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Abstract

Epidemiologic studies detected an inverse relationship between HDL-C levels and atherosclerotic 

cardiovascular disease (ASCVD) identifying HDL-C as a major risk factor for ASCVD and 

suggesting atheroprotective functions of HDL. However, the role of HDL-C as a mediator of 

risk for ASCVD has been called into question by the failure of HDL-C raising drugs to reduce 

cardiovascular events in clinical trials. Progress in understanding the heterogeneous nature of 

HDL particles in terms of their protein, lipid and small RNA composition has contributed to 

the realization that HDL-C levels do not necessarily reflect HDL function. The most examined 

atheroprotective function of HDL is reverse cholesterol transport (RCT), whereby HDL removes 

cholesterol from plaque macrophage foam cells and delivers it to the liver for processing and 

excretion into bile. Indeed, in several studies HDL have shown inverse associations between 

HDL cholesterol efflux capacity (CEC) and ASCVD in humans. Inflammation plays a key 

role in the pathogenesis of atherosclerosis and vulnerable plaque formation, and a fundamental 

function of HDL is suppression of inflammatory signaling in macrophages and other cells. 

Oxidation is also a critical process to ASCVD in promoting atherogenic oxidative modifications 

of LDL and cellular inflammation. HDL and its proteins including apolipoprotein AI (apoAI) 

and paraoxonase 1 (PON1) prevent cellular oxidative stress and LDL modifications. Importantly, 

HDL in humans with ASCVD is oxidatively modified rendering HDL dysfunctional and 

proinflammatory. Modification of HDL with reactive carbonyl species, such as malondialdehyde 

(MDA) and isolevuglandins (IsoLG), dramatically impairs the antiatherogenic functions of HDL. 

Importantly, treatment of murine models of atherosclerosis with scavengers of reactive dicarbonyls 

improves HDL function and reduces systemic inflammation, atherosclerosis development, and 

features of plaque instability. Here, we discuss the HDL anti-atherogenic functions in relation 

to oxidative modifications and the potential of reactive dicarbonyl scavengers as a therapeutic 

approach for ASCVD.
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Introduction

In contrast to the direct association of serum LDL-C levels with risk of coronary heart 

disease, the discovery of the inverse relationship of serum HDL-C levels with the incidence 

of coronary heart disease in The Framingham Heart Study, resulted in the description of 

HDL as a protective factor against coronary heart disease.1 This association was found to 

be independent of other risk factors, including LDL-C, in several early prospective studies.2 

These observations identified HDL-C levels as a risk factor and a potential target for therapy 

of atherosclerotic cardiovascular disease and led to decades of research describing multiple 

atheroprotective functions of HDL. However, the role of HDL-C as a mediator of risk for 

ASCVD has been called into question by the failure of clinical trials of HDL-C raising 

drugs, including niacin, fibric acid derivatives, and several CETP inhibitors, to demonstrate 

a benefit in reducing cardiovascular events.3 In addition, Mendelian Randomization studies 

failed to show an association of genetic polymorphisms (SNPs) that impact levels of HDL-C 

on risk for myocardial infarction and CAD.4, 5 Furthermore, studies with large cohorts found 

that the number of HDL particles is a better marker for ASCVD risk than HDL-C levels.3 

Interestingly, mounting evidence shows that very high levels of HDL-C can be associated 

with increased risk of ASCVD.6 In this regard, HDL is a collection of subparticles that differ 

in size, charge, lipid subspecies, and apolipoprotein/protein compositions, all of which can 

impact HDL functions. Progress in understanding the composition of HDL subpopulations 

in the areas of proteomics and lipidomics has revealed the complex heterogeneous nature 

of HDL particles in terms of their protein and lipid composition as well as oxidative 

modifications.3 Furthermore, HDL carries microRNAs and small noncoding RNAs that may 

impact its function.7, 8 Together these findings suggest that HDL-C levels do not necessarily 

reflect the HDL particle number or more importantly, HDL function.3 Consequently, there 

has been growing interest in HDL’s antiatherogenic functions, such as reverse cholesterol 

transport (RCT), and its anti-inflammatory and antioxidant properties, as markers of risk 

and potential therapeutic targets.9 Several HDL based therapies, including recombinant HDL 

infusions, ApoA-I mimetic peptides, ApoA-I transcriptional supraregulator BET inhibitor 

RVX-208 (apabetalone), and antagonism of miR-33 are in various stages of development 

and have been recently reviewed.3 In this review, we will focus on advances in our 

understanding of three of HDL’s antiatherogenic functions: RCT, anti-inflammatory and 

anti-oxidant functions of HDL. Furthermore, we discuss recent evidence showing that 

modification of HDL with reactive dicarbonyl species, such as malondialdehyde (MDA) and 

isolevuglandins (IsoLG), dramatically impairs all three of these antiatherogenic functions of 

HDL, and that prevention of these modifications with dicarbonyl scavengers holds promise 

as a treatment to improve HDL function and reduce the development of atherosclerosis.
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The deleterious effects of oxidative modifications of HDL on atherosclerosis have been 

demonstrated in mouse models showing that administration of oxidized HDL or apoAI 

promotes inflammatory plaque development, whereas native HDL/apoAI promote lesion 

regression and anti-inflammatory remodeling.10, 11 Oxidative modification of HDL occurs 

upon exposure to reactive oxygen species (ROS) and peroxidized lipids. Enzymes that 

generate ROS and have been implicated in atherosclerosis include myeloperoxidase 

(MPO), xanthine oxidase, and NADPH oxidases. Indeed, the majority of apoAI in human 

atherosclerotic plaques is oxidized and associated with MPO.12 ROS generated by these 

enzymes include hypochlorous acid (HOCl), hypobromous acid (HOBr), hypothiocyanous 

acid (HOSCN), isocyanate (CNO-), nitrogen dioxide radical (●NO2), superoxide (O2
●-), 

hydroxyl radical (OH●) and peroxynitrite (ONOO−).13 These ROS act on the amino acids 

of HDL proteins to generate oxidized amino acid species including cysteine (Cys) disulfide 

bonds (Cys-Cys crosslinks), oxidized Met (oxMet), oxidized tryptophan (oxTrp), modified 

and tyrosine, including 3-chlorotyrosine (3-Cl-Tyr), nitrotyrosine (NO2-Tyr), tyrosine 

dimers (Tyr-Tyr), and N-chloroamines. CNO- acts on lysine (Lys) to produce carbamylated-

Lys (Cbl-Lys). ROS (especially ●NO2 and ONOO− ) also act on the polyunsaturated fatty 

acid (PUFA) tail of a phospholipid (PL) or cholesteryl ester (CE) to extract hydrogen, 

generating a lipid radical that then reacts with molecular oxygen to form a lipid peroxyl 

radical. If this lipid peroxyl radical can then extract a hydrogen from an adjacent PUFA, 

the lipid radical reaction rapidly propagates generating both a lipid hydroperoxide and 

another lipid radical at each step. Lipid hydroperoxides undergo secondary reactions to 

form reactive lipid dicarbonyls species, including MDA, IsoLG, 4-oxo-nonenal (ONE), 

and methylglyoxal (MGO), and also reactive lipid monocarbonyl species such as acrolein 

(ACR) and 4-hydroxy-nonenal (HNE) (Figure 1). Lipid peroxidation also generates oxidized 

phospholipids, where the lipid dicarbonyls form esterified to phospholipids, including 

esterified IsoLGs14 and structural analogs of ONE such as 9-keto-12-oxo-10-dodecenoic 

acid (KODA-PC).15 Various amino acids can then be adducted by these reactive lipid 

carbonyls to form stable modifications.13 MDA and IsoLG preferentially modify Lys, but 

Lys can also be modified by HNE, ONE, KODA-PC, and MGO. Cys are readily modified 

by ACR, HNE, and ONE. Histidines (His) are modified by HNE, ONE, KODA-PC and 

ACR and arginines (Arg) are modified by HNE, ONE, and MGO. Detailed evidence for 

contributions of various reactive lipid carbonyls to reducing individual HDL functions will 

be given in later sections.

HDL Reverse Cholesterol Transport (RCT)

First described by Glomset,16 RCT is the process by which HDL removes excess cholesterol 

from peripheral tissues for transport through the plasma and delivery to the liver for either 

direct excretion or conversion into bile acids and subsequent secretion into bile (Figure 

2). Studies have established the atheroprotective effects of HDL in mediating RCT in 

atherosclerotic animal models.17 However, the lack of effects of HDL-C raising treatments 

on reducing CAD risks in humans have called into question the atheroprotective effects of 

HDL RCT in humans. In this regard, the heightened oxidative stress in CAD likely impairs 

every step of RCT by promoting oxidative modifications of HDL thereby negating any 
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benefit of raising HDL-C. Here, we discuss the steps of HDL RCT and their relevance to 

atherosclerosis and the role of oxidative stress.

Cholesterol Efflux

The rate-limiting step in HDL RCT for protection against atherosclerosis is the efflux 

of free cholesterol (FC) to HDL from macrophages. Alleviation of the macrophage 

cholesterol burden is critical to the inhibition of plaque progression as excess membrane 

FC promotes inflammatory signaling and cell death (Discussed later). Cholesterol transport 

from macrophages to HDL/apoAI occurs by four mechanisms (Figure 2). ATP-binding 

cassette transporter A1 (ABCA1) mediates the efflux of phospholipid and FC to lipid-

poor apoAI or pre-β HDL.17–19 In addition, endogenous apoE is an efficient acceptor 

for ABCA1-mediated cholesterol efflux, and the absence of macrophage apoE markedly 

accelerates atherosclerosis.19, 20 Cholesterol efflux to discoidal and mature spherical HDL 

occurs via ATP-binding cassette transporter G1 (ABCG1) and scavenger receptor-class BI 

(SR-BI).18, 21 In vitro studies have shown that, while a large part of the total cholesterol 

efflux from mouse macrophages to serum or the apoB-depleted serum fraction occurs via 

ABCA1 (35%) versus ABCG1 (21%) or SR-BI (9%), a large portion (35%) also occurs 

by aqueous diffusion and/or unknown mechanisms.17, 22 In contrast, cholesterol efflux 

from human macrophage foam cells is largely independent of ABCG1, and SR-BI plays 

a major role.17 The finding that apoAI in normal human arteries is mostly lipid-poor, 

suggests that ABCA1 mediated cholesterol efflux is a major mechanism in preventing 

atherosclerotic lesion formation.23 However, studies suggest that the lipid-poor apoAI has a 

limited capacity to sustain net cholesterol efflux via ABCA1.24 In this regard, ABCG1, SR-

BI, and aqueous diffusion are likely important for driving cholesterol efflux to the discoidal 

particles formed via ABCA1, and all the mechanisms may act in a synergistic fashion.18, 21 

In mediating cholesterol efflux, ABCA1 interacts with apoAI and recycles back and forth 

from the plasma membrane to endo/lysosomal compartments to facilitate release of FC 

derived from hydrolysis of lipid droplet CE by either neutral esterase or acid lipase in the 

process of autophagy.25,26 In contrast, ABCG1 does not interact with HDL, but localizes 

to intracellular vesicles to traffic FC from the golgi and ER to the plasma membrane for 

release to the HDL.27 SR-BI acts intracellularly to facilitate CE clearance by operating 

directly as part of the VPS34/Beclin-1 complex to stimulate autophagosome formation, 

suggesting that ABCA1 and SR-BI cooperate to enhance lipophagy.28 The flux of FC to 

HDL is bi-directional, and the net flux is determined by the direction of the FC gradient, 

which is influenced by the FC and phospholipid subspecies content of the HDL and plasma 

membrane.17, 29 In this regard, HDL with an increased FC/phospholipid ratio, such as 

HDL from SR-BI deficient mice, promotes the accumulation of cholesterol in tissues.30 

In addition, oxidative modifications of HDL/apoAI, including MDA, carbamylation, and 

IsoLG, that occur in subjects with FH or CAD, not only can inhibit cholesterol efflux 

but enhance HDL recognition by scavenger receptors, thereby promoting cholesterol influx 

via endocytic mechanisms.31–38 In vivo RCT studies in C57BL/6 mice have shown that 

cholesterol efflux from macrophage foam cells via ABCA1 and ABCG1 is routed to 

the liver for excretion.39 Consistent with a role for ABCA1 in alleviating macrophage 

cholesterol burden in plaques, deletion of bone marrow ABCA1 accelerates atherosclerosis 

in mice, and humans heterozygous for loss of cholesterol efflux function in the ABCA1 
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gene are at increased CVD risk.18, 40 In contrast, deletion of bone marrow ABCG1 in 

Ldlr−/− and Apoe−/− mice decreases atherosclerosis, which may stem from compensatory 

upregulation of macrophage apoE and ABCA1.41, 42 Indeed, a number of variants of the 

ABCG1 gene in humans have been implicated in enhancing the risk of CAD.43 In contrast 

to ABCA1 and ABCG1, a study using an in vivo RCT assay with cholesterol-normal 

cells in C57BL/6 mice suggested that macrophage cholesterol released via SR-BI is not 

preferentially transported to the liver for processing and excretion.39 However, another study 

by Zanotti and colleagues showed that cholesterol released via SR-B1 is routed for excretion 

in mice treated with an LXR agonist.22 These conflicting results are likely due to differences 

in assays, as the study by Zanotti et. al. used macrophage foam cells to examine RCT, which 

would increase the net cholesterol efflux potential via SR-BI, and also treatment of mice 

with the LXR agonist increased the number of enlarged α-migrating HDL particles, which 

are a preferred acceptor for SR-BI.22, 29 It should also be noted that the contribution of 

ABCA1, ABCG1, and SR-BI mediated cholesterol efflux to RCT in vivo has never been 

tested in atherosclerotic mouse models (Ldlr−/−, Apoe−/−), where oxidative stress clearly 

plays a role. In this regard, studies have established that cholesterol efflux via both ABCA1 

and SR-BI to oxidized forms of HDL can be severely impaired, but some modifications (i.e. 

carbamylation) impair SR-BI cholesterol efflux without impacting ABCA1 activity.32, 38 In 

addition, in vivo MPO-mediated oxidation impairs in vivo RCT from macrophage foam 

cells in wildtype C57BL/6 mice and reduces HDL CEC.44 Furthermore, the premise that 

cholesterol efflux via SR-BI is atheroprotective is substantiated by studies showing that 

deletion of macrophage SR-BI accelerates plaque development in Ldlr−/− and Apoe−/− mice, 

and that macrophages in Scarb1−/− plaques are severely engorged with lipid inclusions with 

only 3% of their cytoplasm lipid-free.45–47 In addition, SR-BI deficient macrophages exhibit 

lipid engorged lysosomes which are enriched in FC, which is consistent with the role of 

SR-BI in autophagy.28, 47 Elucidation of the role of macrophage cholesterol efflux via SR-BI 

in human atherosclerosis is complicated in that SR-BI is a multifunctional receptor that 

is expressed in multiple tissues. However, carriers of the P376L variant in SR-BI are at 

increased risk of CAD, whereas carriers of the P297S variant do not have enhanced CAD 

risk.48–50 These differences are likely due to the degree of loss of SR-BI function and HDL 

dysfunction.48, 50 Indeed, P376L variant carriers have increased plasma levels of oxidized 

HDL.49 Interestingly, macrophage SR-BI internalizes oxidized LDL as well as oxidized 

forms of HDL for degradation rather than mediating efflux, thereby promoting cholesterol 

accumulation.32, 38 At present it is unknown, whether, similar to other scavenger receptors 

(i.e. CD36, LOX-1, SRA1) that mediate an inflammatory response to oxidized lipoproteins, 

SR-BI internalization of oxidized HDL is proinflammatory.31, 51, 52 It is possible that SR-BI 

provides an anti-inflammatory signaling pathway for removal of toxic HDL/LDL as it does 

in the efferocytosis of plaque apoptotic cells.53

Lecithin:cholesterol acyltransferase (LCAT)

Once in plasma, HDL FC is esterified by LCAT (Figure 2). ApoAI activates LCAT to drive 

the net movement of cholesterol from the periphery to plasma. The importance of LCAT 

in RCT was substantiated in studies showing in vivo that there is enhanced macrophage 

cholesterol efflux and subsequent cholesterol delivery to the liver and biliary excretion 

in atherosclerotic Ldlr−/− mice and cynomolgus monkeys treated with a novel LCAT 
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activator.54 In addition, tracer studies in humans suggested that the CE formed by LCAT 

is preferentially routed for excretion.55 Nonetheless, the association of LCAT activity with 

CAD risk in humans is controversial. While there is a strong association between HDL-C 

levels and LCAT variants in humans, there is no link to increased CAD risk.56 Similar 

results were observed in a large Mendelian randomization study.57 In addition, humans 

that have complete loss of LCAT activity are not at increased risk for the development 

of CAD, which is likely due to their extremely low levels of LDL-C.58 In this regard, 

subjects that are heterozygous for LCAT loss of function mutations exhibit higher LDL-C 

and lower HDL-C levels and have increased incidence of CAD.17 Interestingly, studies 

have also demonstrated that a number of atherosclerotic mouse models that have increased 

oxidative stress naturally, and/or from consuming a western diet, have impaired LCAT 

activity resulting from oxidation of apoAI or LCAT.59–61 Importantly, overexpression of 

LCAT or increased activation of LCAT reduces atherosclerosis in a number of mouse models 

including Ldlr−/−, Scarb1−/−, and Ldlr−/−;ob/ob mice.54, 61, 62 It is also worth noting that the 

plasma and plaques of humans with CAD contain oxidized forms of apoAI that are known 

to inhibit LCAT, including nitrated-apoAI, acrolein-apoAI, and carbamylated-apoAI.32, 63–66 

In this regard, studies are consistent with impaired LCAT activity being critical to CAD 

in humans as LCAT activity is significantly decreased in humans with CAD compared 

to controls67. In a Phase 2a study, MEDI6012, an active recombinant human (rh)LCAT, 

showed safety and increased HDL-C, apoAI, non-ABCA1 mediated CEC and reduced LDL 

particles, suggesting enhanced RCT.68 However, in a recent Phase 2b study, treatment 

of patients with acute ST-segment–elevation myocardial infarction with MEDI6012 did 

not result in a significant reduction in infarct size or noncalcified plaque volume at 12 

weeks.69 Limitations of this study included a smaller than anticipated infarct size that 

may have limited achievement of a significant outcome. Further studies will be required 

to demonstrate whether treatment with rhLCAT can promote RCT and improve ASCVD 

outcomes.

Plasma phospholipid transfer protein (PLTP)

PLTP transfers phospholipids among HDL subpopulations and between VLDL and HDL 

(Figure 2). Remodeling of HDL in interstitial fluid by PLTP results in the formation of 

lipid-poor apoAI or pre-β HDL to act as acceptors of cellular cholesterol.70 Despite the 

increased production of pre-β HDL by interstitial PLTP, increased plasma PLTP activity is 

associated with enhanced atherosclerosis in humans and mice, effects that are likely due to 

reduced production of nascent HDL by hepatic ABCA1 and increased VLDL production.70 

Thus far, little is known about the effects of HDL oxidation on PLTP activity. However, in 

vitro studies found that HOCl− prevents PLTP mediated dissociation of pre-β HDL from 

HDL3, which could impact RCT.71

CE Transfer Protein (CETP)

HDL is further remodeled in humans by CE transfer protein (CETP), which is absent in 

mice. CETP transfers CEs from HDL to VLDL and triglycerides from VLDL to HDL 

resulting in the conversion of VLDL to IDL and LDL(Figure 2).9 Importantly, CETP activity 

improves the ability of HDL to prevent oxidation of LDL by transferring peroxidized lipids 

from LDL to HDL for inactivation by HDL, as well as by delivery to the liver directly 
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or via SR-BI.72, 73 Indeed, humans with homozygous CETP deficiency have increased 

MDA-LDL74 and oxidized HDL enriched with modified phospholipids.75 In addition, CETP 

expression in mice enhances the hepatic uptake of HDL CE via SR-BI in vivo, which may 

be due to its transfer activity as well as by CETP activity enhancing SR-BI expression.76, 77 

Furthermore, studies suggested an independent mechanism for direct delivery of CE to the 

liver by CETP.78 However, it is worth noting that other studies showed that transgenic 

expression of CETP in mice increases RCT by promoting clearance of cholesterol via the 

hepatic LDL receptor.79 In addition, studies have reported variable results on the effects of 

transgenic expression of CETP on atherosclerosis in mice, which is likely due to differences 

in the mouse model tested.76, 80 In this regard, CETP likely enhances atherosclerosis in 

mice under conditions where hepatic clearance of LDL/remnant particles is impaired (i.e. 

Ldlr−/− and Apoe−/−). Similarly, the impact of CETP on atherosclerosis in humans has 

been variable, which may depend upon the populations examined (sex, CETP variants, 

alcohol consumption) and/or the degree of CETP activity (for an in depth review see,81). 

A number of studies showed that CETP activity was inversely associated with CAD 

and/or that lower activity was associated with CVD events or mortality including the 

Framingham Heart Study, the LURIC Study, and KAROLA.81, 82 In contrast, a recent 

large Mendelian randomization study in humans with CETP genetic variants found that 

a decrease in CETP activity was associated with reduced CAD risk, but the effect was 

suggested to be due more to the decrease in apoB levels (−1.4 mg/dL) than the increase in 

HDL-C levels (+4.6 mgd/L).83 However, other studies on CETP genetic variants suggested 

a higher risk of CAD.81, 82, 84 In addition, humans with complete loss of function due to 

mutations in the CETP gene have 3 to 6-fold higher HDL-C levels compared to controls, 

but they have enlarged HDL that is enriched with apoCIII, apoAII, and apoE and has 

reduced PON1 activity and CEC.82, 85 Regardless of the controversy over the atherogenic 

effects of CETP, the premise that CETP inhibition would raise HDL-C, lower LDL-C, 

and presumably increase direct delivery of HDL-C to the liver, led to the development of 

CETP inhibitors such as torcetrapib, dalcetrapib, anacetrapib, and evacetrapib as potential 

therapeutic treatment for CAD in humans. However, these clinical trials have been largely 

disappointing. Administration of torcetrapib in humans with enhanced CVD risk, increased 

CVD events and mortality while raising HDL-C by 72%.86 Despite raising HDL-C by 31% 

and 130%, respectively, dalcetrapib and evacetrapib had no effect on CVD events.87, 88 

Although anacetrapib reduced CVD events, the effect was attributed to lower LDL-C levels 

and not an increase in HDL, and the sponsor decided not to pursue approval.89 Similar 

to CETP deficiency, CETP inhibition in humans led to the accumulation of apoC3 and 

apoE enriched HDL particles, which have impaired CEC and are associated with increased 

CAD risk.90 Importantly, CETP inhibition in humans failed to enhance in vivo HDL RCT.91 

These observations suggest that uptake via the LDL receptor is the preferred route for 

delivery of cholesterol to the liver in humans. However, the findings that CETP can stimulate 

HDL CE selective uptake via SR-BI and that loss of CETP decreases hepatic SR-BI 

expression raises the possibility that CETP inhibition may also have impacted cholesterol 

delivery via the SR-BI pathway.76, 77 Importantly, CETP inhibition in humans decreases the 

proportion of HDL particles containing PON1 and in vitro studies have shown that CETP 

inhibition markedly impairs PON1 activity.90, 92 Taken together, these studies substantiate 

that raising HDL-C is not beneficial without improving the number of functional HDL 
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particles and suggest that CETP inhibition will exacerbate the effects of the heightened 

oxidative stress in individuals with CAD, thereby worsening HDL dysfunction in promoting 

RCT and preventing oxidation. Indeed, Hine et al.73 proposed that the failure of CETP 

inhibitors to reduce atherosclerosis maybe due to the loss of CETP activity reducing LDL 

oxidation. In contrast, Schmidt et al. suggested that the failures of CETP inhibitors are 

likely compound and due to the heterogeneity of effects of the candidate drugs tested.93 

Furthermore, they performed Mendelian randomization analyses that support CETP as an 

effective target for CHD prevention.93 A potential limitation of CETP inhibition is that it 

promotes accumulation of mature HDL; whereas treatment with dicarbonyl scavengers has 

the potential to block the modification of HDL in vivo and to protect the function of newly 

formed HDL.

Delivery of HDL-C to the Liver

In humans, the cholesteryl esters transferred from HDL to LDL by CETP are internalized 

by the hepatic LDL receptor for processing and/or trafficking of the cholesterol into bile, 

comprising a major route of delivery of cholesterol from HDL to the liver in humans 

(Figure 2). The importance of this pathway is exemplified in humans with FH who have 

markedly elevated levels of LDL-C due to mutations in the Ldlr gene9. The lack of this 

route in FH subjects leads to oxidation of LDL and HDL resulting in HDL dysfunction 

due in part to highly reactive dicarbonyls, including MDA, ONE, and IsoLG.34–37 In mice, 

the main route of hepatic delivery is selective uptake of HDL CE and influx of HDL FC 

via SR-BI (Figure 2).94, 95 Remodeling of HDL by CETP and hepatic triglyceride lipase 

enhances HDL CE uptake via SR-BI.96 Although less substantial than the LDLR route, 

SR-BI also mediates direct delivery of HDL-C in humans (Figure 2) as substantiated by 

markedly elevated levels of HDL-C in subjects with loss of CE selective uptake function 

mutations in the Scarb1 gene.48–50 As shown recently, human carriers of the P376L Scarb1 
variant also have elevated oxidized HDL.49 In addition, human carriers of a number of the 

Scarb1 gene variants have markedly elevated levels of lipoprotein (a) Lp(a), an atherogenic 

LDL particle that is heavily enriched in oxidized lipids, suggesting that SR-BI is the 

preferential route for selective uptake of Lp(a) cholesterol.97 In this regard, studies have 

shown that an in vivo function of SR-BI is to detoxify both HDL and Lp(a) via the selective 

uptake of oxidized phospholipids and CEs, thereby reducing the atherogenicity of Lp(a) 

and preserving HDL antioxidant status.98, 99 Regardless of the pathway, it is likely that 

the increased oxidative stress in humans with CAD would impair both delivery routes for 

hepatic processing of cholesterol to the feces as the selective uptake of HDL CE via SR-BI 

is severely impaired by both HDL and LDL oxidation, and oxidation of LDL/HDL promotes 

uptake by nonparenchymal cells and macrophages in other tissues.100, 101

Measurements of HDL RCT in Humans and Relevance to Atherosclerosis

As the most easily measured step in RCT, emphasis has been placed on measurements of 

HDL CEC as it relates to CAD and CVD events and mortality in humans. Most studies 

have used assays geared toward measurement of ABCA1-mediated HDL CEC involving 

upregulation of ABCA1 with cAMP in cholesterol-normal mouse macrophages. Using this 

system, Khera and colleagues were the first to report an inverse relationship between CAD 

and HDL CEC that was independent of HDL-C, suggesting that HDL function is more 
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relevant to CAD risk.102 This premise was then bolstered by other studies demonstrating 

an inverse association between HDL CEC and incidents of CVD events.103, 104 However, 

in patients with high C reactive protein (CRP), there was no association of HDL CEC 

with incident CVD events at baseline, but after statin treatment and lowering of CRP, an 

inverse association was detected.105 Similar results were observed in a CKD population.106 

These studies raise the possibility that measurements of ABCA1 CEC do not provide 

a reliable assessment of CVD event risk in populations with heightened inflammation. 

However, studies using cholesterol loaded THP-1 cells, which would test the overall ability 

of HDL to alleviate the macrophage cholesterol burden via multiple mechanisms and are 

likely more representative of human plaque cells, also found no association between HDL 

CEC and CAD and/or CVD events in subjects with either Type 2 Diabetes Mellitus or 

normal glucose metabolism.107 Similar results were observed in subjects with end stage 

renal disease.108 Taken together, the relationship between HDL CEC and CVD events is 

likely lost in populations with more vulnerable plaques with increased inflammation and 

oxidative stress. Indeed, other studies using the ABCA1 CEC system have shown positive 

associations between HDL CEC and major CVD events, including in populations with either 

CKD or enriched with smokers.104, 109 Similarly, earlier studies with smaller populations 

showed a positive association with major CVD events, which is consistent with studies 

showing that plasma pre-β HDL levels are positively associated with CAD and CVD 

events.110–112 Indeed, a number of populations with increased inflammation and oxidative 

stress (i.e. diabetics, hypertriglyceridemic, renal impaired, postmenopausal women with 

CAD) have increased pre-β HDL levels and ABCA1 CEC compared to controls.104, 113–116 

Taken together, these observations highlight that in certain populations with systemic 

inflammation, HDL RCT is impaired in vivo either via decreased expression or function 

of ABCA1 and/or decreased maturation of HDL (i.e. decreased LCAT). In this regard, 

a number of these populations have impaired LCAT activity.67, 116–118 In addition, novel 

single cell analyses determined that proinflammatory macrophage populations (IL-1β+) in 

advanced plaques of humans express lower levels of lipid handling genes including ABCA1, 

ABCG1, and apoE.119 These observations also stress that measuring whole body HDL 

RCT may be a better predictor of CAD and CVD events in humans. The novel method 

recently developed by Cuchel and colleagues using [H3]-cholesterol-labeled nanoparticles to 

track the movement of macrophage cholesterol to feces in humans will hopefully make this 

examination feasible.120

HDL Anti-inflammatory Function

The CANTOS trial supports the importance of inflammation in atherosclerotic 

cardiovascular disease as treatment of humans with an IL-1β monoclonal antibody 

lowered recurrent cardiovascular events independent of cholesterol lowering.121 Abundant 

evidence supports that HDL/ apoAI impairs inflammatory signaling, and the CANTOS 

trial substantiates the need to preserve HDL anti-inflammatory signaling pathways in order 

to reduce the residual risk of CVD events. Increased oxidative modifications of HDL/

ApoAI not only impair anti-inflammatory signaling but generate extremely proinflammatory 

HDL particles.31, 32, 34, 36, 51, 122, 123 HDL exerts anti-inflammatory effects on all cell 

types relevant to atherosclerosis, which has been detailed in recent reviews.124 Here, we 
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discuss the effects of HDL/ApoAI on endothelial activation, monocytosis, and macrophage 

inflammation as it relates to atherosclerosis and oxidative stress.

Effects of HDL/ApoAI on Endothelial Cell Activation

One of the early events in atherosclerosis is endothelial cell activation and a compromised 

endothelial barrier.9 Triggers such as oxidized LDL and TNF-α activate nuclear factor 

kappa B (NF‐κB) transcriptional activation leading to increased expression of inflammatory 

monocyte adhesion molecules and cytokines and downregulation of endothelial nitric 

oxide synthase (eNOS), thereby promoting increased monocyte infiltration (Figure 3). 

HDL is critical to reducing the inflammatory response by impairing endothelial cell 

activation and maintaining endothelial barrier integrity via activation of eNOS (see detailed 

review,125). Interaction of endothelial cell SR-BI with HDL activates eNOS by stimulating 

a signaling cascade involving Src Tyrosine kinase, PI-3K, Akt kinase, and Erk1/2 MAPK 

and phosphorylation of eNOS.125 Cholesterol efflux via SR-BI is required for activation 

of eNOS.126 ABCG1 also promotes NO production by stimulating efflux of cholesterol 

and oxidized cholesterol and relocating eNOS away from caveolin-1.127 In addition, the 

HDL bioactive lipid, sphingosine-1-phosphate (S1P), which is complexed to apoM on 

HDL, also mediates activation of eNOS by interaction with S1P1/3 receptors to induce 

PI-3K, Akt signaling.125 The importance of the HDL/apoM/S1P complex in maintaining 

vascular integrity has been demonstrated in vivo where deletion and/or transgenic expression 

of apoM have opposite effects on barrier function.128, 129 It is also worth noting that 

both of the HDL SR-BI and S1P1/3 receptor signaling pathways stimulate endothelial cell 

survival and migration.125 Importantly, the HDL induced production of NO in endothelial 

cells reduces NF‐κB transcriptional activation, thereby decreasing expression of monocyte 

adhesion molecules (VCAM-1, ICAM-1, and P-selectin) (Figure 3) and proinflammatory 

receptors (toll-like receptor 2, TLR2) and cytokines (MCP-1 and IL-8).125 In addition, 

HDL/ApoAI binding to SR-BI inhibits adhesion molecule expression by activating Akt 

to upregulate anti-inflammatory heme oxygenase-1 expression and 3-beta-hydroxysteroid-

delta reductase.125, 130 The HDL signaling pathways via S1P1/3 receptors and ABCG1 

also prevent activation of endothelial cell nucleotide oligomerization domain-like receptor 

protein with pyrin domain containing 3 (NLRP3) inflammasome and pyroptosis.131, 132 

A number of studies have suggested that HDL induced endothelial cell NO production 

is relevant to atherosclerosis in humans. HDL from subjects with Type 2 Diabetes have 

reduced ability to activate eNOS and HDL bound S1P is inversely associated with the 

severity of CAD.133, 134 HDL from CAD versus control subjects has reduced capacity 

to stimulate eNOS and prevent inflammatory/adhesion gene expression in endothelial 

cells.51, 135 Importantly, studies have shown that infusion of functional HDL into 

hypercholesterolemic or diabetic humans and subjects with low HDL due to heterozygous 

ABCA1 mutations stimulates eNOS activation and vasodilation.125, 136, 137 In addition, 

a recent study demonstrated that HDL endothelial cell anti-inflammatory capacity was 

inversely associated with incident CVD events in a general population, effects that were 

independent of HDL-C levels and HDL CEC.135 Interestingly, studies have shown that 

HDL from CAD subjects activates protein kinase CβII via LOX-1 leading to inhibition 

of eNOS activity via a mechanism involving reduced HDL PON1 activity and oxidative 

modification by endothelial cells.51 In addition, inhibition of PON1 in HDL from control 

Linton et al. Page 10

Circ Res. Author manuscript; available in PMC 2024 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



subjects leads to MDA modification of HDL and activation of the LOX-1/PKCβII pathway, 

showing that oxidative modification impairs HDL endothelial cell anti-inflammatory 

capacity.51 Furthermore, a recent study demonstrated that the plasma levels of HDL with 

LOX-1 binding capability in a Japanese population were associated with coronary artery 

calcification independent of HDL-C and particle number.138 Taken together, these studies 

highlight that HDL endothelial cell anti-inflammatory capacity and/or HDL oxidative 

modifications may be a viable marker of incident CVD risk.

Effects of HDL/ApoAI on Monocytosis

The number of blood monocytes are increased in humans with hypercholesterolemia 

and CAD (Figure 3).139 Studies in mice have shown that inflammatory Ly6Chi versus 

anti-inflammatory, patrolling Ly6Clow monocytes dominate hypercholesterolemia-associated 

monocytosis in mice and give rise to inflammatory macrophages in the atheroma (Figure 

3).140 Human monocytes are heterogenous, but have been divided into three major subsets 

based on the differential expression of the lipopolysaccharide (LPS) receptor (CD14) and the 

FcγIII receptor (CD16) (for in depth reviews see139, 141). The classical CD14++CD16− and 

non-classical CD14+CD16++ cells subsets are the human equivalent of the mouse Ly6Chi 

and Ly6Clow monocytes.139 However, it was later determined that the CD16+ positive 

monocytes possess both anti-inflammatory and inflammatory properties, and this subset 

was further divided into non-classical CD14+CD16++ and intermediate CD14++CD16+ 

cells. CD14++CD16+ cells share some properties with both classical and non-classical 

monocytes but are distinguished by CCR5 (RANTES, MIP-1α, and MIP-1β receptor) 

expression and by the ability to produce inflammatory cytokines (IL-1β and TNF-α) and 

ROS.139 Indeed, studies have shown that the numbers of intermediate CD14++CD16+ 

monocytes are independently associated with CVD events in subjects with CKD and CAD 

and in a randomized population.139, 142, 143 The increased number of blood monocytes 

in humans and mouse models with CAD results from enhanced proliferation of bone 

marrow hematopoietic stem and progenitor cells (HSPCs) due to hypercholesterolemia 

induced lipid raft signaling and ROS production (Figure 3).141, 144 LDL and oxidized LDL 

induce expansion of granulocyte monocyte progenitors (GMPs), whereas functional HDL 

prevents the expansion via a number of signaling pathways, including ABCA1, ABCG1, 

and SR-BI.141, 145, 146 ABCA1 and ABCG1 expressed on HSPCs promote cholesterol 

efflux to lipid-poor apoAI or HDL, thereby reducing plasma membrane lipid rafts and 

decreasing cell surface levels of the common β subunit of the IL-3/granulocyte-macrophage 

colony-stimulating factor (GM-CSF) receptor.141 In addition, HSPCs express abundant 

apoE, which promotes phospholipid and cholesterol efflux via ABCA1 and ABCG1 to 

reduce proliferative IL-3/GM-CSF receptor signaling.141 SR-BI interaction with HDL limits 

proliferation of HSPCs by reducing activation of Akt and p38MAPK resulting in less 

ROS production.146 The importance of these HDL/apoAI/apoE signaling pathways to 

HSPCs expansion is substantiated in studies demonstrating that mice with bone marrow 

deficient in ABCA1, ABCG1, and/or SR-BI have markedly enhanced inflammatory Ly6Chi 

monocytosis, which exacerbates lesion progression.141, 146 It is also worth noting that HDL 

from humans with CAD, diabetes, FH, and CKD and subjects who smoke have oxidative 

modifications, which are known to impair the ability of HDL to promote cholesterol efflux 

Linton et al. Page 11

Circ Res. Author manuscript; available in PMC 2024 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and prevent cellular ROS production, which likely contributes to the enhanced monocytosis 

and accelerated atherosclerosis in these populations.31–38, 138, 147, 148

Effects of HDL/ApoAI on Macrophages

Studies have established that macrophage inflammation is a key driver of atherosclerosis 

progression and that inflammatory resolution is critical to preventing vulnerable plaque 

formation and promoting lesion remodeling and/or regression.9 Macrophages can exhibit 

pro-inflammatory versus anti-inflammatory properties depending upon the environment, 

and HDL modulates the macrophage response to inflammatory stimuli. In the plaque, 

TLR ligands such as LPS and oxidized LDL and phospholipids promote inflammatory 

cytokine production.9 Intestinally derived HDL3 binds LPS, thereby preventing entry into 

the plaque.149 HDL/apoAI also directly inhibits TLR signaling by promoting cholesterol 

efflux via ABCA1/ABCG1 to reduce plasma membrane lipid raft content of TLRs, which 

results in decreased myeloid differentiation primary response 88 (MyD88) and TIR-domain–

containing adapter-inducing interferon-β (TRIF) signaling, culminating in suppression of 

NF-κB and type I interferon (IFN) activity.150, 151 In addition, HDL reduces inflammatory 

signaling independently from its CEC function by relocating the TRIF-related adaptor 

molecule from the plasma membrane as well as by enhancing expression of activating 

transcription factor 3 to reduce inflammatory gene expression downstream of NF-κB 

(Figure 3).151, 152 Furthermore, HDL interacts with SR-BI to activate Akt and suppress 

p38, Jnk, and NF-κB activation and TLR expression.94, 153, 154 The suppression of NF-κB 

activation by HDL/ApoAI reduces expression of the NLRP3 inflammasome components, 

thereby reducing TLR priming of inflammasome activation and secretion of IL-1β and 

IL-18 in response to other signals such as excess FC (Figure 3).155, 156 One of the most 

important processes to reduce uncontrolled inflammation, necrotic death, and formation 

of the vulnerable plaque is the efficient efferocytosis of apoptotic cells,9 and evidence 

is accumulating that HDL facilitates macrophage efferocytosis. HDL induces an anti-

inflammatory macrophage phenotype via JAK1 signaling to activate STAT6 leading to 

enhanced expression of arginase-1, which metabolizes apoptotic cell arginine, resulting in 

increased activation of Rac1 to facilitate continual rounds of efferocytosis (Figure 3).157, 158 

In addition, HDL interacts with T regulatory cell-SR-BI to promote survival and IL-13 

secretion, which propagates efferocytosis signaling via stimulation of macrophage IL-10 

production (Figure 3).159, 160 As impaired autophagy facilitates plaque inflammasome 

activation and uncontrolled death, thereby impeding efferocytosis, the roles of ABCA1 and 

SR-BI in alleviating the efferocyte lysosomal cholesterol burden is also critical to vulnerable 

lesion formation (Figure 3).26, 28, 161 The importance of the HDL anti-inflammatory 

pathways has been demonstrated in atherosclerotic mice, where deletion of bone marrow 

ABCA1, ABCG1, and/or SR-BI markedly increases systemic inflammation and plaque 

necrosis.28, 53, 150, 156 Similar findings have been demonstrated in mice that are deficient in 

HDL (i.e. Apoe−/−, Ldlr−/−Apoa1−/−) or that have dysfunctional HDL (Scarb1−/−Ldlr−/−, 

Scarb1−/−ApoeR61h/h).162–164 Furthermore, humans that are heterozygous for loss of 

ABCA1 function have enhanced systemic and plaque inflammation165. It is also worth 

noting that HDL from humans with CAD versus controls have decreased ability to prevent 

macrophage inflammation in response to TLR ligands, and that oxidative modifications 
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of the HDL heighten proinflammatory signaling via other pathways (Discussed in detail 

later).31, 32, 34, 36, 37

HDL antioxidant function

Similar to its role in removing cholesterol from peripheral tissues via RCT, HDL also 

serves to protect other lipoproteins and cells from oxidative damage by removing and 

inactivating lipid hydroperoxides from other lipoproteins and cells. The mechanisms of 

HDL’s antioxidant activity have been primarily studied using its effects on LDL oxidation as 

a model.166 HDL significantly inhibits the peroxidation of LDL lipids by Cu2+, while only 

undergoing minimal lipid peroxidation itself.167 Importantly, HDL’s antioxidant activity 

requires enzyme activity rather than its chelation of redox-metals.168 CETP facilitates 

the transfer of phospholipid and CE hydroperoxides from oxidized LDL to HDL, where 

these lipid hydroperoxides are reduced to lipid hydroxides, terminating peroxidation chain 

reactions.72, 73 PON1 appears to be the most important antioxidant enzyme associated with 

HDL. Other key proteins with antioxidant activity associated with HDL include apoAI, 

apoA2, apoA4, apoE, apoM, serum amyloid A, and potentially others.166

PON1 associates with HDL through its cooperative binding to both apoAI and adjacent 

phospholipids (Figure 4).169 Purified PON1 effectively inhibits Cu2+-induced peroxidation 

of LDL.167 PON1 catalyzes the hydrolysis of lipid peroxides170 as well as catalyzing 

lipolactonase, paraoxonase, and arylesterase activities, with all of these activities being 

strongly correlated.171 Importantly, the enzymatic activity of PON1 is markedly increased 

by its association with apoAI.172 For this reason, apoAI modifications that decrease the 

ability of PON1 to bind have the net effect of decreasing PON1 activity.34, 173 Besides 

its direct antioxidant enzyme activity, PON1 may also exert antioxidant effects indirectly 

by inhibiting MPO activity (Figure 4). Both PON1 and MPO bind to apoAI, and PON1 

binding markedly inhibits MPO’s activity (and vice versa).169 Both animal and clinical 

studies support an important role for PON1 in protecting against atherosclerosis. Transgenic 

expression of human PON1 reduces atherosclerosis in Ldlr−/−; ob/ob mice174, while deleting 

Pon1 exacerbates atherosclerosis in Apoe−/− mice175. Two common polymorphisms, L55M 

and Q192R, are found in the human PON1 gene. These polymorphisms alter PON1 activity, 

as well as the risk for cardiovascular disease.176–179 Importantly, PON1 activity appears 

to be markedly reduced in patients with verified cardiovascular disease.180 One potential 

mechanism for reduced PON1 activity is oxidative modification of PON1 and apoAI.

ApoA1 directly contributes its own antioxidant activity to HDL, in addition to enhancing 

PON1 activity (Figure 4). Mature, processed human apoAI includes three methionine (Met) 

residues, Met86, Met112, and Met148. Incubation of either HDL or isolated apoAI with 

CE hydroperoxides or phospholipid hydroperoxides reduces these lipid hydroperoxides to 

lipid hydroxides with concomitant oxidation of Met residues.181 In canine apoAI, valine 

and leucine are substituted for Met112 and Met148, respectively, and canine HDL shows 

far weaker antioxidant activity than human HDL.181 Interestingly, oxidation of the Met 

residues of apoAI enhances, rather than diminishes, its capacity to catalyze cholesterol and 

phospholipid efflux.182
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ApoA2 can replace one or more apoAI molecules on an individual HDL lipoprotein particle, 

with apoA2 contributing 12% to 32% of the total apoAI/2 depending on the individual HDL 

subfraction examined.183 Recombinant HDL particles generated exclusively with apoA2 

show greater capacity to reduce lipid hydroperoxides to hydroxides than those generated 

with exclusively apoAI (Figue 4).181 However, transgenic mice overexpressing apoA2 show 

significantly worsened atherosclerosis.184 The effect of apoA2 overexpression may be the 

result of apoA2 association with native HDL displacing PON1, leading to an overall net 

negative impact on HDL antioxidant activity.184

ApoA4 is synthesized in the intestine and initially associates with chylomicrons in lymph. 

In plasma, about 25% of this apoA4 transfers to HDL, while the remaining circulates in 

a lipoprotein-free fraction.185, 186 Purified apoA4 inhibits lipid peroxidation when Cu2+ is 

used to oxidize lymph and LDL.187 Overexpression of apoA4 reduces oxidative damage and 

atherosclerosis in vivo,188 but whether these protective effects depend on its association with 

HDL remains to be demonstrated.

ApoE associates with chylomicron remnants, VLDL, IDL, and HDL. ApoE has three 

isoforms (ε2,ε3,and ε4) with ε3 being the most common isoform in human populations. 

Compared to the ε3, the ε2 and ε4 isoforms increase risk for cardiovascular disease and 

the ε4 isoform increases risk for Alzheimer’s disease.189 In vitro, all three isoforms provide 

some measure of protection against against H2O2 induced cytotoxicity or Cu2+ induced 

LDL oxidation, with rank order of efficacy being ε2>ε3>ε4,190, 191 but when antioxidant 

activity is measured by protection against macrophage-induced LDL oxidation, the ε4 

isoform shows greater efficacy.191 These modest and contradictory differences suggest that 

the antioxidant activity of apoE is not as relevant to protection against atherogenesis as its 

effects on lipoprotein clearance and/or the impact of macrophage endogenous apoE effects 

on cholesterol efflux and inflammation.9

ApoM associates with all lipoprotein particles, but is most enriched in HDL, with about 5% 

of HDL particles carrying apoM.192 HDL containing apoM more efficiently inhibits Cu2+-

mediated LDL oxidation than HDL lacking apoM.192 One potential mechanism for this 

antioxidant effect is the ability of apoM to bind and sequester oxidized phospholipids193. 

Ldlr−/− mice with transgenic expression of apoM have significantly less atherosclerosis than 

non-transgenic Ldlr−/− mice;194 however, whether this anti-atherosclerosis effect is the result 

of HDL antioxidant activity is unclear.

In summary, the antioxidant activities of HDL derive from multiple components associated 

with these lipoproteins. For some of these proteins, association with HDL may not be 

essential to exert their protective effects, but it seems likely that HDL acts as an organizing 

scaffold to coordinate their activities and thereby maximize their effectiveness.

Oxidative modification of HDL proteins in vivo

HDL isolated from patients with cardiovascular disease or directly from atherosclerotic 

lesions shows strong evidence of enhanced oxidative modification both by amino acid 

oxidation and adduction of lipid carbonyls, but whether the extent of modification is 
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sufficient to fully account for HDL dysfunction remains an open question. One challenge 

to capturing the full extent of HDL modification in vivo is the number of different 

modifications, especially in terms of those formed by reactive lipid carbonyls. For 

instance, when IsoLG reacts with Lys, it can form six stable monoadducts (including 

the IsoLG-lactam-Lys adduct shown in Fig. 1c) and multiple crosslinked Lys adduct 

species (including the simplest IsoLG-dipyrrole crosslinked adduct shown in Figure 

1d). Furthermore, IsoLGs initially form esterified to phospholipids and then undergo 

hydrolysis by an as-yet-uncharacterized phospholipase, but esterified adducts are difficult 

to quantitatively convert to their unesterified forms due to their lability to even mild 

saponification conditions.195 While MDA primarily forms N-propenal-Lys monoadducts 

(Fig.1a) and Lys-1-amino-3-iminopropene-Lys crosslinks (Figure 1b), it can also form N-

dihydropyridine-Lys monoadducts, and small amounts of N-propenal-His monoadducts and 

N-propenal-Arg monoadducts. ACR can form S-propanal-Cys monoadducts (Figure 1g) and 

His-propenamine-Cys crosslinks (Fig. 1h), but also N-3-formyl-3,4-dehydropiperidino-Lys 

monoadducts, N,N-Propano-Arg monoadducts, N-propanal-His monoadducts, and a number 

other propenamine crosslinks. ONE forms N-4-ketoamide-Lys monoadducts (Fig. 1e) and 

Lys-pyrrole-Cys crosslinks (Fig. 1f), but also Lys-pyrrole-His crosslinks and Lys-pyrrole-

Arg crosslinks. Thus, monitoring all possible post-translational modifications of apoAI or 

other HDL protein is highly challenging. Given these limitations, typically only levels of 

the most readily measurable of the oxidative modifications are reported. While this may 

substantially underestimate the total extent of modification, it does allow for comparison 

between different patient populations or tissue sites.

Serum HDL isolated from patients with coronary artery disease showed increased levels of 

3-Cl-Tyr, NO2-Tyr, and carbamyl-Lys compared to control individuals.12, 196 ApoAI isolated 

from patients with CAD compared to controls also showed increased 3-Cl-Tyr, NO2-Tyr, 

and carbamyl-Lys modification196–198. Levels of Lys modified by IsoLG, ONE, ACR, HNE, 

and MDA are increased in serum HDL isolated from individuals with CAD and/or FH, who 

are at increased risk of early onset of atherosclerotic cardiovascular disease.34–36, 199 In 

addition, HNE and MDA adducts as well as carbamyl-apoAI are increased in HDL from 

individuals with CKD, which is associated with increased risk of ASCVD32, 200. Urinary 

apoAI from individuals with CKD shows higher levels of IsoLG modification.201

Another challenge to understanding the actual extent of HDL modification in vivo and 

whether this correlates with disease progression is that modification of HDL proteins such 

as apoAI appears to primarily occur outside the plasma compartment. This conclusion 

is based on the findings that levels of apoAI modification are significantly greater for 

apoAI/HDL isolated from atherosclerotic lesions compared to that isolated from circulation. 

For example, average levels of apoAI oxTrp72 are 0.07 mmol/mol apoAI in plasma, but 

are 204 mmol/mol apoAI in aortic plaques.122 Average oxidized apoAI Tyr levels in apoAI 

isolated from plasma of CVD patients were 0.63 mmol NO2-Tyr/mol Tyr and 0.5 mmol 

Cl-Tyr /mol Tyr; while average levels in apoAI isolated from human aortic atherosclerotic 

lesions were 2.3 mmol NO2-Tyr/mol Tyr and 3.9 mmol Cl-Tyr/mol Tyr196. Average 

levels of carbamyl-Lys in HDL isolated from plasma were approximately 5 mmol/mol 

apoAI, while in HDL isolated from lesions it is 45 mmol/mol apoAI.32 Using an ELISA 

specific for MDA-modification, MDA epitopes were 3.6-fold higher in HDL isolated from 
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atherosclerotic lesions than HDL isolated from plasma.33 The ONE-ketoamide-Lys and 

IsoLG-Lactam-Lys in HDL isolated from plasma of patients with FH are 2.0 mmol/mol 

apoAI and 0.6 mmol/mol apoAI, respectively, but their levels in atherosclerotic lesions 

have not been determined. Whether apoAI oxidatively modified in vascular beds enters 

lymphatics and returns to circulation or is instead trapped by macrophages and dendritic 

cells in these beds or draining lymph nodes is unknown, but a better understanding of the 

fate of oxidatively modified HDL would further our understanding of its contribution to 

disease.

Oxidative modification of HDL causes HDL dysfunction

Effects of HDL oxidiative modifications on RCT

The most direct evidence that oxidative modifications alter HDL function comes from 

studies where isolated HDL or HDL proteins are exposed to ROS-generating enzymes such 

as MPO, specific ROS or individual reactive lipid dicarbonyls. The capacity of HDL to 

facilitate ABCA1-mediated cholesterol efflux from macrophages is markedly reduced after 

exposure to MPO and cofactors (H2O2, Cl−, and NO2).66, 196 Exposure of HDL to MPO 

leads to oxidation of Met, Tyr, and Trp residues, as well as significantly increasing the levels 

of IsoLG-, MDA- and ACR-Lys adducts on HDL.34, 36, 202.

The precise mechanisms whereby oxidative modification of HDL inhibits cholesterol efflux 

are poorly understood. Although oxidative modification of specific apoAI residues have 

been implicated in at least some studies, other types of oxidative modification to the 

same residue have no effect. Specific oxidative modifications may therefore give rise to 

altered protein structures that in turn alter interactions with key proteins like ABCA1, 

SR-BI, and CD36, but future studies are needed to assess this hypothesis.. A series of in 

vitro studies found that mutation of the four apoAI Trp residues to phenylalanine (4WF 

apoAI) provided significant protection against MPO-induced inhibition of ABCA1-mediated 

cholesterol efflux and that mutating Trp72 alone was sufficient to provide significant 

protection.122, 203 These same investigators found that mutating apoAI Met residues to Val, 

mutating Tyr residues to phenylalanine (Phe), or chemically methylating Lys to make its 

less reactive with lipid carbonyls, all failed to protect apoAI from MPO-induced inhibition 

of cholesterol efflux via ABCA1.122, 203, 204 Injection of recombinant apoAI engineered to 

have oxidized Trp only at Trp72 into Apoa1−/− mice showed that this engineered apoAI 

exhibited reduced lipidation and HDL biogenesis.205 While these studies suggested that 

oxidation of apoAI Trp reduces HDL efflux capacity, subsequent in vivo studies with 

Ldlr−/− mice that overexpressed transgenic 4WF apoAI showed no greater lesion regression 

than Ldlr−/− mice overexpressing transgenic wild-type human apoAI.206 Furthermore, 4WF 

apoAI transgenic mice showed less reverse cholesterol transport to the plasma compartment 

than mice expressing transgenic WT human apoAI, although they did show similar overall 

reverse cholesterol transport to liver and feces.207 Other studies found that in vitro oxidation 

of HDL3 with either HOCl or MPO reduced HDL LCAT activity in direct correlation to 

the extent that apoAI Met148 and Trp72 were oxidized, but only Leu mutations of the three 

apoAI Met residues protected against MPO-induced LCAT inhibition, while deletion of the 
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four apoAI Trp residues provided no protection.208 Thus, apoAI Met oxidation may play a 

role in the overall loss of cholesterol efflux capacity in vivo.

Modification of HDL or apoAI with IsoLG, MDA, ACR, or KODA-PC results in 

significantly reduced ABCA1-mediated cholesterol efflux, while modification of apoAI with 

other lipid carbonyls including HNE, ONE, and MGO does not inhibit ABCA1-mediated 

efflux.33, 36, 37, 202, 209, 210 MDA modifies a number of apoAI Lys including Lys118, 

Lys133, Lys 182, Lys195, Lys206, Lys226, and Lys239.33 ACR modifies Lys12, Lys23, 

Lys77, Lys88, Lys118, Lys140, Lys182, and Lys226, with ACR modification of Lys226 

showing the greatest correlation with loss of efflux activity.202 The Lys modified by IsoLG 

have not yet been published. Although KODA-PC and ONE are both γ-keto-alkenals 

with presumably similar adduction chemistry, ONE modification of apoAI does not alter 

cholesterol efflux, while KODA-PC inhibits efflux37, 210 ONE modifies Lys12, Lys23, 

Lys96, and Lys22637, while KODA-PC was found to form Lys-pyrrole-His crosslinks 

between a number of Lys/His pairs (His155/Lys106, His162/Lys94, His162/Lys96, 

His193,Lys195,His199/Lys195, His135/Lys182, His155/Lys12, His199/Lys133, His199/

Lys140, His193/Lys140, and His193/Lys208).210 Thus, while apoAI Lys modification by 

specific lipid carbonyls result in reduced ABCA1-medidated efflux, further studies are 

needed to determine the mechanisms underlying this reduction.

Like ABCA1-mediated efflux, how oxidative modification of HDL alters SR-BI-mediated 

efflux remains poorly understood. Carbamylation of apoAI Lys inhibits SR-BI mediated 

efflux and carbamylation of HDL increases its binding affinity to SR-BI, causing 

carbamylated-HDL to be internalized and promote foam cell formation.32 Interestingly, 

carbamylation of HDL does not inhibit ABCA1-mediated cholesterol efflux.32 In vitro 

oxidation of lipid poor apoAI using MPO produces carbamylation of Lys40, Lys45, 

Lys118, and Lys 195, while using CNO- also produces carbamylation on Lys23, Lys40, 

Lys59, Lys94, Lys96, Lys106,Lys107, Lys118, Lys195, and Lys226.198 Interestingly, HDL 

treatment with CNO- that produced less than one carbamyl-Lys per apoAI was still 

sufficient to inhibit SR-BI cholesterol efflux and CE selective uptake RCT functions, thereby 

converting SR-BI into a nonproductive and potentially proatherogenic receptor.32 A similar 

mechanism may be at play with ACR modification, as ACR modification of HDL inhibits 

SR-BI-mediated cholesterol efflux and macrophages become foam cells in the presence 

of ACR-HDL.209 Similar results have been seen for MPO-mediated modification of other 

plasma proteins (i.e. BSA) that bind SR-BI with higher affinity than native HDL, thereby 

impairing SR-BI/HDL RCT functions. In this regard, studies are needed to determine how 

specific modifications of apoAI residues alter SR-BI interactions.

CD36 is another scavenger receptor that may play a role in modulating cholesterol handling. 

HDL from humans with CAD interacts with CD36 for uptake and degradation resulting 

in foam cell formation and studies have shown that both HNE- and MDA-HDL interact 

with platelet CD36.31, 200 However, to date, no studies have determined the effects of 

specific modifications of HDL on interaction with macrophage CD36 or the effects such 

modifications have on cholesterol flux or inflammation.
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In RCT, the esterification of HDL FC by LCAT is critical for maintaining the flux of 

cholesterol from the periphery to the liver, and humans with CAD and CKD have reduced 

LCAT activity, and a number of apoAI oxidative modifications impair activation of LCAT. 

NO2-Tyr166-apoA-I markedly decreases LCAT activity as a result of decreased LCAT/apoAI 

interaction.63 In addition, MGO modification of reconstituted apoAI particles results in 

glycation of ApoAI Lys, Trp, and Arg residues, which decreases the interaction of ApoAI 

with LCAT and lipid.211 Furthermore, studies have shown that ACR and HNE modifications 

of free Cys and His residues present in the catalytic pocket of LCAT markedly inhibit its 

activity. In addition, MDA, ACR, and HNE modified HDL particles are poor substrates for 

LCAT, which is likely due to altered interaction with apoAI.64, 212

Effects of HDL oxidative modifications on Inflammation

Oxidative modifications of HDL not only cause it to lose its ability to suppress 

inflammation, but can convert HDL into proinflammatory HDL. HDL is critical to reducing 

endothelial cell activation and maintaining endothelial barrier integrity via NO production 

in response to inflammatory stimuli, and specific MPO-mediated oxidative modifications 

of HDL/apoAI impair eNOS activation and increase inflammatory activation and death 

even in the absence of other stimuli (i.e. TNF-α).125 Indeed, oxTrp72- apoAI isolated 

from human atheroma enhances expression of proinflammatory VCAM-1 and activates 

NF-κB without other stimuli.122 In addition, MDA modification of apoAI-lys causes 

HDL to activate protein kinase CβII via interaction with LOX-1 leading to decreased 

activation of eNOS and increased endothelial cell activation.51 Interestingly, carbamyl-HDL 

inhibits SR-BI-mediated eNOS activation and promotes apoptosis, which is consistent 

with carbamyl-apoAI inhibiting SR-B-mediated cholesterol efflux that is required for 

activation of eNOS.123, 213 Unoxidized HDL suppresses VCAM-1 surface expression in 

endothelial cells normally induced by TNFa, but when HDL is oxidized with MPO, it 

enhances VCAM-1 expression.214 Similarly, unmodified HDL suppresses expression of 

Tnfα and Il-1β by macrophages that is induced by LPS, but HDL modified by IsoLG 

greatly enhances the expression of these cytokines.36 HDL modified with ONE fails to 

suppress LPS-induced Tnfa expression, but does not further enhance Tnfa expression, which 

demonstrates that ONE modification impacts anti-inflammatory function independent of 

ABCA1-mediated cholesterol efflux signaling pathways that impact TLR signaling.37 In 

this regard, ONE modification of HDL could impact its interaction with SR-BI, which also 

mediates inflammatory signaling in response to LPS.94, 153, 154 Interestingly, MDA-HDL 

enhances LPS induced expression of IL-1β and IL-6, but it is not as proinflammatory 

as IsoLG-HDL.34, 36 The proinflammatory nature of Iso-LG- and MDA-HDL suggests 

interaction with receptors that mediate inflammatory signaling pathways such as CD36 and 

LOX-1. Studies have shown that HDL from CAD subjects interact with both CD36 and 

LOX-1 to activate NF-κB and enhance proinflammatory gene expression. Studies are needed 

to determine the mechanisms by which MDA- and IsoLG-HDL are proinflammatory.

Effects of HDL oxidative modifications on antioxidant function.

HDL oxidized by MPO has reduced PON1 activity.169 Addition of SIN-1 (a peroxynitrite 

generator) to HDL also reduces PON1 activity.215 Treatment of HDL with IsoLG, MDA, 

or ACR reduces PON1 activity,34, 173 although the mechanisms by which each of these 
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lipid carbonyls inhibit PON1 may differ. MPO-induced oxidation of HDL leads to IsoLG 

modification of PON1, and IsoLG added directly to PON1 inhibits its activity.173 MDA 

added to HDL modifies apoAI so that it has reduced ability to activate PON1.34 The 

mechanism by which ACR modification of HDL inhibits PON1 has not be elucidated. 

Information as to which specific residues of PON1 may be important for the loss of 

activity when HDL is oxidized is limited. PON1 Tyr71 is oxidized to 3-Cl-Tyr by MPO 

and mutation of Tyr71 to alanine, aspartic acid or lysine caused a loss of PON1 activity.169 

The PON1 Lys modified by IsoLG have not been determined.

More definitive evidence that oxidative modifications of HDL proteins such as apoAI and 

PON1 are a root cause of HDL dysfunction seen in cardiovascular disease is still needed. 

Studies examining correlation between specific amino acid modifications of HDL proteins 

and HDL function are limited. One study in individuals with coronary artery disease found 

no correlation between HDL oxidized Tyr residues and cholesterol efflux.216 In contrast, a 

second study reported an inverse correlation between levels of oxidized apoAI Tyr residues 

and cholesterol efflux.196 More intriguingly, these investigators immunopurified apoAI from 

six patients using an antibody that recognized apoAI modified by Trp72 oxidation. This 

immunopurified apoAI showed poor CEC and when apoAI oxTrp72 levels were examined 

in 627 individuals, there was a strong correlation between their oxTrp72 levels and coronary 

artery disease.122 However, these studies did not attempt to measure individual cholesterol 

efflux capacities in these samples, so whether there were robust inverse correlations between 

oxTrp72 levels and efflux capacity is unknown. To the best of our knowledge, there have 

been no studies that have examined whether there are correlations between specific reactive 

lipid dicarbonyl modifications and HDL functionality. Clearly, more studies examining the 

relationship between the extent of oxidative modification and HDL function are needed. If 

oxidative modification of HDL proteins is an important driver of HDL dysfunction, then 

blocking or reversing oxidative modification of HDL proteins must be shown to restore HDL 

function and reduce cardiovascular disease in vivo. A potential approach to test this will be 

addressed in the next section.

Small molecule scavengers of lipid dicarbonyls as inhibitors of oxidative 

modification.

A number of small molecules have been identified that are excellent scavengers of 

reactive lipid monocarbonyls and dicarbonyls and therefore have potential for use to 

protect lipoproteins from oxidative modification. These include thiol-based scavengers 

such as 2-mercaptoethanesulfonate (MESNA) and amifostine, imidazole-based scavengers 

like carnosine and its derivatives, and 2-aminomethylphenol-based scavengers of reactive 

dicarbonyls (Figure 5).

ACR is efficiently captured and inactivated by thiol-based scavengers including MESNA 

and the active form (WR-1065) of the prodrug amifostine.217 Formation of ACR is a 

byproduct of caner therapies such as cyclophosphamide treatments or radiation therapy 

and both MESNA and amifostine are widely used as adjuvants during cancer treatment 

to limit off-target toxicities. In addition to their use in cancer treatments, MESNA and 
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amifostine have shown efficacy in animal models of other disease conditions with increased 

oxidative damage including ulcerative colitis, liver injury, Parkinson’s disease, and ischemia/

reperfusion.218–222 Given their efficacy at scavenging ACR, it is surprising that to the best 

of our knowledge there have been no animal or clinical trials examining their effects in 

cardiovascular disease.

Imidazole-based scavengers effectively capture ACR and other α,β-unsaturated carbonyls 

like ONE and HNE. In animal models of disease, carnosine or its derivatives, have 

shown efficacy to protect against complications of diabetes, ischemia/reperfusion injury, and 

atherosclerosis.223–229 Very limited clinical studies have looked at the efficacy of carnosine 

or its derivatives in cardiometabolic diseases, these include a 12-week supplementation 

study in overweight/obese individuals that showed improved glucose tolerance,230 and a six 

month supplementation study that showed improved exercise tolerance in individuals with 

stable chronic heart failure.231

More recently, an entirely new class of scavengers directed against reactive lipid 

dicarbonyls have been identified and characterized, all of which contain a 2-

aminomethylphenol (2-AMP) structural backbone. These novel dicarbonyl scavengers 

include 2-hydroxybenzylamine (2HOBA) and 5’-O-pentyl-pyridoxamine (PPM), as well as 

a number of other analogs.232 The compounds effectively scavenge reactive dicarbonyls 

including IsoLG, ONE, and MDA, and to a lesser extent some monocarbonyls like ACR. 

They have shown remarkable efficacy in a number of animal models of oxidative damage 

including Alzheimer’s Disease233, hypertension232, 234, 235, proteinuric kidney disease201 

lupus236, cardiac ischemia/reperfusion injury237 and gastric cancer.238

Dicarbonyl Scavengers Reduce Atherosclerosis

FH is a common autosomal codominant disorder associated with severely elevated levels of 

LDL-C and increased risk of premature atherosclerotic cardiovascular disease. Pathogenic 

mutations in the LDLR gene are the most common cause of FH, resulting in delayed 

clearance of LDL by the liver. Although increased levels of LDL-C and oxidatively 

modified LDL have long been recognized as critical mediators of the pathogenesis of 

atherosclerosis in FH, there is substantial evidence that HDL metabolism and function 

are abnormal in FH.239, 240 HDL in subjects with FH have reduced capacity to promote 

RCT, impaired anti-inflammatory and antioxidant activities.239, 240 Indeed, we have found 

that HDL from subjects with FH shows increased modification by reactive dicarbonyl 

species, including MDA and IsoLG, compared to HDL from individuals with normal 

cholesterol levels.34–37 Furthermore, HDL from humans with severe FH showed impaired 

CEC and promote cholesterol loading of macrophages.35 Therefore, we examined the 

hypothesis that treatment of Ldlr−/− mice, a murine model of FH, with the dicarbonyl 

scavenger, 2-hydroxybenzylamine (2-HOBA) would reduce modification of HDL and LDL, 

improve HDL function, and reduce the development of atherosclerosis. Treatment of female 

Ldlr−/− mice fed a western-type diet for 16 weeks with 2-HOBA reduced the extent of 

atherosclerosis in sections of the proximal aorta by 31% and by 60% in en face analysis of 

the aortas compared to controls treated with water or a geometric isomer 4-HOBA that is an 

ineffective scavenger.35 Similar reductions in atherosclerosis were also seen in male Ldlr−/− 
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mice treated with 2-HOBA. The reductions in the extent of atherosclerosis were especially 

impressive given that they occurred in the absence of changes in plasma cholesterol or 

triglyceride levels or lipid profiles.35 Importantly, treatment with 2-HOBA dramatically 

reduced the amount of MDA-protein adducts in the proximal aorta as determined by 

immunofluorescence and the amount of MDA- and IsoLG-lysyl adducts in the whole aorta 

as quantitated by LC/MS/MS, compared to controls treated with 4-HOBA. Treatment with 

2-HOBA promoted features of plaque stabilization with increased collagen content and 

fibrous cap thickness and reduced the percentage of necrotic area by 75%. Inadequate 

efferocytosis of dead cells can promote inflammation and necrotic core formation. Treatment 

with 2-HOBA was associated with a 72% reduction in the numbers of apoptotic cells and 

increased efferocytosis in the atherosclerotic lesions compared to treatment with vehicle 

or 4-HOBA.35 Furthermore, serum levels of inflammatory cytokines, including IL-1β, 

IL-6, TNF-α, and serum amyloid A were reduced by 2-HOBA.35 In vitro studies showed 

that 2-HOBA treatment reduced the expression of inflammatory cytokines produced by 

macrophages exposed to OxLDL or H2O2. Taken together these results support the ability 

of dicarbonyl scavenging with 2-HOBA to reduce oxidative stress, inflammation, cell death, 

destabilization of the plaque, and the extent of atherosclerosis (Figure 6).

Consistent with evidence for increased modification of HDL by reactive dicarbonyls in 

humans with FH, Ldlr−/− mice fed a western diet have increased levels of MDA-apoAI 

adducts compared to chow fed mice.35 Most importantly, 2-HOBA treatment of Ldlr−/− 

mice substantially reduced MDA modification of both apoAI and HDL, and HDL isolated 

from the 2-HOBA treated mice had improved ability to promote macrophage cholesterol 

efflux compared to HDL from vehicle or 4-HOBA treated controls (Figure 6). Furthermore, 

2-HOBA treated Ldlr−/− mice had reduced MDA-modification of LDL. Thus, reduced 

modification of both HDL and LDL by reactive dicarbonyls, including MDA and IsoLG, 

likely contribute to the antiatherogenic properties of 2-HOBA (Figure 6). In addition, 

2-HOBA may prevent other MPO-induced oxidative modifications of HDL (i.e. apoA1 

oxTrp72) as in vitro treatment with 2-HOBA negated the MPO-mediated impairment of 

HDL CEC.and prevented HOCl− induced crosslinked of lipid-free apoAI.34, 241 While this 

possibility needs to examined in vivo, it is worth noting that studies have shown that 

the scavenger PM prevents in vivo oxidation of Trp192 in renal collagen in a diabetic 

rat model.242 Therefore, dicarbonyl scavengers offer a potential new approach to reduce 

the residual risk of atherosclerotic cardiovascular events that remains in patients treated 

with statins (Figure 6).243, 244 Phase 1 studies of treating humans with 2-HOBA have 

demonstrated its safety,245 and we are initiating a Phase 2 trial (NCT#04941599) in humans 

with heterozygous FH to examine the impact of 2-HOBA on modification of HDL and HDL 

CEC.

Dicarbonyl Scavenger PPM Reduces Insulin Resistance and Hepatic Fat Accumulation

We have recently extended our studies of the therapeutic potential of dicarbonyl scavengers 

for treating atherosclerosis by examining the impact of another potent dicarbonyl scavenger, 

5’-O-pentyl-pyridoxamine (PPM), on the development of atherosclerosis in Ldlr−/− mice fed 

a western diet for 16 weeks.241 Similar to our results with 2-HOBA, treatment of both male 

and female Ldlr−/− mice resulted in substantial reductions in the extent of atherosclerosis 
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in the absence of changes in plasma cholesterol and triglyceride levels.241 In addition, 

PPM reduced blood Ly6Chi monocytosis, decreased lesion pro-inflammatory macrophages, 

enhanced efferocytosis, promoting features of plaque stabilization with dramatic reductions 

in plaque necrotic area (Figure 6).241 Furthermore, HDL from the PPM treated mice showed 

improved CEC compared to mice treated with vehicle.241

Mounting evidence supports antidiabetic functions of HDL. HDL can increase glucose 

uptake of by skeletal muscle and HDL can improve blood glucose levels in animal models 

by increasing the synthesis and secretion of insulin from pancreatic β cells.246, 247 HDL 

can prevent oxLDL-induced and ER stress-induced apoptosis of pancreatic β cells.248, 249 

Interestingly, a metanalysis of the CETP inhibitor trials revealed a 12% reduction in 

the development of T2DM.250 Furthermore, infusion of reconstituted HDL was found 

to increase plasma insulin levels and decrease plasma glucose in patients with T2D by 

activating AMP-activated protein kinase.247, 251 Therefore, we examined the impact of 

PPM treatment on insulin sensitivity in male Ldlr−/− mice fed a western diet. Interestingly, 

treatment of Ldlr−/− mice with PPM promoted reductions in fasting glucose and insulin 

levels, reduced the HOMA-IR, and improved glucose and insulin tolerance.241 Furthermore, 

PPM protected male Ldlr−/− mice fed a western diet from developing hepatic steatosis.241 

Thus, treatment with the dicarbonyl scavenger PPM reduces insulin resistance and 

hepatic fat accumulation in a model of diet-induced metabolic syndrome. Hence, reactive 

dicarbonyl scavengers have attractive therapeutic potential for treating multiple features of 

cardiometabolic disease.

Conclusions and Future Directions

Numerous in vitro and in vivo studies with atherosclerotic animal models support the 

role of functional HDL/apoAI in limiting atherosclerosis progression and stimulating 

plaque regression (Figure 6). However, unlike findings in atherosclerotic mouse models, 

therapeutics which either raise HDL-C or increase apoAI levels in humans have 

disappointingly produced no benefit to reducing atherosclerotic plaques. The heightened 

oxidative stress in CAD leads to extensive oxidative modifications of HDL that not 

only impair its atheroprotective functions, but produce proinflammatory/proatherogenic 

HDL particles. Indeed, treatment of mouse models with oxidized versus native HDL/

apoAI promotes plaque development and inflammation.10, 11 The findings that human 

atherosclerotic plaques contain lipid-poor apoAI, which is mostly oxidatively modified and 

associated with MPO, and that human atherosclerotic lesions have markedly increased MPO 

levels compared to mouse lesions,12, 252 likely explains the lack of benefit of HDL/apoAI 

raising treatments in humans as any HDL particles entering the intima are likely oxidatively 

modified. However, a limitation to the studies thus far on the role of HDL oxidative 

modifications in atherosclerosis is that they are largely correlative. In this regard, in vivo 

studies are needed on the mechanisms by which specific oxidative modifications of HDL 

proteins and lipids impact atherosclerosis as well as the protein structural changes resulting 

from specific oxidation modifications that promote HDL dysfunction in atherosclerosis in 

order to develop more targeted therapeutic strategies. In particular, the impact of HDL 

modification with specific reactive carbonyls on existing atherosclerotic plaque extent and 

inflammatory composition needs to be examined, which could lead to the development 
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of functional ApoAI mutants that are resistant to dicarbonyl modification. It is worth 

noting that despite the abundant evidence supporting the role oxidative modifications in 

atherosclerosis, clinical studies assessing the impact of dietary anti-oxidant in humans have 

shown no impact on lipoprotein modifications and atherosclerosis. However, these dietary 

anti-oxidants also failed to reduce LOOH levels and thus, prevent toxic reactive carbonyl 

modifications. The finding that neutralization of reactive lipid carbonyls with 2-AMPs 

effectively reduces atherosclerosis and improves HDL function in atherosclerotic mouse 

models offers promise of beneficial treatment of CAD in humans. The observation that 

2-AMPs are atheroprotective in the setting of hypercholesterolemia suggests that dicarbonyl 

scavenging has the potential to alleviate the residual inflammatory risk of CAD that exists 

even with LDL cholesterol lowering in humans. Furthermore, the atheroprotective effects 

of 2-AMPs likely go beyond preserving HDL function as AMPs almost certainly prevent 

carbonyl modification of other plasma and cellular proteins and lipids, which could impact 

atherosclerosis. In this regard, 2-AMPs offer great potential for targeting CAD in humans.
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List of Abbreviations

ACR acrolein

ABCA1/G1 ATP-binding cassette proteins A1 and G1

Atf3 activating transcription factor 3

2-AMPs 2-aminomethylphenols

apo Apolipoprotein

ASCVD atherosclerotic cardiovascular disease

CAD coronary artery disease

CE cholesteryl ester

CEC cholesterol efflux capacity

CETP cholesteryl ester transfer protein

CVD cardiovascular disease

eNOS endothelial nitric oxide synthase

ER endoplasmic reticulum

FH familial hypercholesterolemia

FC free cholesterol

GM-CSF IL-3/granulocyte-macrophage colony-stimulating factor
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HSPC hematopoietic stem and progenitor cells

HDL-C high density lipoprotein cholesterol

HNE 4-hydroxy-nonenal

2-HOBA 2-hydroxybenzylamine

IsoLG Isolevuglandins

IL interleukin

LCAT lecithin:cholesterol acyltransferase

LPS lipopolysaccharide

LDLR low density lipoprotein receptor

MDA malondialdehyde

MGO methylglyoxal

MPO myeloperoxidase

NLRP3 nucleotide oligomerization domain-like receptor protein with pyrin 

domain containing 3

OxLDL oxidized low density lipoprotein

ONE 4-oxo-nonenal

PPM 5’-O-pentyl-pyridoxamine

PL phospholipid

PON1 paraoxonase 1

ROS reactive oxygen species

RCT reverse cholesterol transport

S1P sphingosine-1-phosphate

SR-B1 scavenger receptor class B type 1

STAT6 signal transducer and activator of transcription 6

TLR Toll-like receptor
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Figure 1. Lipid carbonyls react with amino acid residues to form adducts and crosslinks.
MDA (Malondialdehyde), IsoLG (isolevuglandins), ONE (4-oxo-nonenal), ACR (acrolein), 

HNE (4-hydroxy-nonenal), and MGO (methylglyoxal) react with their preferred amino acid 

targets including Lys-NH2 (lysine), Cys-SH (cysteine), His-imidazole (histidine), or Arg-

guanidine (arginine) to form various adducts and crosslinks. Crosslinks form when the same 

lipid carbonyl reacts with two closely adjacent amino acids. In general, multiple species of 

adducts can form for each lipid carbonyls, two of the most important for each reactive lipid 

carbonyl are shown here. Adducts shown are: a. MDA N-propenal-Lys monoadduct, b. MDA 

Lys-1-amino-3-iminopropene-Lys crosslink, c. IsoLG-lactam-Lys monoadduct, d. IsoLG-

dipyrrole-Lys crosslink, e. ONE N-4-ketoamide-Lys monoadduct, f. ONE-Lys-pyrrole-Cys 

crosslink, g. ACR-S-propanol-Cys monoadduct, h. ACR-His-propenamine-Cys crosslink, 

i. HNE-S-hemiacetal-Cys monoadduct, j. HNE-N-hemiacetal-His monoadduct, k. MGO 

Argpyrimidine monoadduct, and l. MGO-carboxy-ethyl-Lys.
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Figure 2. Critical steps of the HDL reverse cholesterol transport (RCT) pathway.
The first step, which is rate limiting, is the removal of free cholesterol (FC) from 

macrophage foam cells. FC is released from macrophages by four mechanisms. ABCA1 

(ATP-binding cassette transporter A1) releases PL (phospholipid) and FC to lipid-poor 

apoAI or endogenous apoE that is secreted by macrophage foam cells. FC is released to 

the discoidal HDL formed by ABCA1 and to mature HDL by ABCG1, SR-BI (scavenger 

receptor-class BI), and aqueous diffusion. The flux of FC between cells and HDL is 

bidirectional. FC influx occurs by SR-BI and aqueous diffusion. The FC in discoidal 

HDL particles is esterified by LCAT (lecithin:cholesterol acyltransferase) to form mature 

HDL3. Plasma HDL is remodeled by CETP (cholesteryl ester transfer protein) and PLTP 

(phospholipid transfer protein). PLTP transfers PL between VLDL and HDL and among 

HDL particles. CETP transfers triglyceride from VLDL/IDL to HDL3 to form larger HDL2 

particles. CETP also transfers HDL CE to VLDL and IDL to form LDL, which is then 

internalized by the hepatic LDLR (LDL receptor) for cholesterol routing into bile. An 

alternative pathway for hepatic delivery of cholesterol and routing to bile is the selective 

uptake of HDL CE and the influx of HDL FC via SR-BI. CETP also transfers oxidized 

lipids from LDL to HDL for delivery to the liver by SR-BI. Nascent HDL is synthesized by 

interaction of hepatocyte or enterocyte (not shown) derived apoAI with hepatic or intestinal 

ABCA1, and then nascent HDL is routed to peripheral tissue to act as a FC acceptor. 

Created with BioRender.com.
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Figure 3. The anti-inflammatory functions of HDL.
1. HDL suppresses endothelial activation in response to proinflammatory stimuli such as 

TNF-α and oxLDL. Proinflammatory stimuli activate NF‐κB (nuclear factor kappa B), 

which increases expression of monocyte adhesion proteins and chemotactic/inflammatory 

cytokines, thereby increasing monocyte recruitment and endothelial cell death. HDL 

signaling pathways stimulate nitric oxide production to decrease NF‐κB activation and 

maintain endothelial barrier integrity. 2. HDL prevents inflammatory monocytosis. Increased 

LDL and oxLDL, resulting from hypercholesterolemia, induce inflammatory signaling 

and ROS (reactive oxygen species) leading to expansion of bone marrow granulocyte 

monocyte progenitors that give rise to inflammatory Ly6Chigh monocytes. HDL signaling 

pathways suppress ROS production and inflammatory signaling and expansion of Ly6Chigh 

monocytes. 3. HDL prevents the macrophage proinflammatory phenotype. LPS, oxLDL, 

and other TLR (toll-like receptor) ligands activate NF‐κB leading to increased expression 

of inflammatory cytokines and NLRP3 (nucleotide oligomerization domain-like receptor 

protein with pyrin domain containing 3) inflammasome components resulting in decreased 

efferocytosis of apoptotic cells and necrotic death. HDL suppresses TLR signaling and 

NF‐κB activation via cholesterol efflux dependent and independent pathways to promote 

activation of Atf3 (activating transcription factor 3) and STAT6 (signal transducer and 

activator of transcription 6), thereby reducing activation of inflammasomes and enhancing 

efferocytosis of apoptotic cells by promoting expression of Arg-1 (arginase-1) and IL-10. 

Created with BioRender.com.
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Figure 4. The antioxidant functions of HDL.
A number of proteins associated with HDL including apoAI and apoA2 prevent the 

formation of reactive lipid carbonyls by reducing LOOH (lipid hydroperoxides) to LOH 

(lipid hydroxides). MPO (myeloperoxidase) generates ROS (reactive oxygen species) 

leading to sequential formation of LOOH and reactive lipid carbonyls. The association of 

PON1 (paraoxonase 1) with apoAI both inhibits MPO activity and also directly inhibits 

formation of lipid hydroperoxides and reactive lipid carbonyls.
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Figure 5. Current classes of small molecule scavengers available to target reactive lipid 
carbonyls.
Thiol-based scavengers capture ACR (acrolein), ONE (4-oxo-nonenal), and HNE 

(4-hydroxy-nonenal). Imidazole-based scavengers capture ACR, ONE, HNE, and 

MGO (methylglyoxal). 2-aminomethylphenol-based dicarbonyl scavengers capture IsoLG 

(isolevuglandins), ONE, MDA (malondialdehyde), and MGO.
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Figure 6. Dicarbonyl scavengers protect HDL functionality.
Under oxidative conditions, lipid peroxidation generates lipid dicarbonyls that react with 

HDL proteins to render HDL dysfunctional. Dicarbonyl scavengers can intercept these lipid 

dicarbonyls because the primary amines of these scavengers is even more reactive with 

dicarbonyls than the lysyl residues of proteins are reactive with the dicarbonyls. Thus, these 

scavengers protect HDL proteins from modification and thereby prevent HDL dysfunction. 

Shown are the atheroprotective functions of HDL that dicarbonyl scavengers can protect 

against dysfunction including EC (endothelial cell) activation and survival.
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