Skip to main content
. 2022 Nov 9;38(7):1599–1605. doi: 10.1007/s11606-022-07863-0

Table 3.

Multivariate GEE Logistics Model of Factors Associated with Care Gaps in SGLT2i Prescription*

Variable AOR (95% CI) p value
Age 1.01 (1, 1.02) < 0.001
Sex
  Female Ref
  Male 0.69 (0.61, 0.78) < 0.0001
Race/ethnicity
  White, non-Hispanic Ref
  Asian 1.02 (0.72, 1.43) 0.93
  Black, non-Hispanic 1.46 (1.15, 1.87) < 0.01
  Hispanic 1.46 (1.11, 1.92) < 0.01
  Other race/ethnicity 1.40 (1.07, 1.84) 0.01
Insurance type
  Public or self-pay Ref
  Commercial 0.78 (0.64, 0.95) 0.02
PCP site and type
  Non-teaching site Ref
  Teaching site, resident as PCP 0.85 (0.65, 1.10) 0.21
  Teaching site, non-resident as PCP 1.10 (0.82, 1.47) 0.52
HbA1C
  At goal, ≤ 7 Ref
  Not at goal 2.32 (1.96, 2.73) < 0.0001
Proteinuria
  Severe proteinuria Ref
  Moderate proteinuria 1.37 (1.15, 1.63) < 0.001
GFR categories
  Category 1, GFR ≥ 90 Ref
  Category 2, GFR 60–89 0.94 (0.73, 1.19) 0.59
  Category 3, GFR 30–50 0.54 (0.41, 0.72) < 0.0001
  Category 4, GFR < 30 0.82 (0.55, 1.20) 0.3
Count of other diabetes-related Rx 0.83 (0.77, 0.90) < 0.0001
HbA1C
  At goal, ≤ 7 Ref
  Not at goal 2.32 (1.96, 2.73) < 0.0001
Proteinuria
  Severe proteinuria Ref
  Moderate proteinuria 1.37 (1.15, 1.63) < 0.001

*Model adjusted for individual PCP as a random effect variable

†Continuous variable, count of prescriptions in EHR-defined pharmaceutical classes: thiazide, loop and potassium-sparing diuretics, beta blockers, calcium channel blockers, combined alpha and beta blockers, alpha antagonists, hydralazine