
Celestial Mechanics and Dynamical Astronomy (2023) 135:33
https://doi.org/10.1007/s10569-023-10147-2

ORIG INAL ART ICLE

GANBISS: a new GPU accelerated N-body code for binary star
systems

Maximilian Zimmermann1 · Elke Pilat-Lohinger1

Received: 15 December 2022 / Revised: 17 April 2023 / Accepted: 24 April 2023 /
Published online: 25 May 2023
© The Author(s) 2023

Abstract
We present a GPU accelerated N-body integrator using the Bulirsch–Stoer method, called
GANBISS (GPU accelerated n-body code for binary star systems). It is designed to simulate
the dynamical evolution of planetesimal disks in binary star systems which contain some
thousand disk objects. However, it can also be used for studies of non-interacting massless
bodies where up to 50 million objects can be studied in a simulation. GANBISS shows the
energy and angularmomentumconservation behavior of non-symplectic integrationmethods.
The code is written in CUDA C and can be run on NVIDIA GPUs of compute capability of
at least 3.5. A comparison of GPU and CPU computations indicates a speed-up of the GPU
performance of up to 100 times—depending on the number of disk objects.

Keywords Celestial mechanics—methods · Numerical—planets and satellites ·
Formation—stars · Planetary systems—stars · Binary stars

1 Introduction

Most of the stars in the solar neighborhood are part of binary or multiple star systems,
respectively (up to 90 % of the O, B-type stars (Moe and Di Stefano 2016), about 50 % of
the solar-type stars (Raghavan et al. 2010) and 27 % of the low mass stars (Delfosse et al.
2004)). From the detected exoplanet candidates (∼ 5000)1 only a small fraction (∼ 217)2 of
the planets are located in binary star systems. However, both observations and simulations

1 https://exoplanet.eu.
2 https://adg.univie.ac.at/schwarz/multiple.html.

This article is part of the topical collection on Innovative computational methods in Dynamical Astronomy.
Guest Editors: Christoph Lhotka, Giovanni F. Gronchi, Ugo Locatelli, Alessandra Celletti.

B Maximilian Zimmermann
maximilian.zimmermann@univie.ac.at

Elke Pilat-Lohinger
elke.pilat-lohinger@univie.ac.at

1 Department of Astrophysics, University of Vienna, Türkenschanzstraße 17, Vienna 1180, Austria

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10569-023-10147-2&domain=pdf
https://exoplanet.eu
https://adg.univie.ac.at/schwarz/multiple.html

33 Page 2 of 14 M. Zimmermann and E. Pilat-Lohinger

suggest that planet formation should be possible in stellar systems (e.g., Müller and Kley
(2012) or Haghighipour and Raymond (2007)).

While early phases of planet formation have to be studied by hydrodynamical simulations,
the late stage of terrestrial planet formation can be investigated using N-body simulations
which are less time-consuming. Nevertheless, N-body computations can result in a high com-
putational effort in case of a large number of bodies, as it scales with N 2. To greatly increase
the performance of such simulations and reduce the time needed for a single simulation
one can make use of the parallelization possibilities of graphical processing units (GPU).
The first GPU code with an application to planet formation is the GENGA code, which is
in its current state able to simulate up to ∼ 60000 interacting bodies (Grimm et al. 2022).
But simulations using GENGA are limited to single star systems due to the chosen sym-
plectic integration method, which are in principal more powerful than classical ones (e.g.,
Runge–Kutta or Bulirsch–Stoer). Symplectic integration methods are especially designed
for Hamiltonian systems, so that the conservation of energy is given for a constant step size.
Simulations of planetesimal/embryo disks in circumstellar motion of tight binary stars lead
to many collisions of the disk objects. Thus, the application of a symplectic integrator would
be disadvantageous, since numerical studies of collisions require a variable step size. To
overcome this problem existing hybrid codes could be used (e.g., Mercury6 (Chambers and
Wetherill 1998) or SyMBA (Duncan et al. 1998)) but they are not designed for dynamical
studies in binary stars. Therefore, we developed a GPU code using a classical integration
method (Bulirsch–Stoer method).

In this study, we introduce the new N-body code GANBISS (GPU Accelerated N-body
code for binary star systems), which uses the acceleration by graphical processing units
(GPUs). GANBISS can be used (i) for studies of some thousand (up 10000) interacting
objects moving in binary stars and (ii) for investigations of some million (up to 50 million)
non-interacting massless bodies single or binary stars.

The method and implementation are described in Sect. 2. Section3 gives a short summary
about the two computationmodes. In Sect. 4, an overview about the conservation probabilities
and a comparison of the performance is given. Finally, a summary and an outlook for future
improvements are provided in Sect. 5.

2 Method

The force acting on a body mν in an N-body system can be written as:

Fν = mν r̈ν = k2 mν

N∑

μ=0,μ�=ν

mμ

‖rμ − rν‖3
(
rμ − rν

)
(1)

where k is the Gaussian Gravitational constant. The 3N second-order differential equations
(1) can be rewritten into 6N first-order differential equations

ṙν = vν (2)

v̇ν = k2
N∑

μ=1,ν �=μ

mμ

(
rμ − rν

)
∥∥rμ − rν

∥∥3
(3)

123

GANBISS: a new GPU accelerated... Page 3 of 14 33

where n denotes the current phase space vector for the νth particle at time t and with the
evolution function f Eqs. (2) and (3) can be rewritten as

yn,ν =
(
rn,ν

vn,ν

)
(4)

ẏn,ν = f
(
tn, yn,ν

)
(5)

To solve Eq. 5 we use the Bulirsch–Stoer (BS) method which is a well-known algorithm
for integrating the N-body problem. This method is released in several publications such as
in the Numerical recipes (Press et al. 2002),Mercury6 (Chambers and Wetherill 1998) or
nie-package (Eggl and Dvorak 2010). Basically the method consists of two parts:

(i) The so-called modified midpoint method is used for the integration of time-step τ , which
is performed several times using an increasing number of sub-steps τm = τ

m where the
splitting procedure proposed by Deuflhard (Deuflhard 1983) is used:

nm = 1 m = 0,

nm = 2 · m m ∈ N

(ii) A polynomial extrapolation is applied to each result Rm to obtain the result R∞. A BS
step is successful when

|Rm−1 − Rm| = ε i < ε (6)

where εi is the error estimate for the column i of the extrapolation scheme and ε is the
chosen accuracy. Depending on the number of iterations (i) needed, the time-step τ of the
next integration step is chosen accordingly to the following scheme:

εi < ε, m < mmax τ · 1.3
εi < ε, m = mmax τ · 0.55
εi > ε, m ≥ mmax τ · 0.5

⎫
⎬

⎭ = τnew (7)

The last case only occurs if the accuracy couldn’t be achieved within the maximum number
of iterations nmax. The time-step τ is then halved and recalculated.

2.1 Collision handling

The dynamical evolution of planetesimal disks shows close encounters among planetesimals
and planetary embryos. If the distance between two bodies is smaller than their summed radii
a collision occurs. However, for the sake of reducing the simulation time a slightly increased
collision radius has been used, which is 5% of the Hill radii rH of the colliding bodies:

d < 0.05 · (
rH ,ν + rH ,μ

)
(8)

In case the colliding bodies orbit a single star their Hill radii are:

rH ≈ a ·
(m

3M

)1/3
(9)

where a is the semi-major axis of the disk object, m its mass and M the mass of the star.
In case the colliding bodies orbit both stars (i.e., P-type motion), their Hill radii are:

rH ≈ abary ·
(

m

3 · (M1 + M2)

)1/3

(10)

123

33 Page 4 of 14 M. Zimmermann and E. Pilat-Lohinger

where abary is the distance of the disk object to the barycenter of the two stars, m is the mass
of the disk object and M1 and M2 are the masses of the two stars. For simplicity the collision
is handled as a perfect inelastic collision, such that the two bodies (with masses m1 and m2)
merge to a bigger one (mcoll = m1 + m2). The new positions and velocities of the resulting
body correspond to those the center of mass of the two original bodies.

2.2 GPU-implementation in CUDA

The principal idea of GPU computing is the parallel computation on thousands of cores
using the SIMT execution model (single instruction, multiple threads). As the name implies,
a single instruction is applied on a given number of threads, where a thread is a single
execution sequence. Thirty-two threads are combined to a so-called warp. Each thread within
a warp executes the same instructions. On the logical scale, threads are combined up to three
dimensional thread blocks, which are themselves combined to two dimensional grids. The
GPU functions (kernels) are executed on a given grid.

There are different memory spaces with different access latencies which can be accessed
by the threads. The lowest latency have the registers, which can only be accessed by the
thread its belonging to. Each thread block has shared memory, which can be accessed of all
threads of the block. The slowest access occurs on the global memory, but every thread of
each block has access to it.

There are differences between a GPU and a CPU. So, not the complete code is transferred
on theGPU, only partswhich benefit from the parallelization of their task.AGPUhas a higher
overhead time in their functions (kernels) calls and a lower clock rate compared to a CPU. To
hide this additional work the GPU need some degree of parallelization of their computation.
One has also to take into account that the instruction set of a GPU is limited to that of a CPU.
These instruction sets are optimized for floating-point and arithmetic calculations, making
a GPU very efficient in computational tasks which allow a high degree of parallelism. In
practice the code gets split into a host part (executes on the CPU) and a device part (executes
on the GPU). Where the device code is called from the host and includes all kernel functions.
For detailed description of the CUDA model and interface see the CUDA programming
guide3.

In the next section, the parallelized parts of the codes are discussed.

2.2.1 Overview of the kernels

As the N-body problem scales with τ ∼ O
(
N 2

)
due to the right-hand side of the equation

of motion (3), it is the most crucial part to parallelize. Thus, the following kernels have been
parallelized:

• bb_force: computes the N 2 forces
• update_arr: corresponds to all the computations of the sub-steps of the BS method.
• extrapol: is for the recursive extrapolation.
• errmax: finds the largest error among all computed bodies using a parallelized reduction

algorithm.
• det_merg_ev: checks for collision events by computing all-pair distances as it is per-

formed in the bb_force kernel.

3 https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html.

123

https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html

GANBISS: a new GPU accelerated... Page 5 of 14 33

Fig. 1 Schematic figure of the computational tile. The left panel shows the separation into the parallel and
sequential part. The right panel the inputs needed for the calculation of p2 interactions and the p results gained.
The figure is taken from Nyland et al. (2009)

2.2.2 Simple kernels: update_arr

The update_arr refers to the simple kernels which do not have any dependencies between the
bodies. Thus, it is simple to parallelize with each thread deal with one body. These kernels
are the update steps of the modified midpoint method, the update of the extrapolation scheme
and the check for the crossing of the cutoff radius, as well as the extrapolation. Yet, the effort
of the extrapolation is depending on the number of sub-steps m.

2.2.3 Force computation: bb_force

Equation3 is an all-pair algorithm, because each entry fνμ of a N × N grid has to be
computed. The total force fν acting on one particle ν is the sum of all entries within the ν-th
row. The computation is split into a parallel and sequential part (Fig. 1). Therefore the grid is
partitioned into squared computational tiles, each performing a parallel and sequential part.
A tile consists of pν rows and pμ columns, which are stored in registers (pν) and shared
memory (pμ). After each sequential pass of a computational tile the bodies acceleration aν

gets updated.
In practice, these tiles are represented by thread blocks. Thus, the size of a tile is equal the

number of threads per block squared. Each thread pν computes pμ interactions sequentially
and updates the acceleration aν at the end of the tile. After p2 interactions a synchroniza-
tion is performed, the next pμ body descriptions are loaded into the shared memory and
are computed. This is repeated until all μ interactions per body have been evaluated. One
exception is the last tile. Because the number of bodies varies and are not a multiply of the
number of threads at the complete simulation time, the last tile has a reduced number of pμ

computations. The same is true for the last parallel tile with a reduced number of pν threads.
For a simulation with N bodies and p threads per block there are N/p tiles for N

mod p = 0 and N/p + 1 tiles for N mod p �= 0. Figure2 shows a full example grid
for N = 16 and p = 4. For a more detailed description of the algorithm, see the work of
Nyland Nyland et al. (2009).

This algorithm reduces the memory load because of the reuse of the data stored in the
shared memory as well as a full utilization of the GPU.

2.2.4 Force computation massless: bb_force_ml

The computation of fνμ for the massless particles works nearly the same way as in the N 2

case. Yet, the exception is the input of the computational tile changes. pν corresponds to
the massless particles and pμ to the massive bodies acting on the massless particles. The
computational effort for the massless particles reduces to N · M , where N is the number of

123

33 Page 6 of 14 M. Zimmermann and E. Pilat-Lohinger

Fig. 2 The full scheme of the
computation of all pair-wise
interactions for the example case
of N = 16 and p = 4. This figure
is also taken from Nyland et al.
(2009)

massive bodies and M the number of massless bodies. Depending on the number of threads
per block and the number of the massive bodies full utilization of the GPU may not be
achieved anymore.

2.2.5 Determination of�max: errmax

The search for the largest error has to be performed with a parallel reduction. First a sample
of the largest errors of the position and velocity vectors of all bodies will be determined
with the size of the block size. This is achieved by iterating through all bodies in parallel,
where each thread within the block is assigned a body pthreadId+blockSize∗i with i being the
loop index. The computed errors will be compared with the errors from the previous loop
index. In the next step the reduction on the remaining sample will be performed. Therefor
the error values are stored in the shared memory. The values with j < Arr Si ze/2 will be
compared with j + Arr Si ze/2. The results are stored at their positions and cut the number of
the remaining values into half. This is procedure is repeated until the highest error remains.
Figure3 shows this reduction procedure for an array size of Arr Si ze = 8.

As in the simulations the number of bodiesmay vary because of collisions and/or ejections,
the arrays may not be filled completely though these are filled with zeros before each kernel
execution.

2.2.6 Detection of collisions: det_merg_ev

The detection of collisions works similar as the force evaluation. Yet, it is an all-pair com-
parison. Instead of the computation of the accelerations the kernel checks if the distance of
two bodies is smaller than the given radii following the inequality 8. If this inequality holds
a collision flag is set and the index of the two colliding bodies are stored. The collision itself
is performed in a CPU function.

The det_merg_evkernel is a separate function, because the additional query of the collision
condition in the bb_force kernel would lead to a divergence in the parallelization and thus to
a longer calculation time in the bb_force kernel.

123

GANBISS: a new GPU accelerated... Page 7 of 14 33

Fig. 3 A schematic view of the
reduction procedure for an array
size of 8. In this example the
largest integer is searched. The
algorithm requires an array size
of 2n , n > 0

3 Applications

3.1 Default-mode

By default, an N-body simulation take the interactions of all bodies (stars, planets and disk
objects—i.e., planetary embryos and planetesimals) into account. The simulations can be
carried out for single or binary stars. For a binary star system S- or P-type motion has to be
distinguished. In case of S-type motion, the disk is set around the primary star and in the
case of P-type motion, the disk is around both stars with respect to binaries barycenter. The
disk objects are allowed to collide with each other. Collisions between stars and planets are
not explicitly treated, since such collisions are not expected in the intended simulations, or it
is presupposed that planets, especially gas giants, within the simulation are on stable orbits.
Moreover, disk objects can be ejected from the system. The cutoff radius, which defines the
distance a body has to reach to be ejected from the system can be set by the user. In addition,
the simulation time, the output time-steps and the accuracy of the BS integration (ε) are
defined by the user.

3.2 Massless particles

Massless particles have been introduced to simulate a large number of bodies where their
mutual interactions are negligible. Thus, they do not have any gravitational influence and
they can only collide with massive objects (stars or planets)—but in such a case they will
be removed from the simulation. The computational effort for the massless bodies reduces
to τ (N · M) where N corresponds to the number of massive bodies and M to the massless
bodies.

GANBISS has been successfully applied to the study of comets in theOort cloud perturbed
by a passing star (see (Pilat-Lohinger et al. 2022), Loibnegger et al. (2022)).

123

33 Page 8 of 14 M. Zimmermann and E. Pilat-Lohinger

Fig. 4 The relative error of the
total energy (red lines) and total
angular momentum (blue lines)
in a logarithmic scale. The figures
contain all 20 setups and are
simulated for 100 kyr

4 Results

4.1 Conservation of angular momentum and energy

To check the reliability of the presented code, its conservation of the total energy and the total
angular momentum within a given system has been tested. For non-symplectic integrators
the momentary relative error in the energy and angular momentum follows roughly a linear
growth. Figure4 shows themomentary relative error of the energy and angularmomentum for
20 different simulations for 100 kyr simulation time. Each simulation consists of a solar mass
central star and 17 planetary embryos distributed differently between 1 and 5 au around the
central star. All simulations show the expected error behavior for non-symplectic integrators.
The relative error itself is quite robust among the different initial configurations.

Collisions performed via perfect merging do not conserve energy. Thus, due to the choice
of the integration method, one can only try to keep the error of the energy within a certain
error range.

Note, that the “loss” of energy through collisions and ejections is not considered. Thus,
the energy may not preserved in simulations with collisions or ejections.

4.2 Performance

Performancemeasurements have been taken using theNVIDIAprofiling tools4 to obtain each
kernel’s performance. For the comparison with the CPU Fortran code the gprof profiling tool
has been used. The initial set-ups for the comparisons consist of a binary star system with
a planetesimal disk in S-type motion. Both stars are Solar mass stars and have a separation
of ab = 30 au. The planetesimal disk is placed around the primary star between 1 and 4 au
with varying number (10-10000) of small bodies and a total mass of about Mtot ≈ 2.4M⊕.

4.2.1 Performance of the main kernels

Figure5 shows the average computation time for the main kernels as a function of the number
of bodies.

The most expensive kernels are the force evaluation (blue line) and the collision detection
(orange line) in Fig. 5), because both kernels perform all pair-wise interactions. While the
update_arr (red line) and the extrapol (purple) referring to the simple kernels are the least

4 https://docs.nvidia.com/cuda/profiler-users-guide/index.html.

123

https://docs.nvidia.com/cuda/profiler-users-guide/index.html

GANBISS: a new GPU accelerated... Page 9 of 14 33

Fig. 5 Average kernel evaluation
time for different numbers of
bodies on a NVIDIA A100

Fig. 6 The total time needed of
each kernel for a simulation time
of 10 yr considering different
numbers of bodies on a NVIDIA
A100

102 103 104

Number of bodies

10−2

10−1

100

101

102

103

t
[s
]

bb force
det merg ev
errmax
update arr
extrapol

expensive kernels as they have only a N dependency. In between is the errmax (green line)
kernel. This kernel’s performance is limited by the block size as the reduction algorithm is
performed within block.

Comparing the total time needed by the kernels within a simulation run, the time effort
changes (Fig. 6), because of the number of calls of each kernel.While the det_merg_ev kernel
is called once per successful time-step, the kernels errmax and extrapol are called once per
iteration step within a time-step and the kernels bb_force and update_arr are called several
times per iteration step. The small decline from 9000 to 10000 objects is due to a smaller
number of function calls. The bb_force kernel is the most time-consuming one during the
simulation runs and needs up to 99 % of the computation time.

4.2.2 Performance comparison between GPU and CPU

Figure7 shows a comparison of the force computation between a CPU (nie-package (Eggl
and Dvorak 2010), Fortran implementation) and the here presented GPU implementation.
The simulations have been carried out with 10−1000 planetesimals with a total planetesimal
mass of 2.4 M⊕. The GPU implementation is up to 100 times faster compared to the CPU
implementation depending on the number of bodies. However, for a small number of bodies
(< 20) the CPU code is faster. This is because the GPU cannot benefit fully from the
parallelization and is limited by the kernel launch overhead. Despite the number of cores there
are other differences between a CPU and a GPU. A CPU has lower latency per instruction
and a higher clock rate, which favors the performance for a small number of bodies.

123

33 Page 10 of 14 M. Zimmermann and E. Pilat-Lohinger

Fig. 7 Average computation time
for the force calculation kernels
for a CPU (Intel Core i7-8700T
@ 2.4GHz) and the here
presented GPU (AMD EPYC
7713 @ 2.0GHz, NVIDIA A100)
implementation

101 102 103

N

10−2

10−1

100

101

102

t
[m

s]

CPU
GPU

Fig. 8 Comparison of the average
time needed of the bb_force
kernel for different GPUs for up
to 10000 bodies

102 103 104

Number of bodies

0

5

10

15

20

25

30

35

t
[m

s]

GTX 1080
GTX TITAN
GTX TITAN BLACK
A40
A100

4.2.3 Performance comparison between different GPUs

Figure8 shows the performance for different GPUs for the force computation. The A100
shows the best results because it has the best theoretical double precision performance. For
relatively small numbers (∼ 1000 bodies) the computation time of the force barely differs
between the different GPUmodels. Hence, all used GPUs are suitable for the computation of
small numbers of bodies. For larger numbers of bodies the computation times diverge visibly
and for more than > 5000 bodies only two GPUs (A100 and A40) are recommendable.

While the GTX TITAN cards should be the second best cards on paper according to the
theoretical floating point operation performance, they perform the worst in this comparison.
This is probably because the calculation of the theoretical performance of the floating point
operations do not consider the clock rate or the memory bandwidth, which is faster in case
of the GTX 1080 and A40.

4.3 Performancemassless

Figure9 shows the average computation time for the main kernels for simulations with mass-
less particles. In these simulations 106 to 4 · 107 massless test-particles have been placed
around a star between 50 and 5000 au to mimic the outer Kuiper belt region and the disk of
the inner Oort cloud. In addition a gas giant orbits the star at 5.2 au. The time needed for
the force evaluation of the massless particles shows an N dependency and thus, is not the
dominating factor in the computation time anymore. The bottleneck now is the calculation
of the maximum error. This is because the performance is limited by the block size, which is

123

GANBISS: a new GPU accelerated... Page 11 of 14 33

Fig. 9 The average computation
time for different kernels for
different numbers of massless
particles on a A100

106 107

Number of bodies

10−2

10−1

100

101

102

103

t
[m

s]

bb force
update arr
extrapol
errmax massless
bb force massless

1024 threads per block. For two massive bodies the time needed for the computation of their
interactions is neglectable.

4.4 Example: planetesimal disk in binary star systems

A simulation of a self-gravitating planetesimal disk in a binary star systems has been carried
out for 1Myr simulation time. The binary stars have a separation of 30 au andmove on circular
orbits in the sameplane.Both stars have amass of 1M�. The disk contains 2000 planetesimals
and 25 planetary embryos (Moon to Mars sized) with a total disk mass Mdisk ≈ 4.8 M⊕,
where the total mass of planetesimals and embryos is equal. We assume the existence of
planetesimals in a circumstellar disk of tight binary stars due to the work of Gyergyovits
Gyergyovits et al. (2014). All disk objects are placed around the primary star between 1 and
4 au and are initially dynamically cold.

Figure10 shows 6 snapshots of the planetesimal (blue dots)/embryo (red points) disk for
the computation time of 1Myrs. The top panels indicate clearly that most of the planetesimal
collided with embryos within the first 200 kyrs. Occasionally mutual embryo collisions occur
(see Fig. 10 bottom panel). Due to numerous collisions the circumstellar disk is reduced
from 25 embryos to 11 and from 2000 planetesimals to 102 after 1 Myrs. Besides the mutual
interactions of planetesimals and embryos only perturbations of the secondary star act on
the disk since no giant planet has been included in the initial configuration. An additional
giant planet would lead to a higher number of collisions and an increased impact velocity
(Thébault et al. 2004).

5 Conclusion and Outlook

In this study, we introduced a new GPU parallelized N-body code so study circumstellar
disks in binary star systems. A performance analysis has been presented which indicates
the efficiency of the GPU Code especially for a high number of interacting bodies where a
speed-up of the computation up to 100 times of the CPU performance has been achieved.
For a small number of bodies (< 20) the GPU code is slower compared to the CPU code.

In addition, it has been shown that GANBISS can be applied to study the dynamical
behavior of massless bodies where the computational effort is smaller compared to a fully
interacting system of some thousand bodies.

As an example, we showed the growth of planetary embryos in a circumstellar disk in
a binary star via collisions which were studied in a first attempt by perfect merging. This

123

33 Page 12 of 14 M. Zimmermann and E. Pilat-Lohinger

Fig. 10 The upper six panels show the disk objects semi-major axes and the eccentricity for six different
snapshots within the 1 Myr simulation time. The blue dots represent the planetesimals and the red dots the
planetary embryos. The bottom panel shows the evolution of the disk objects semi-major axis for the whole
simulation time. Different colors indicate the various planetary embryos and the light grey lines show the
planetesimals. Collisions between embryos are clearly seen and the greyscale indicates the decreasing number
of planetesimals due to the collisions with embryos

simple consideration of collisions will be improved in future studies by including results of
SPH5-simulations which enable a detailed analysis of two body collisions and provide more
realistic results.

Another problem is the N 2 complexity of the N-body problem. While a GPU implemen-
tation increases the performance due to its increased arithmetic power, it depends strongly
on the underlying hardware. This problem will be additionally addressed in future work by
implementing a method that reduces the all-pair interactions to body-cell or cell–cell inter-
actions. These methods are known as Barnes-Hut (Barnes and Hut 1986), or fast multipole
method (Greengard and Rokhlin 1987) in the latter case.

5 Smooth particle hydrodynamics.

123

GANBISS: a new GPU accelerated... Page 13 of 14 33

Currently, GANBISS is still in an alpha version, but it is planned to make it publicly
available in the future.

Acknowledgements The authors want to acknowledge the support by the Austrian FWF—Project P33351-N
and S11608-N16. The computational results presented have been achieved using the Vienna Scientific Cluster
(Projects 71637, 71686, 70320). Finally, the authors want to thank the anonymous referees for their helpful
comments and suggestions to improve this article.

Author Contributions MZ and EP-L wrote the main manuscript and MZ prepared the figures.

Funding Open access funding provided by Austrian Science Fund (FWF).

Data availability The datasets generated during and analyzed during the current study are available from the
corresponding author on reasonable request.

Declarations

Conflict of interest The authors have no conflicts of interest to declare that are relevant to the content of this
article.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

Barnes, J., Hut, P.: A hierarchical o(n log n) force-calculation algorithm. Nature 324(6096), 446–449 (1986).
https://doi.org/10.1038/324446a0

Chambers, J.E., Wetherill, G.W.: Making the terrestrial planets: N-body integrations of planetary embryos in
three dimensions. Icarus 136(2), 304–327 (1998). https://doi.org/10.1006/icar.1998.6007

Delfosse, X., Beuzit, J., Marchal, L., Bonfils, X., Perrier, C., Ségransan, D., Udry, S., Mayor, M., Forveille,
T.: M dwarfs binaries: Results from accurate radial velocities and high angular resolution observations.
In: Hilditch, R.W., Hensberge, H., Pavlovski, K. (eds.) Spectroscopically and Spatially Resolving the
Components of the Close Binary Stars. Astronomical Society of the Pacific Conference Series, vol. 318,
pp. 166–175 (2004)

Deuflhard, P.: Order and stepsize control in extrapolation methods. Numer. Math. 41, 399–422 (1983)
Duncan, M.J., Levison, H.F., Lee, M.H.: A multiple time step symplectic algorithm for integrating close

encounters. Astron. J. 116(4), 2067–2077 (1998). https://doi.org/10.1086/300541
Eggl, S.,Dvorak,R.:An Introduction toCommonNumerical IntegrationCodesUsed inDynamicalAstronomy,

pp. 431–480. Springer, Berlin (2010). https://doi.org/10.1007/978-3-642-04458-8_9
Greengard, L., Rokhlin, V.: A fast algorithm for particle simulations. J. Comput. Phys. 2, 280–292 (1987).

https://doi.org/10.1016/0021-9991(87)90140-9
Grimm, S.L., Stadel, J.G., Brasser, R., Meier, M.M.M., Mordasini, C.: GENGA II: GPU planetary N-body

simulations with non-Newtonian forces and high number of particles. Astrophys. J. 932(2), 124 (2022).
https://doi.org/10.3847/1538-4357/ac6dd2

Gyergyovits, M., Eggl, S., Pilat-Lohinger, E., Theis, C.: Disc-protoplanet interaction. Influence of circumpri-
mary radiate discs on self-gravitating protoplanetary bodies in binary star systems. Astron. Astrophys.
566, 114 (2014). https://doi.org/10.1051/0004-6361/201321854

Haghighipour, N., Raymond, S.N.: Habitable planet formation in binary planetary systems. Astrophys. J.
666(1), 436–446 (2007). https://doi.org/10.1086/520501

123

http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1038/324446a0
https://doi.org/10.1006/icar.1998.6007
https://doi.org/10.1086/300541
https://doi.org/10.1007/978-3-642-04458-8_9
https://doi.org/10.1016/0021-9991(87)90140-9
https://doi.org/10.3847/1538-4357/ac6dd2
https://doi.org/10.1051/0004-6361/201321854
https://doi.org/10.1086/520501

33 Page 14 of 14 M. Zimmermann and E. Pilat-Lohinger

Loibnegger, B., Pilat-Lohinger, E., Zimmermann,M., Clees, S.: The effect of the passage of Gliese 710 onOort
cloud comets. IAU Symposium 364, 178–183 (2022). https://doi.org/10.1017/S1743921321001381

Moe, M., Di Stefano, R.: Mind your PS and QS: The interrelation between period (P) and mass-ratio (Q)
distribution of binary stars. Astrophys. J. Suppl. Ser. (2016). https://doi.org/10.3847/1538-4365/aa6fb6

Müller, T.W.A., Kley, W.: Circumstellar disks in binary star systems. models for γ cephei and α centauri.
Astron. Astrophys. 539, 18 (2012). https://doi.org/10.1051/0004-6361/201118202

Nyland, L., Harris, M., Prins, J.: Fast n-body simulation with CUDA. GPU Gem 3, 677–696 (2009)
Pilat-Lohinger, E., Clees, S., Zimmermann, M., Loibnegger, B.: On the scattering and dynamical evolution of

Oort cloud comets caused by a stellar fly-by. IAU Symposium 364, 214–219 (2022). https://doi.org/10.
1017/S1743921321001332

Press,W.H., Teukolsky, S.A., Vetterling,W.T., Flannery, B.P.: Numerical Recipes in C++ : the Art of Scientific
Computing (2002)

Raghavan, D., McAlister, H.A., Henry, T.J., Latham, D.W., Marcy, G.W., Mason, B.D., Gies, D.R., White,
R.J., Ten Brummelaar, T.A.: A survey of stellar families: Multiplicity of solar-type stars. Astrophys. J.
Suppl. Ser. 190(1), 1–42 (2010). https://doi.org/10.1088/0067-0049/190/1/1

Thébault, P., Marzari, F., Scholl, H., Turrini, D., Barbieri, M.: Planetary formation in the γ Cephei system.
Astron. Astrophys. 427, 1097–1104 (2004). https://doi.org/10.1051/0004-6361:20040514

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

123

https://doi.org/10.1017/S1743921321001381
https://doi.org/10.3847/1538-4365/aa6fb6
https://doi.org/10.1051/0004-6361/201118202
https://doi.org/10.1017/S1743921321001332
https://doi.org/10.1017/S1743921321001332
https://doi.org/10.1088/0067-0049/190/1/1
https://doi.org/10.1051/0004-6361:20040514

	GANBISS: a new GPU accelerated N-body code for binary star systems
	Abstract
	1 Introduction
	2 Method
	2.1 Collision handling
	2.2 GPU-implementation in CUDA
	2.2.1 Overview of the kernels
	2.2.2 Simple kernels: update_arr
	2.2.3 Force computation: bb_force
	2.2.4 Force computation massless: bb_force_ml
	2.2.5 Determination of εmax: errmax
	2.2.6 Detection of collisions: det_merg_ev

	3 Applications
	3.1 Default-mode
	3.2 Massless particles

	4 Results
	4.1 Conservation of angular momentum and energy
	4.2 Performance
	4.2.1 Performance of the main kernels
	4.2.2 Performance comparison between GPU and CPU
	4.2.3 Performance comparison between different GPUs

	4.3 Performance massless
	4.4 Example: planetesimal disk in binary star systems

	5 Conclusion and Outlook
	Acknowledgements
	References

