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SUMMARY
Continued evolution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is eroding antibody
responses elicited by prior vaccination and infection. The SARS-CoV-2 receptor-binding domain (RBD)
E406W mutation abrogates neutralization mediated by the REGEN-COV therapeutic monoclonal antibody
(mAb) COVID-19 cocktail and the AZD1061 (COV2-2130) mAb. Here, we show that this mutation remodels
the receptor-binding site allosterically, thereby altering the epitopes recognized by these three mAbs and
vaccine-elicited neutralizing antibodies while remaining functional. Our results demonstrate the spectacular
structural and functional plasticity of the SARS-CoV-2 RBD, which is continuously evolving in emerging
SARS-CoV-2 variants, including currently circulating strains that are accumulating mutations in the antigenic
sites remodeled by the E406W substitution.
INTRODUCTION

The receptor-binding domain (RBD) of the severe acute respira-

tory syndrome coronavirus 2 (SARS-CoV-2) spike glycoprotein is

responsible for interacting with the host receptor ACE2 and initi-

ating viral entry into cells.1–3 The SARS-CoV-2 RBD is the target

of the majority of neutralizing antibodies elicited by SARS-CoV-2

infection and COVID-19 vaccination, of virtually all vaccine-eli-

cited cross-variant neutralizing antibodies, and of monoclonal

antibodies (mAbs) used prophylactically or therapeutically.4–9

Binding and neutralization of SARS-CoV-2 by individual mAbs

can be escaped by single RBD residue mutations, which led to

the development of therapeutic cocktails comprising two

mAbs recognizing non-overlapping epitopes.10–13 These cock-

tails have a higher barrier for the emergence of neutralization

escape mutants than the individual constituting mAbs, as typi-

cally at least two distinct amino acid substitutions are required

to evade neutralization by a two-mAb cocktail.

The REGEN-COV cocktail consists of two mAbs, casirivimab

(REGN10933) and imdevimab (REGN10987), that bind non-over-

lapping RBD epitopes in the receptor-binding motif (RBM) and

block ACE2 attachment.12,13 We previously mapped all possible

RBD residue mutations that permit escape from the REGEN-
This is an open access article und
COV mAb cocktail and the COV2-2130 mAb, which led us to

identify that the E406W substitution abrogated binding and

neutralization of both REGEN-COV mAbs individually and the

cocktail10 as well as binding of COV2-2130.14 Unexpectedly,

residue E406 is located outside of the epitopes recognized by

REGN10933, REGN10987, and COV2-2130, suggesting that

this mutation might influence the overall structure of the RBD

(presumably through an allosteric effect) while retaining detect-

able binding to dimeric human ACE2.10

RESULTS AND DISCUSSION

To understand the molecular basis of the E406W-mediated

escape from the REGEN-COV cocktail and the COV2-2130

mAb, we characterized the SARS-CoV-2 spike (S) ectodomain

trimer structure harboring the E406Wmutation using single-par-

ticle cryoelectron microscopy. 3D classification of the dataset

revealed the presence of two conformational states: one with

three RBDs closed and one with one RBD open, accounting

for approximately 70% and 30% of particles, respectively. We

determined a structure of the closed S state at 2.3 Å resolution

applying C3 symmetry (Figures 1 and S1; Table S1). Symmetry

expansion, focused classification, and local refinement yielded
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Figure 1. The E406Wmutation remodels the

SARS-CoV-2 RBD allosterically

(A), Structural superimposition of the Wuhan-Hu-1

RBD (E406, gold, PDB: 6M0J, ACE2 not displayed)

and the W406 RBD (light blue).

(B and C) Structural superimposition of the

REGN10987/REGN10933-bound Wuhan-Hu-1

RBD (E406, gold, PDB: 6XDG) and the W406 RBD

(light blue). Steric clashes indicated with red stars.

(D) Structural superimposition of the ACE2-bound

Wuhan-Hu-1 RBD (E406, gold, PDB: 6M0J) and

the W406 RBD (light blue). Hydrogen bonds are

shown as dotted lines.
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an RBD reconstruction at 3.4 Å resolution, which was used for

model building (enabling resolving the complete RBD) and anal-

ysis (Figures 1 and S1; Table S1).

The E406W substitution places the introduced side-chain in-

dol ring in a position sterically incompatible with the neighboring

Y495 phenol side chain, inducing a rotameric rearrangement of

the latter residue relative to the ACE2-bound RBD structure15

or apo S ectodomain trimer structures.1,16 This results in major

conformational reorganization of residues 443–450 and 495–

503, which experience up to a 4.5 Å shift relative to previously

determined structures1,16 (the overall root-mean-square devia-

tion [RMSD] between ACE2-bound RBD and E406W RBD is

1.37 Å over 194 C-alpha pairs). Although the organization of

residues 475–484 is only subtly different in the E406W RBD rela-

tive to apo S structures,1,16 it deviates more from the REGEN-

COV-bound RBD structure12 (Figures 1A and S2). REGN10987

recognizes an epitope residing at the interface between

antigenic sites Ia and IIa5 and forms extensive interactions with

residues 440–449 that would sterically clash with the mAb heavy

chain in the E406W RBD structure (Figure 1B). REGN10933

interacts with residues 417, 453–456, and 475–490 (within

antigenic site Ia5), and the distinct conformation of the latter

residues in the REGEN-COV-bound RBD and E406W apo

S structures possibly precludes mAb binding through

steric clash with the mAb light chain (Figure 1C). Our data

therefore show that the E406W mutation disrupts the antigenic
2 Cell Reports 42, 112621, June 27, 2023
sites recognized by REGN10933 and

REGN10987 allosterically, which are

positioned 5 and 20 Å away, respec-

tively.10 Similar to REGN10987, the loss

of COV2-2130 binding to the E406W

RBD14 is explained by the structural reor-

ganization of residues 443–450, which

are recognized by this mAb (Figure S3).

These RBD conformational changes

also alter the ACE2-interacting surface,

resulting in the predicted loss of several

hydrogen bonds formed between

the ACE2 D38 and SARS-CoV-2 Y449

side chains as well as the ACE2

Q42 side chain and the SARS-CoV-2

Y449 side chain and G446 main chain

carbonyl (Figure 1D). Moreover, reposi-

tioning of residues 496–502 would likely
also hinder ACE2 binding sterically. Accordingly, we observed

that the monomeric human ACE2 ectodomain bound with a

14-fold reduced affinity to the immobilized SARS-CoV-2

E406W RBD (KD = 1.34 mM) relative to the wild type (Wuhan-

Hu-1) RBD (KD = 93.9 nM) using biolayer interferometry

(Figures 2A–2C; Table S2). This reduction of ACE2 binding affin-

ity is expected to dampen viral fitness, as previously observed

for another pointmutation decreasingACE2binding17 (Figure 2D)

and for XBB.1 relative to XBB.1.5.18

Several broadly neutralizing sarbecovirus humanmAbs recog-

nizing distinct RBD antigenic sites have been described. Some

of them were shown to be (partially) resilient to the ongoing

SARS-CoV-2 evolution and to protect small animals against

challenge with SARS-CoV-2 variants of concern or other sarbe-

coviruses.11,17,20–26 To evaluate the influence of the aforemen-

tioned structural changes on neutralization by these mAbs, we

compared the concentration-dependent inhibition of S309,

S2E12, and S2X259 against vesicular stomatitis virus (VSV) par-

ticles pseudotyped with the Wuhan-Hu-1 spike harboring the

G614 or the W406/G614 mutations. Each of these three mAbs

neutralized with comparable potency the G614 and W406/

G614 pseudoviruses (Table 1), indicating that they retain activity

against this mutant (Figures 3A and S4). As predicted based on

structural data,5,11 the S2H14 mAb failed to neutralize the spike

W406/G614 pseudovirus due to the reorganization of the RBM

(Figures 2A and S5). Moreover, these data are consistent with



Figure 2. The E406W mutation dampens

ACE2 binding severely

(A–C) Biolayer interferometry binding analysis of

monomeric human ACE2 to immobilized Wuhan-

Hu-1 (A), Alpha (N501Y, B), or E406W (C) RBDs.

(D) Mutation effects on avidity for dimeric human

ACE2 as measured by yeast surface display19 for

the E406W mutation and RBD mutations found in

human-derived SARS-CoV-2 isolates deposited in

GISAID as of September 27, 2021, across

increasing frequency thresholds.
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the fact that binding to the SARS-CoV-2 E406W RBD was unaf-

fected for S2E12 and abrogated for S2H14.11

Finally, we set out to assess the impact of the E406Wmutation

on vaccine-elicited plasma neutralizing activity using samples

obtained from individuals who had received a primary vaccine

series (2 doses) of either the Pfizer BNT162b2 or Moderna

mRNA-1273 COVID-19 vaccine (Table S3). We observed 2.5-

(BNT162b2, range: 1.2–4.6) and 2.4-fold (mRNA-1273, range:

1.5–3.8) reduction in neutralization potencies against the

E406W/G614 spike pseudovirus compared with the G614

spike-harboring pseudovirus (Figures 3B, 3C, and S5). These

data indicate that the single E406W mutation leads to moderate

erosion of vaccine-elicited polyclonal neutralizing antibodies,

comparable to the SARS-CoV-2 Epsilon variant27 or the Delta

variant.28

The ongoing SARS-CoV-2 evolution has yielded variants

harboring numerous mutations, some of them altering transmis-

sibility, immune evasion, replication kinetics, or disease severity

relative to the ancestral SARS-CoV-2 strain.7,27,29–44 We note
Table 1. IC50 values for the four monoclonal antibodies tested

against wild-type (G164) and E406W pseudoviruses

IC50 against WT

pseudovirus (ng/mL)

IC50 against E406W

pseudovirus (ng/mL)

S309 26.6 ± 3.7 27.3 ± 2.4

S2E12 0.81 ± 0.19 0.98 ± 0.17

S2X259 39.4 ± 9.2 33.8 ± 15.6

S2H14 535 ± 224 >20,000

Values are presented as mean ± standard error. WT, wild type.
that the E406Wmutation requiresmultiple

nucleotide substitutions from the Wuhan-

Hu-1 spike sequence and has a delete-

rious effect on ACE2 binding. However,

several currently circulating variants har-

bor amino acid mutations generated

through multiple nucleotide substitutions

(e.g., BA.1 S371L, BA.2.3.20 E484R, or

XBB.1.5 G339H, V445P, and F486P) as

well as mutations that dampen ACE2

binding in the Wuhan-Hu-1 background

but are tolerated through epistatic in-

teractions with other mutations (e.g.,

Q498R found in Omicron lineages).45–47
This suggests that epistasismight allow for the future emergence

of variants harboring the E406W mutation or other mutations re-

modeling RBD antigenic sites allosterically, especially as exist-

ing immunity drives selection of variants with enhanced capacity

to evade neutralizing antibodies.48 Furthermore, several

emerging variants that were initially detected in wastewater are

accumulating mutations in the antigenic sites affected by the

E406W mutation,49 underscoring its potential importance. The

identification of the N501Y substitution, which enhances ACE2

binding, before its emergence in the Alpha variant and fixation

in Omicron variants19 highlights the power of deep-mutational

scanning for prospective mapping of the effect of mutations to

the SARS-CoV-2 RBD and motivates the characterization of un-

usual mutants, such as E406W. These results are reminiscent of

the BA.2 and BA.4/5 S371F mutation, which dampens S309

binding via remodeling of the RBD helix comprising residues

364–372, which are outside the epitope of this mAb, likely by

altering the N343 glycan conformation.25 To conclude, our

data showcase the structural and functional plasticity of the

SARS-CoV-2 RBD,19 suggesting that mutations influencing the

organization of the RBDmay accumulate and can be functionally

tolerated within emerging SARS-CoV-2 strains.

Limitations of the study
In this study, we introduced the E406Wmutation into theWuhan-

Hu-1 spike protein and examined the impact of this mutation

on the structure of the RBD and the efficacy of vaccine-elicited

sera to neutralize E406W pseudovirus. As SARS-CoV-2 has

continued to accumulate mutations across the spike protein,

performing these analyses on variant spike proteins with the

E406W mutation would provide greater insight into the
Cell Reports 42, 112621, June 27, 2023 3



Figure 3. Evaluation of the neutralizing activity of several sarbecovirus broadly neutralizingmAbs and vaccine-elicited polyclonal antibodies

(A) Neutralization potency (50% inhibition concentration [IC50]) of the mAbs S309, S2E12, S2X259, and S2H14 against VSV pseudotyped with either the wild-type

(G614) or the E406Wmutant spike protein. Non-neutralizing values are shown as 23 104 ng/mL, the limit of detection of the assay, as indicated by a dotted line.

(B and C) Neutralization potency (50% inhibition dilution [ID50]) of sera collected from individuals vaccinated with either Pfizer Cominarty (B) or Moderna’s mRNA-

1273 (C) against VSV pseudotyped with SARS-CoV-2 wild-type (G614) or E406W spike. ID50 values measured against the two pseudoviruses for each sample are

connected by a line. The dotted line indicates the limit of detection of the assay.
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plausibility of this mutation emerging in circulating variants.

Furthermore, we used ACE2 binding and neutralization assays

to estimate the fitness of a SARS-CoV-2 E406W viral variant

compared with the Wuhan-Hu-1/G614 strain. Introducing this

mutation into a replication-competent VSV-SARS-CoV-2-S sys-

tem or equivalent may allow for a more complete understanding

of the fitness cost of the E406W mutation.
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Lead contact
Correspondence and requests for materials should be addressed to David Veesler (dveesler@uw.edu).

Materials availability
Plasmids generated in this study will be available upon request with a completed Materials Transfer Agreement.

Data and code availability
d Cryo-EMmaps and atomicmodels have been deposited at the ElectronMicroscopy DataBank and the Protein DataBank under

the following accession codes: EMD: EMD-26058 and PDB: 7TPK (SARS-CoV-2 E406WRBD) and EMD: EMD-26056 and PDB:

7TPI (SARS-CoV-2 E406W Ectodomain).

d This paper does not report original code.

d Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Cell culture
Expi293 cells were grown in Expi293 media at 37�C and 8% CO2 rotating at 130 RPM. HEK-293T cells and HEK-293T cells stably

expressing the human ACE2 receptor (HEK-ACE2)50 were grown in DMEM supplemented with 10% FBS and 1% PenStrep at

37�C and 5% CO2. Vero cells stably expressing the human protease TMPRSS2 (Vero-TMPRSS2) were grown in DMEM supple-

mented with 10% FBS, 1% PenStrep, and 8 mg/mL puromycin at 37�C and 5% CO2.

Sera
Blood samples were collected from individuals 7–30 days after receiving the second dose of either Pfizer’s BNT162b2 or Moderna’s

mRNA-1273 COVID-19 vaccine. All study participants were enrolled in the UWARN: COVID-19 inWA study at the University ofWash-

ington. The study protocol was approved by the University of Washington Human Subjects Division Institutional Review Board

(STUDY00010350). Demographic information, including age and sex, for sera donors is provided in Table S3.

METHOD DETAILS

Constructs
The construct encoding spike ectodomain harboring the E406W mutation was obtained from the Institute for Protein Design. The

spike ectodomain was codon optimized, stabilized with the hexapro mutations51 and mutation of the furin cleavage site

(682RRAR685 to 682GSAS685), and inserted into the pCDNA3.1 vector containing a C-terminal foldon followed by an avi tag and an

octa-histidine tag.

The construct encoding the E406W RBD was generated by performing around-the-horn mutagenesis using a pCMVR vector

encoding the wildtype SARS-CoV-2 RBD containing an N-terminal mu-phosphatase signal peptide and a C-terminal avi tag and

octa-histidine tag. The boundaries for the SARS-CoV-2 RBD in this construct were 328RFPN331 to 528KKST531.
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Recombinant protein expression and purification
To produce the SARS-CoV-2 spike ectodomain containing the E406Wmutation, 125mL of Expi293 cells were grown to density of 2.5

x 106 cells per mL and transfected with 125 mg of DNA using PEI MAX diluted in Opti-MEM. The cells were grown for four days after

which the supernatant was clarified by centrifugation. The recombinant ectodomain was purified using a nickel HisTrap FF affinity

column, washed with 10 column volumes of 20 mM imidazole, 25 mM sodium phosphate pH 8.0, and 300 mM NaCl, and eluted

with a 500 mM imidazole gradient. The purified proteins were buffer exchanged and concentrated in 20 mM sodium phosphate

pH 8 and 100 mM NaCl using a 100 kDa centrifugal filter. The proteins were flash frozen and stored at �80�C until use.

Thewildtype, B.1.1.7, and E406WRBDswere produced by transfecting 25mL of Expi293 cells at a density of 2.5 x 106 cells per mL

with 25 mg of DNA using the ExpiFectamine 293 Transfection Kit. The cells were grown for four days and the resulting supernatant was

collected and clarified by centrifugation. The recombinant RBD was purified using a nickel HisTrap HP affinity column, washed with

10 column volumes of 20 mM imidazole, 25 mM sodium phosphate pH 8.0, and 300 mMNaCl, and eluted using a 500 mM imidazole

gradient. The resulting protein was buffer exchanged and concentrated using a 10 kDa centrifugal filter. Next, the purified RBDswere

biotinylated using the BirA biotin-protein ligase reaction kit (Avidity). The biotinylated proteins were re-purified and concentrated as

described above. The proteins were flash frozen and stored at �80�C until use.

Cryo-EM sample preparation and data collection
3 mL of purified SARS-CoV-2 spike ectodomain harboring the E406W mutation at a concentration of 1.6 mg/mL was added to a

freshly glow discharged 2.0/2.0 UltraFoil grid52 (200 mesh). The grid was then plunge frozen using a Vitrobot MarkIV

(ThermoFisher) with a blotting force of 0 and time of 6.5 s at 100% humidity and 23�C. Data were acquired on a FEI Titan Krios trans-

mission electron microscope operated at 300 kV and equipped with a Gatan K3 direct detector and Gatan QuantumGIF energy filter,

operated in zero-loss modewith a slit width of 20 eV. Automated data acquisition was carried out using Leginon.53 The dose rate was

adjusted to 15 counts/pixel/s and each movie was acquired in 75 frames of 40 ms with pixel size of 0.843 Å and a defocus range

comprised between �0.1 and �2.6 mm.

Cryo-EM data processing
Movie frame alignment, estimation of the microscope CTF, particle picking, and extraction (with a downsampled pixel size of 1.686 Å

and box size of 260 pixels2) were completed using WARP.54 Reference-free 2D classification was performed using cryoSPARC to

select for well-defined particle images.55 These selected particles were then used for 3D classification with 50 iterations (angular

sampling 7.5� for 25 iterations followed by 1.8� with local search for 25 iterations) using Relion and a previously reported closedmodel

for the SARS-CoV-2 spike ectodomain (PBD: 6VXX) as the initial model without imposing any symmetry. 3D refinements were carried

out using non-uniform refinement along with per-particle defocus refinement in cryoSPARC56 after which particles images were

subjected to Bayesian polishing using Relion57 and re-extracted with a box size of 512 pixels and a pixel size of 1 Å. Another round

of non-uniform refinement followed by per-particle defocus refinement followed by another non-uniform refinement was conducted

in cryoSPARC. Next, 86 optics groups were defined based on the beamtilt angle used for data collection and another round of non-

uniform refinement with global and per-particle defocus refinement concurrently was conducted in cryoSPARC. To better resolve the

RBD, focus 3D classification was carried out using symmetry expanded particles and amask over residues 440–452 and 495–505 of

the RBD using a tau factor of 200 in Relion.58,59 Particles from the classes with the best resolved local density were selected and then

subjected to local refinement using cryoSPARC. Reported resolutions are based on the gold-standard Fourier shell correlation of

0.143 criterion and Fourier shell correlation curves were corrected for the effects of soft masking by high-resolution noise

substitution.60,61

Model building and refinement
USCF Chimera62 and Coot63 were used to fit atomic models of the SARS-CoV-2 RBD and ectodomain (PBD: 6M0J, 7LXY). Models

were refined and rebuilt into themap using Coot63 and Rosetta64,65 with the RBDmodel being built using themap obtained from local

refinement of the RBD and the ectodomain model being built using the map obtained for the three-fold symmetric ectodomain.

Biolayer interferometry
Biotinylated wildtype, B.1.1.7, or E406WRBD at a concentration of 5 ng/mL in 10X kinetics buffer was loaded at 30C onto pre-hydrat-

ed streptavidin biosensor to a 1 nm total shift. The loaded tips were then dipped into a 1:3 dilution series of monomeric hACE2

beginning at 900 nM, 300 nM, or 7,500 nM for 300 s followed by dissociation in 10X kinetics buffer for 300 s. The resulting data

were baseline subtracted and curves were fitted using Octet Data Analysis HT software v12.0 and plotted in GraphPad Prism 9.

Pseudotyped VSV production
E406W and wildtype pseudotyped VSV particles were produced as previously described.27,28 Briefly, 5 x 106 HEK-293T cells were

seeded in 10 cm2 poly-D-lysine coated plates and grown overnight until they reached�70% confluency. The cells were then washed

5 times with Opti-MEM (Life Technologies) and transfected with 24 mg of plasmid encoding either the wildtype or E406WSARS-CoV-

2 spike protein using Lipofectamine 2000 (Life Technologies). Four hours at transfection, an equal volume of DMEM supplemented

with 20% FBS and 2% PenStrep was added to the cells. Twenty to 24 h following transfection, the cells were washed 5 times with
10 Cell Reports 42, 112621, June 27, 2023
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DMEM and infected with VSVDG/Fluc. Two hours after infection, the cells were washed 5 times with DMEM and grown in DMEM

supplemented with 10% FBS and 1% PenStrep along with an anti-VSV-G antibody (I1-mouse hybridoma supernatant diluted

1:25, from CRL-2700, ATCC). Twenty to 24 h later, the supernatant was collected, clarified by centrifugation at 2,500xg for

10 min, filtered through a 0.45 mm filter, and concentrated 10x using a 30 kDa filter (Amicon). The resulting pseudovirus was frozen

at �80�C until use.

Neutralization assays with vaccine-elicited sera and monoclonal antibodies
For neutralization assays using vaccine-elicited sera, HEK-ACE2 cells were seeded in 96-well poly-D-lysine coated plates at a den-

sity of 30,000 cells per well and grown overnight until they reached approximately 80% confluency. E406W and wildtype pseudovi-

ruses were diluted 1:25 in DMEM and incubated with vaccine-elicited sera for 30 min at room temperature. Growth media was

removed from the HEK-ACE2 cells and the virus-sera mixture was added to the cells. Two hours after infection, an equal volume

of DMEM supplemented with 20% and 2% PenStrep was added to each well and the cells were incubated overnight. After 20–24

h, ONE-Glo EX (Promega) was added to each well and the cells were incubated for 5 min at 37�C. Luminescence values were

measured using a BioTek plate reader.

For neutralization assays using monoclonal antibodies, Vero-TMPRSS2 cells were seeded in 96-well plates at a density of 18,000

cells per overnight until they reached approximately 80% confluency. Neutralizations were conducted as described above with one

modification: prior to the addition of the virus-antibody mixture, Vero-TMPRSS2 cells were washed 3 times with DMEM.

Luminescence readings from the neutralization assays were normalized and analyzed using GraphPad Prism 9. The relative light

unit (RLU) values recorded from uninfected cells were used to define 0% infectivity and RLU values recorded from cells infected with

pseudovirus without sera or antibodies were used to define 100% infectivity. ID50 and IC50 values for sera and monoclonal anti-

bodies, respectively were determined from the normalized data points using a [inhibitor] vs. normalized response – variable slope

model.

QUANTIFICATION AND STATISTICAL ANALYSIS

GraphPad Prism 9 and Octet Data Analysis HT software v12.0 were used to analyze neutralization and binding data, respectively.

Details regarding number of replicates and data analysis can be found in the respective figure legends and Method Details.
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