As briefly described above, ATG16L forms part of the multimeric ATG12–ATG5:ATG16L complex that acts as
an E3-like enzyme for ATG8 lipidation (Figure 1). The function of the ATG16L protein has been a major focus
of studies on intestinal autophagy since its identification as a core autophagy candidate in GWAS studies for
IBD. In addition to its role in xenophagy, evidence from multiple studies demonstrates that there is a clear role
for ATG16L in maintaining Paneth cell secretory granules, which contain AMPs and immunomodulating pro-
teins, and Paneth cell homeostasis (Figure 4). In mice with an IEC-specific knock-out of Atg16L, Paneth cell
numbers were reduced [82], with diminution of both their morphology and size of secretory granules [83], and

Figure 3. Autophagy genes and cellular processes such as intestinal epithelial barrier function and protection from cell

death associated with xenophagy in response to pathogens.

Figure 4. Autophagy genes and associated processes implicated in the maintenance of Paneth cells in response to

bacterial infection.
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an accumulation of the endoplasmic reticulum (ER) stress sensor IRE1α [83,84]. Mice with a knock-in of hypo-
morphic Atg16L showed Paneth cells characterised by degenerating mitochondria and transcriptional
up-regulation of the peroxisome proliferator-activated receptor (PPAR) and adipocytokine signalling pathways
[85]. Generation of mice bearing a knock-in of the genetic equivalent to the human CD susceptibility allele
ATG16LT300A showed that Paneth cells also had reduced amounts of lysozyme and that these mice had an
altered microbiota composition [86,87].
Similar phenotypes have been reported for genetic knock-out models of other autophagy conjugation pro-

teins. In mice with IEC-specific Atg5 loss, Paneth cells also had a diminished morphology, were reduced in
numbers, and showed dissipating granules [85,88]. These mice were also associated with an altered microbiome
[89]. Reduced Paneth granule size was also observed in IEC-specific Atg7 knock-out mice [83,90], and reduced
lysozyme staining was observed in the Paneth cells of whole-body Atg4B-deficient mice [91]. Each of these
strains of mice with modified autophagy conjugation genes, namely Atg16L, Atg5, Atg7 and Atg4B, showed
worsened prognostic outcomes to chemical, physical or bacterial intestinal insults that resulted in the develop-
ment of IBD-like pathologies. This included lower survival and poorer histological scores of the intestinal tract
compared with control mice in response to the intestinal barrier-disrupting agent dextran sodium sulfate (DSS,
which gives rise to a UC-like phenotype), the development of spontaneous age-dependent CD-like transmural
ileitis, chronic colitis (indeterminate if UC or CD) in response to the opportunistic bacteria Helicobacter hepati-
cus, increased mortality from enteritis induced by Toxoplasma gondii, and poorer clinical disease scores against
murine norovirus which results in an indeterminate, possibly transmural form of enterocolitis [79,82–93].
Notably, as the colon does not have any villi, Paneth cells are generally not found in the colon, although there
are analogous Paneth-like cells [94]. This may provide an explanation for why autophagy genes do not exclu-
sively protect the colon, but are protective of the larger gastrointestinal tract.
Combined, the data indicates that on a basal level, ATG16L in Paneth cells protects against ER stress, mito-

chondrial degeneration, regulates PPAR and adipocytokine signalling, and is important in the biogenesis of the
secretory granules in these cells. However, the mechanistic pathways between ATG16L, other conjugation pro-
teins, and these functional outcomes are still not well understood. In IECs, it has been shown that the WD40
domain of ATG16L interacts with the anti-inflammatory protein A20 [95]. This was proposed to be a mutually
reciprocal relationship, where ATG16L promoted the lysosomal degradation of A20, and A20 promoted the
ubiquitin-mediated degradation of ATG16L. Loss of both these proteins in the mouse intestinal epithelium
resulted in spontaneous enterocolitis, marked by increased IL-1β and TNF and thickening of the jejunal wall,
features suggestive of CD pathology. These were attributed to up-regulated NFκβ signalling and cell death
(which is suppressed by A20) and a lack of ATG16L1 WD40 domain-mediated ‘unconventional’ autophagy
(Figure 3) [95].
The enhanced levels of intestinal pro-inflammatory cytokines as just described above is a common occur-

rence under challenging conditions where ATG16L or conjugation protein integrity are additionally compro-
mised, even if these genetic modifications target the IEC compartment rather than immune cells. For instance,
increased TNFα and IL-1β levels are observed following LPS-stimulated NFκβ signalling in IEC-specific
ATG7-deficient mice [96]. Conjugation protein-deficient intestinal cells appear particularly further sensitised to
death triggered by TNF. Intestinal organoids derived from IEC-specific ATG16-deficient mice showed increased
necroptosis [82] or apoptosis [92] when treated with TNFα. Similarly, TNF-treated ATG5-deficient intestinal
organoids had decreased viability [88]. Thus, conjugation proteins enable IEC survival under duress from
inflammatory cytokines and a pathogenic or chemically insulting environment (Figure 3). This cell death likely
contributes to, and/or further exacerbates, intestinal inflammatory symptoms.
During bacterial infection which induces ER stress, ATG16L is leveraged to help lysozyme secretion from

Paneth cells in another unconventional autophagy process termed ‘secretory’ autophagy (Figure 4) [97]. Loss of
both Atg16L1 and the ER stress/unfolded protein response (UPR)-mediator Xbp-1 (also a risk locus for both
UC and CD [98]) in the intestinal epithelium results in spontaneous severe transmural enteritis [83]. In a
DSS-induced colitis model, stimulation of colonocytes with TNFα and NOD ligands promotes IKKα to phos-
phorylate ATG16L1 (Ser278), stabilising ATG16L1 against degradation, which is associated with protection
against IREα-mediated ER stress and activation of caspase-12, which causes a loss of cytoprotective IL-18 [99].
Interestingly, the CD-associated ATG16LT300A mutated protein is more susceptible to caspase-3 or caspase-7
mediated degradation resulting in diminished autophagy [86,100].
Although limited data currently exists, studies on IRGM suggest that non-conjugation autophagy proteins

work differently from conjugation proteins in Paneth cells. Mice with a systemic deficiency of Irgm1 have
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Paneth cells with a different morphology to Atg16L-deficient mice. These Paneth cells can be ectopically
located further up the villi and appear swollen, with a smaller granule core and a halo that is electron lucent
when viewed with transmission electron microscopy [101]. Mice have down-regulated expression of the Paneth
antimicrobial genes Lys (lysozyme) and Defa20 and are susceptible to both DSS-induced colitis and ileitis
[101]. The role of IRGM1 has only more recently been elucidated and promotes ULK1 and BECLIN1 associ-
ation to enhance autophagosome nucleation [63]. IRGM1 can also interact with NOD2 [63], and is reported to
interact with the inflammasome NLRP3 and ASL proteins to prevent their oligomerisation, as well as with p62
to mediate p62-dependent selective autophagy of NLRP3 and ASL, thus suppressing IL-1β maturation, pyropto-
sis and protection against caspase-1 activity in a DSS-colitis model [102]. IRGM is associated with mitophagy
[101] and has affinity for the mitochondrial lipid cardiolipin that promotes mitochondrial fission through
autophagy [103]. The full pathway between these IRGM interactions and Paneth granules and other biology is
yet to be elucidated.

Autophagy maintains goblet cells and promotes their
degranulation
Goblet cells are a second secretory cell type that depend on the autophagy machinery for their function.
Atg16LT300A mice show colonic and ileal goblet cells with increased mucin area and decreased mucin secretion
[86,87]. Similarly, enlarged mucin granules were observed in colonic goblet cells of mice with an intestinal-
specific deficiency of Atg5 [104]. In colon epithelial conditional Atg7 knock-out mice, decreased mucin expres-
sion and secretion were also observed, together with transcriptional decreases in several antimicrobial and anti-
parasitic peptides and microbiome changes [105]. Concordantly, Becn1F121A knock-in mice, which express a
mutant BECLIN1 with decreased BCL-2 binding that enhances its availability for autophagic flux, have a
thicker colonic mucosal layer and reduced ER stress levels [106]. Conversely, Bcl2AAA knock-in mice, which
express a mutant BCL-2 that constitutively binds BECLIN1 and reduces its availability for autophagic flux,
have a thinner mucosal layer in the colon [106]. As mentioned above, Atg16LT300A mice and IEC-specific Atg5
knock-out mice are sensitised to bacterial or DSS-induced forms of intestinal inflammation, and this is also
reflected in Bcl2AAA mice which have an altered microbiome and are sensitive to DSS or AIEC colitis [106].
Common to both Paneth and goblet cells is the protection offered by autophagy against ER-stress that likely

contributes to the proper generation of secretory granules, given the importance of the ER in protein produc-
tion (Figure 5). Mucin-2 (MUC2) production was associated with high constitutive levels of autophagy in colo-
noids or goblet cell lines, and as such, autophagy was proposed to promote cell survival during
production-associated metabolic stress [107]. In addition to granule generation, degranulation may also utilise
autophagy proteins. Reactive oxygen species (ROS)-dependent degranulation in goblet cells was reported to
require the convergence of LC3-, NADPH- and EEA1-containing compartments (Figure 5) [104]. Secretion
also appears to depend on the NLRP signalling pathway-mediated induction of autophagy or formation of
LC3-puncta (Figure 5) [108]. It is unclear if similar degranulation mechanisms are also employed by Paneth
cells. It is also uncertain if small intestinal goblet cells are moderated in the same manner as colonic goblet cells.

The regulation of ISCs by autophagy
Autophagy appears to be utilised by ISCs to moderate ROS and DNA damage-associated stress to ensure ISC
survival (Figure 6). In mice with an intestinal-specific loss of Atg5, numbers of ISCs are reduced and surviving
ISCs show increased ROS levels [93]. In mice with an ISC-specific loss of Atg7, a similar lack of ROS clearance
was observed as well as inefficient DNA damage repair that was associated with p53-mediated apoptosis of
ISCs [109]. Interestingly, an autophagy-independent role in ISC differentiation into EECs via signalling has
been reported for ATG16L (Figure 6). It was found in drosophila that the WD40 domain of Atg16L is required
to bind Rab19, and these proteins together maintain the production of the ligand Slit, which can activate Robo
receptor-mediated signalling in ISCs. Loss of this signalling pathway resulted in a decline in the number of
mature EECs and was associated with a spontaneous intestinal inflammatory signature in these flies [110].
Another autophagy-independent mechanism has also been reported for UVRAG in ISCs. A loss of drosophila
UVRAG in ISCs results in an accumulation of endocytosed ligands and sustained activation of JNK and STAT
signalling [111]. Animals suffer from impaired differentiation and uncontrolled proliferation associated with
gut dysfunction and reduced lifespan [111]. As a colorectal cancer-associated tumour suppressor, this suggests
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a mechanism involving the deregulation of endocytic trafficking functions rather than autophagy functions of
UVRAG as a mechanism of colorectal carcinoma development in humans.

Autophagy genes regulate the intestinal barrier
It is emerging that autophagy has a crucial role in the regulation of the intestinal epithelial barrier, where a loss
of autophagy gene expression can lead to alterations in the expression or distribution of intestinal junctional
proteins [112–117]. Induction of autophagy via starvation reduces gut epithelial barrier permeability due to the
increased lysosomal degradation of claudin-2 in Caco-2 cells (Figure 3) [112]. Similarly, ablation of Atg9 in
drosophila results in the aberrant formation of the midgut, accompanied by dramatically enlarged enterocytes
as well as barrier dysfunction and reduced fly lifespan. This was attributed to the loss of PALS1-associated tight
junction protein (Patj), which is an Atg9-interacting protein (Figure 3) [113].
It is increasingly apparent that many autophagy proteins are multifunctional and that this has physiological

consequences. More specifically, members of the Class III PI3K complexes have endosomal trafficking functions
that can help maintain intestinal homeostasis through regulation of the intestinal barrier. Loss of Vps34 in zeb-
rafish resulted in disrupted barrier integrity due to defective E-cadherin trafficking to the cell surface
(Figure 3), giving rise to epithelial injury, a malformed intestinal adhesion belt, inflammation, and premature

Figure 5. Autophagy genes are associated with goblet cell granule production and degranulation.

Figure 6. In ISCs, autophagy genes are associated with the regulation of ROS and DNA damage-associated stress, and

through non-autophagy mechanisms that have been associated with differentiation.

© 2023 The Author(s). This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). 819

Biochemical Society Transactions (2023) 51 811–826
https://doi.org/10.1042/BST20221300

https://creativecommons.org/licenses/by/4.0/


death [115]. Additionally, BECLIN1 also plays an autophagy-independent role by associating with the tight
junction protein, occludin, and regulating its constitutive endocytosis from the membrane (Figure 3), which
subsequently modulates gut barrier permeability [116,117]. As described above, UVRAG in drosophila ISCs is
also required for endosomal trafficking of cell surface receptors and ligands and leads to gut dysfunction and
shortened lifespan when disrupted, though the impacts on barrier permeability were not directly investigated
[111]. It is interesting that whilst ATG14 is a member of the Class III PI3K Complex 1 not typically associated
with endosomal trafficking, there is some evidence it can play a role in this process [118]. Accordingly, ATG14
(and FIP200) intestinally deficient mice develop a spontaneous intestinal atrophy phenotype six weeks after
birth due to severe loss of villi from an increase in intestinal epithelial apoptosis triggered by TNF [119]. This
is unlike the knock-out of conjugation proteins in the intestinal epithelium, which have a milder,
stimulus-induced intestinal inflammatory phenotype. This suggests that autophagy genes may have additional
functions essential for the regulation of intestinal development and basal homeostasis.

Targeting autophagy to treat IBD
Beyond surgery, approved treatment options for IBD generally act to suppress the inflammatory response asso-
ciated with UC and CD. These include 5-aminosalicylic acid, corticosteroids and immunomodulators such as
methotrexate, thiopurines and calcineurin inhibitors that act on a range of targets to suppress immune cell acti-
vation, migration and proliferation via transcriptional and other mechanisms that reduce the production of
pro-inflammatory cytokines [120,121]. Such treatments are efficacious in UC and/or CD, however, most are
associated with side effects that are often serious and patients can become refractory to treatment. More
recently, more selective biologic therapies, including monoclonal antibodies targeting inflammatory cytokines
TNF, interleukin IL-12 and IL-23 or leukocyte homing integrin α4β7, and small molecule therapies (e.g. Janus
kinase inhibitors, sphingosine-1-phosphate receptor modulators) have been shown to be relatively effective in
the management of IBD, however, a significant proportion of patients lose response to these advanced therapies
over time [120].
Interestingly, some of the aforementioned immunosuppressive drugs can also modulate (either inhibiting or

activating) autophagy, and this ‘secondary’ activity may account for at least part of their mechanism of action
[122]. Activities such as exercise and caloric restriction that can induce autophagy have shown benefits in IBD
models and patients in some studies, however, it is unclear whether autophagy induction itself has any role in
these outcomes [123,124]. Moreover, despite the clear involvement of deregulated autophagy in IBD, no treat-
ments that directly target autophagy pathway components have yet to be approved for UC or CD. An early
study investigated hydroxychloroquine, an inhibitor of lysosomal degradation, post-surgery in a small number
of patients but, perhaps not surprisingly, was ineffective [125] given the more recent knowledge regarding the
impact of defective autophagy in IBD. The obvious rationale that induction of autophagy may be therapeutic-
ally useful in treating IBD led to the testing of rapamycin (Sirolimus), an inhibitor of mTOR, in CD patients,
and was shown to be effective in some cases [126,127]. However, it is unclear if these benefits are due to the
known immunosuppressive effects of rapamycin or its induction of autophagy, though a recent study in an
IL-10 knock-out model of CD suggested it could decrease intestinal and colonic permeability through its
pro-autophagy activity [128]. Otherwise, very few inducers of autophagy have been developed that are highly
specific for the components of the autophagy machinery. One exception is the Tat-Beclin peptide derived from
the BECLIN1 protein, although its mechanism is via interaction with autophagy regulator Golgi-associated
plant pathogenesis related protein (GAPR-1) rather than with BECLIN1 itself [129]. Nevertheless, this peptide
induces autophagy in vivo and is effective in disease models where autophagy is impaired (e.g. neurodegenera-
tive disease) [129]. Compounds such as BH3-mimetics which target the BCL-2 proteins that negatively regulate
BECLIN1, could also be a therapeutic option, although they may potentially activate apoptotic pathways [130].
Interestingly, a recent report suggested that BH3-mimetics can be developed that selectively target the BCL-2:
BECLIN1 interaction over interactions with pro-apoptotic proteins [131], whilst another study showed cell-type
selective induction of autophagy (albeit autophagic death) versus apoptosis in response to BH3-mimetics [132].
However, neither BH3-mimetics nor Tat-Beclin is yet to be investigated in IBD models. One ever-present con-
sideration, however, is whether such an approach will work in the context of mutations in autophagy genes
such as ATG16L where it may not be possible to (re-)activate the pathway. Such issues may eventually be
negated through the use of gene editing approaches which are starting to be investigated in models of IBD
[133,134], however, there are many significant hurdles and associated risks that would need to be surmounted
before these techniques could be applied in patients.
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Concluding remarks
IBD is a multifactorial disease in which deregulated autophagy has been established as one of the possible
factors contributing to disease aetiology. The physiological roles of autophagy in the intestine are diverse. It
mediates IEC xenophagy, maintains the intestinal barrier (attributed at least in part to emerging roles of key
core proteins in endosomal trafficking), and promotes cell survival. In Paneth and goblet cells, the presence of
autophagy is required for proper secretory granule biogenesis and impacts granule release. Autophagy proteins
are important for the regulation of ROS levels and even have unconventional roles in cell signalling that regu-
late proliferation and differentiation. Importantly, although not discussed in detail in this manuscript, autop-
hagy regulates myeloid and lymphoid intestinal immune populations to regulate a plethora of functions
including cytokine secretion, bacterial clearance, antigen processing, and cell survival, where a loss of autop-
hagy protein integrity is also associated with susceptibility to DSS-induced colitis in mice. Little has been pub-
lished on how autophagy proteins function in non-immune cells of the intestinal stroma, however recently, it
was shown that ATG5 or FIP200 was essential in PDGFRα-positive mesenchymal stem cells in order to gener-
ate Wnt ligands necessary for maintaining the stem cell niche [135]. Loss of these proteins in these cells
resulted in intestinal epithelial apoptosis, villi blunting and the rapid and fatal deterioration of mice [135],
highlighting the critical importance of these proteins in this compartment. This is an area where further inves-
tigation is warranted. Similarly, research into the role of autophagy in tuft cells and M cells currently has not
been reported. Given the known links between autophagy and secretion, and autophagy and antigen processing,
it is likely that autophagy will play a role in the biology of these two cell types.
Despite its multifactorial pathophysiology, dual therapy with current treatments for IBD is relatively novel

[136]. Although targeting deregulated autophagy, such as through anti-TNF, is considered effective at inducing
and maintaining clinical remission, agents that directly promote autophagy have yet to be clinically tested as
monotherapy or in combination with existing therapies in IBD. A greater understanding of the molecular path-
ways of autophagy in intestinal physiology may provide profound insight into innovative drug development
and precision-based strategies in IBD.

Perspectives
• Inflammatory bowel disease (IBD) is a complex disease that impacts millions of people glo-

bally. Promising treatments do exist, but patients frequently relapse and there is a poor under-
standing of the specific mechanisms in disease aetiology.

• Mutations in autophagy genes are associated with IBD and deregulated autophagy is strongly
associated with the loss of intestinal homeostasis due to the role of autophagy proteins in
IECs, immune cells and stromal cells.

• Multifunctional autophagy proteins have an emerging role in IEC health through their endoso-
mal trafficking roles but have had little investigation so far. Elucidating how autophagy proteins
contribute to the maintenance of intestinal cell subpopulations and intestinal physiology offers
insights into how we can potentially treat IBD patients, particularly those harbouring autop-
hagy gene mutations.
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