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STRUCTURED ABSTRACT

Purpose of review—To review novel modalities for interrogating a kidney allograft biopsy to 

complement the current Banff schema.

Recent Findings—Newer approaches of Artificial Intelligence (AI), Machine Learning (ML), 

digital pathology including Ex Vivo Microscopy, evaluation of the biopsy gene expression using 

bulk, single cell and spatial transcriptomics and spatial proteomics are now available for tissue 

interrogation.

Summary—Banff Schema of classification of allograft histology has standardized reporting 

of tissue pathology internationally greatly impacting clinical care and research. Inherent 

sampling error of biopsies, and lack of automated morphometric analysis with ordinal outputs 

limit its performance in prognostication of allograft health. Over the last decade, there has 

been an explosion of newer methods of evaluation of allograft tissue under the microscope. 

Digital pathology along with the application of AI and ML algorithms could revolutionize 

histopathological analyses. Novel molecular diagnostics such as spatially resolved single cell 

transcriptomics are identifying newer mechanisms underlying the pathologic diagnosis to delineate 

pathways of immunological activation, tissue injury, repair, and regeneration in allograft tissues. 

While these techniques are the future of tissue analysis, costs and complex logistics currently limit 

their clinical use.
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Introduction

Kidney allograft biopsy is the current gold standard to identify the cause of allograft 

dysfunction. Histology of biopsy along with clinical data provides a snapshot into organ 

health. In 1993, Solez et al pioneered the Banff working classification of kidney transplant 

pathology (1). They compartmentalized kidney tissue lesions and converted injury metrics 

into ordinal lesion scores, allowing for standardized reporting. This landmark achievement 

influenced international clinical practice and research. Banff schema is regularly updated to 

reflect the transplant communities’ current understanding of allograft pathology (elegantly 

summarized by Loupy et al. (2)).

While Banff-schema helps semi-quantitative grading of immunological injury, recurrent 

disease, infectious complications and informs cumulative irreversible allograft damage, it is 

more limited in its prognostic potential. A recent advance in prognostication was the iBOX 

score, which combined orthogonal clinical data with Banff lesion scores (3). However, Banff 

scores themselves have shown a large degree of inter-observer variability among reporting 

pathologists (4), with greater variability across international centers (5). Additional issues 

are the potential for sampling error inherent to any biopsy along with the lack of automatic 

application of morphometric quantification – which offers advantages over histology alone 

(6). Frequent implementation of Banff updates (an admirable approach) may also not readily 

translate into routine practice. Finally, the Banff schema is a morphologic classification, and 

novel pathogenetic insights using emerging technologies are limited in their incorporation.

The goal of this review is to discuss the application of novel technologies to the 

interrogation of tissue that may potentially be applied to allograft biopsy [Fig-1].

Artificial Intelligence-based reporting and Digital Pathology

Digital pathology refers to the combination of automated techniques applied to anatomic 

pathology, including algorithms for imaging and analysis that use artificial intelligence 

(AI) / machine learning (ML).

Machine Learning applied to Banff scores

The Banff schema evolved iteratively with expert consensus, using studies that mapped 

intercorrelated component lesion scores to known diagnoses to classify a diagnostic cluster – 

for instance T cell–mediated rejection. However, there exists clear prognostic heterogeneity 

within these ‘supervised’ Banff diagnostic clusters (3), and individual lesion scores are 

not specific to diagnostic clusters. Recent work has overlaid pathologist-reported Banff 

lesion scores with graft survival data using ML methods (7, 8). ML can analyze large 

datasets using algorithms to learn relationship patterns among variables, with ability to make 

predictions on new data, and potential to improve with each iteration (8).

By weighting acute lesion scores based on their individual associations with graft 

survival during modelling, Vaulet et al, identified six novel clusters within the same 

Banff histologic rejection diagnosis using ~7000 biopsies on 936 recipients from multiple 

centers (9). This work applied K-means clustering to Banff scores – an unsupervised ML 
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algorithm – in a data-driven but semi-supervised approach to extract clinically meaningful 

clusters within traditional rejection diagnoses. They extended this work and applied 

semi-supervised approach to chronic Banff lesion scores (cg, ci, ct, cv, mm, and ah), 

weighting these for time from transplant as well as association with graft loss, to identify 

4 prognostically distinct clusters(10). Unsurprisingly, high Cg score cluster-4 representing 

advanced transplant glomerulopathy, associated with the worst graft survival, and increased 

cumulative chronicity scores were proportional to graft loss risk. Combining acute- and 

chronic- lesion score data, in a prediction model suggested both lesion scores bring 

incremental value to ascertainment of graft loss. Together, these datasets highlight insights 

revealed by AI, complementing natural intelligence-based Banff-score clustering.

Automated Digital Pathology Combined with Deep Learning

Increasing use of convolutional neural networks (CNNs) to identify histological features, 

with limited guidance from pathologist, may offer an alternative to traditional image 

processing and manual Banff scoring. CNNs are a type of deep learning neural network 

that are particularly suited for image analysis which are widely used in medical imaging and 

oncological pathology (11).

Hermsen et al addressed the applicability of CNNs to kidney allograft by comparing 

CNN-based quantification of structures to visually scored histological components using 

Banff. CNNs achieved accurate segmentation of glomeruli, tubuli and interstitium in 

transplant biopsies with a high degree of correlation to the visual score of three independent 

pathologists (12). Kers et al used 5844 biopsies, to evaluate CNNs to classify biopsies as 

normal, rejection, or other diseases. Serial CNNs first classified biopsies as either normal or 

disease, followed by a second CNN that classified biopsies previously classified into disease 

further into rejection or other disease (13). Subsequent serial CNNs could be trained to pick 

up other rare pathological features such as BK polyoma virus nephropathy etc. We recently 

reported a deep learning-based pipeline using an instance-level object detection algorithm 

mask Region-based Convolution Neural Network (R-CNN) applied to pre- or post-transplant 

surveillance biopsies from two independent cohorts GoCAR (Genomics of Chronic Renal 

Allograft Rejection) and AUSCAD (Australian Chronic Allograft Dysfunction). The digital 

features from WSI quantified normal tissue compartments, annotated abnormalities, and 

correlated with Banff scores with enhanced sensitivity for subtle pathological changes below 

the thresholds of the Banff scores. The Interstitial and Tubular Abnormality Score (ITAS) 

was predictive of 12-month graft loss in pre-transplant samples and the Composite Damage 

Score (DMS) applied at the 12-month mark successfully predicted later graft loss. Using 

deep learning, the ITAS and DMS scores outperformed Banff scores or clinical predictors, 

with superior graft loss prediction accuracy (14).

An important advantage of using the automated digital pathology is the ability to provide 

continuous data instead of ordinal lesion scores. This improves the sensitivity to identify 

graft damage and could empower personalized risk-assessment. The Banff Digital Pathology 

Working Group’s report remarked that digitalization is not just an end in itself but a 

precondition for application of AI approaches to improve tissue recognition (15). While 

WSI is available at near 70% of US centers, the painstaking work involved in annotating 
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lesions for ML-algorithms is a hindrance. An online resource where WSI images can be 

uploaded to generate automated reports which are then curated by pathologists, may be 

a future direction (eg https://github.com/SarderLab). Another suggested use of ML is as 

a prioritization tool to identify biopsies for expedited review for rejection and sorting out 

completely healthy samples for a later review. The combination of WSI and deep learning 

ML approaches (CNNs) is a next immediate frontier in allograft histopathological analyses.

Clearing Histology with MultiPhoton Microscopy ( CHiMP )

Clearing Histology with Multiphoton Microscopy ( CHiMP) is a new tissue processing 

and imaging method that uses ex vivo multiphoton (EVM) microscopy imaging generating 

optical rather than physical slices for primary diagnosis without the need for paraffin-

embedding or microtome cutting, resulting in rapid image processing and result generation. 

This approach has been validated and discussed by Torres et al in a case series of 

human prostate biopsies with ongoing work in transplanted kidney allografts (16). Notably, 

immunohistochemical analysis is not compromised by this method. With a faster turnaround 

time and direct path to digital imaging, EVM promises rapid global consultations, reduced 

labor requirements, analysis of more tissue levels and providing 3D histology patterns. 

Additionally, it helps preserve tissues for further ancillary studies as well. There are ongoing 

efforts to validate and standardize this process in the kidney transplants specifically (17). 

We foresee the use of this technique in rapid assessments of WSI and remote expert 

consultations of procurement biopsies in real time as well.

Interrogating Biopsy Gene Expression

Bulk transcriptomics

Bulk transcriptomics from biopsy tissue, microarray or tissue RNA sequencing (RNA-

seq) has been widely adopted in kidney transplant research to offer diagnostic and 

prognostic insights by comparing transcriptome-wide gene expression profiles (GEP) 

between different disease states (18) (summarized by prior reviews (19, 20)). Early studies 

used cDNA micro-arrays and showed that rejection was transcriptionally distinct from “no 

rejection” (21). In TCMR, subsequent studies have unraveled transcriptomic differences in 

morphologically similar TCMR-like lesions (22), the disappearance of TCMR signatures 

after ~10 post-transplant years (23), and helped classify Banff borderline lesions (24). 

Biopsy transcriptomes have had greatest impact on informing ABMR pathogenesis. A key 

advance was the identification of intra-graft endothelial cell activation transcripts (ENDATs) 

that are now recognized to accompany ABMR even when C4d staining was undetectable 

(25), thus providing a mechanistic link to underlying effector mechanisms in ABMR. The 

Banff schema subsequently included both histologic as well as transcriptomic endothelial 

activation signatures in ABMR diagnostic criteria in 2013 update (6, 26).

Using indication biopsies with microarray GEPs, the Edmonton group have distilled gene 

signature “classifiers”, each based on the differential expression of key pathogenesis-based 

transcripts that quantify different aspects of ongoing allograft injury generating individual 

scores for ABMR, TCMR, AKI etc. (27). This ‘molecular microscope’ (MMDx) generated 

automated reports in a multinational cohort with high agreement with pathologic diagnoses, 
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albeit with some residual disagreement (28, 29). Interestingly MMDx signouts were reported 

to more frequently align with clinician judgement and increase confidence in management.

GEPs have also provided novel insights into immunological pathogenesis, for instance, that 

of isolated vasculitis (v-lesions) (30). In DSA- and C4D-negative, transplant glomerulopathy 

(TG), an enrichment of cytotoxic T-cell-associated transcripts was observed, suggesting 

T cell activation as an unexpected mechanism of injury in these cases, distinct from TG 

that were DSA-positive (31). While IF/TA without histologic rejection is seen in 30–40% 

of allografts that fail (32), GEPs analyzed by co-expression network analyses, revealed 

near 80% overlap with TCMR biopsies, intriguingly suggesting that TCMR activity not 

detected by histology may underlie IF/TA (33). GEPs from total biopsy RNA, subjected to 

deconvolution to estimate specific infiltrating cells, have demonstrated the central role of 

NK cells in ABMR injury (34), therapeutically relevant information. Our group (35), applied 

microarray GEPs for prognostication using 3-month surveillance biopsies. A 13-gene 

signature at 3-months was identified that was predictive of subsequent progressive allograft 

damage and graft loss, superior to Banff histologic scores. Prognostic signatures were 

identifiable in 6-month surveillance biopsies that correlated with graft loss and progressive 

damage (36).

While extensive allograft data (>4000 biopsies) have been generated using microarrays, 

these provide relative rather than absolute quantitation of gene expression, require an 

amplification step, and do not allow for gene/sequence quantification outside of the probe 

sets (for instance micro-RNA) (37–41). Another critical issue in biopsy transcriptome 

studies is the need to dedicate a biopsy core for transcriptomics, which is often not 

considered in routine clinical use.

B-HOT

The Banff Molecular Diagnostics Working Group created a multiorgan transplant gene 

panel – the Banff Human Organ Transplant (B-HOT). This panel consists of 770 targeted 

genes relevant to rejection, tolerance, viral infection, and immune response distilled from 

prior biopsy microarray studies in solid-organ transplantation, supplemented by pathway- 

and cell-type specific genes, along with 12 house-keeping genes. B-HOT represents two 

distinct advantages over prior work. (a) Validated performance in identifying dysregulated 

pathogenesis-based transcript sets from formalin-fixed paraffin embedded samples (when 

indirectly compared to microarray gene sets from fresh RNA-stabilized samples), making 

it possible for use in archived biopsies. (b) Use of the nanostring nCounter system – an 

automated GEP technology that uses pre-selected barcoded RNA-probes in each assay 

without necessitating an amplification step to quantify gene expression (42). Validation 

studies reported thus far with B-HOT are promising (43), but its commercial use is still 

limited. While standardizing good quality RNA extraction from paraffin samples represents 

an up-front challenge, the experience with this approach in breast cancer is encouraging 

(44).
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Single Cell Transcriptomics

Bulk transcriptomics in biopsies demonstrated the utility of GEPs. However, biopsy GEPs 

are a crude reflection of overall transcriptomic perturbation and are influenced by the 

number and activation state of each of the individual cells. The diversity of infiltrating cells 

(originating primarily from recipients), and resident kidney cells of donor origin, makes 

attributing identified injury/response pathways to cell types in allograft GEPs challenging 

(45). Applying deconvolution approaches (CIBERSORT) may resolve transcriptomes of 

frequent cell-types (34). However, rarer cell types even with marked gene dysregulation, 

or new cellular differentiation states cannot be obtained from bulk RNA. Single Cell RNA 

sequencing (scRNA-seq) of the allograft biopsy offers a powerful advantage providing the 

ability to examine the transcriptome of individual cells within biopsies (comprehensively 

reviewed in (46)).

Initial comparison of single cell transcriptome of a mixed rejection biopsy vs 

control identified that classical TCMR-associated transcripts identified from bulk biopsy 

transcriptomes are over-expressed in T-cells, while most ABMR-enriched transcripts were 

of endothelial origin, consistent with ENDATs (47). Similarly in a chronic rejection/IF/TA 

biopsy, both immune cell and fibroblast populations were significantly enriched, with the 

myofibroblasts demonstrating enhanced canonical profibrotic signaling pathways including 

PDGF and TGF-beta (48). An exciting study used sc-RNAseq paired with donor and 

recipient whole-exome DNA sequencing to resolve donor- vs recipient-origin cells within 

five allograft biopsies. A surprising finding was the detection of donor-origin macrophages 

(to a smaller extent lymphocytes) months-years after transplantation (49). This study studied 

clonality of the infiltrating T-cells using V-D-J rearrangements of the T-cell receptors. 

While no clear enrichment of specific V-D-J sequences were identifiable in the small 

number of T-cells in this dataset, this demonstrated the feasibility of this approach to study 

T-cell clonality – a central question in allo-rejection. These and other data (50) show the 

tremendous potential of Sc-RNA-seq when applied to renal allograft biopsies.

Spatial Transcriptomics

While Sc-RNAseq can resolve cell constitution in a biopsy sample, inform activation state 

and infer cell state trajectory, it provides no context to the location of a cell within the 

tissue. Spatial transcriptomics methods map transcripts within spatially intact tissue sections, 

to overlay gene expression upon cell location and neighborhood. Multiple platforms have 

been reported in various organs generating excellent insights, for instance, in COVID-related 

collapsing glomerulopathy (51). Briefly these are based either on in-situ sequencing (ISS) 

or in-situ hybridization (ISH) (52). While ISH based methods like MERFISH can be 

performed on paraffin-embedded archived biopsies, ISS methods require dedicated fresh 

frozen sections. An exciting report evaluated a single rejection biopsy vs two controls 

(53), using Geo DSP, an ISH-based method using pre-selected photocleavable probes (54). 

Representative tubulitis vs normal regions-of-interest (ROIs) in rejection/control biopsies 

were selected using specific antibodies. This was followed by capture of RNA from each 

ROI, and nanostring quantification. This study confirmed enrichment of TCMR-related 

genes in tubulitis ROIs, but relayed variability in GEPs within these areas over and above 

expected from Banff scores. An important advantage of these methods is the ability to 
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generate multiple data points of comparison from a single biopsy i.e., ROIs of tubulitis vs no 

tubulitis within a biopsy, to study gene dysregulation in specific morphologic areas. Another 

advantage is the computation of ligand-receptor interactions, which are most meaningful 

between neighboring cells.

Biopsy proteome: Imaging mass cytometry

The phenotype-determining cellular proteome is often discordant from the transcriptome 

(55, 56). Bulk or sc-RNA-seq transcriptional analyses do not offer a spatial context for 

their findings (47) (57). Imaging Mass Cytometry (IMC) is a novel, multiplexed and 

spatially preserved methodology for immunolabeling of paraffin embedded biopsy sections 

using metal-tagged antibodies directed against cell-type- or disease-specific proteins. IMC 

could provide for efficient interrogation of a scarce biopsy sample, permitting concurrent 

quantitation of more than 40 markers on a single tissue section with resultant reconstructions 

achieving 1-mm resolution (58) with cell-level proteomic data. Singh et al systematically 

validated an IMC antibody panel and an analysis pipeline (Kidney-MAPPS, multiplexed 

antibody-based profiling with preservation of spatial context) to characterize the spatial 

architecture of normal kidney cells, benchmarking baseline resident and infiltrating cells 

(59).Their group used IMC in pre-implantation biopsies of high-risk deceased donor kidney 

transplants to successfully predict delayed graft function (60) identifying tubular cell 

dropout(59). With validation of IMC panels targeting specific immune-cell subsets, this 

technique could be a potent addition to understanding allograft rejection and injury.

Conclusion

Based on morphometric analysis of histopathology slides, the current Banff classification 

system provides an excellent framework for evaluation of allograft dysfunction but, it 

has intrinsic limitations and possesses certain challenges. With the explosion of novel 

tissue interrogation techniques described here, there is an expanding opportunity to identify 

specific molecular mechanisms underlying the pathologic diagnosis, and delineate pathways 

of immunological activation, tissue injury, repair, and regeneration in each case. High costs 

and complex logistics currently limit the clinical application of several of these tools, 

but future work needs to incorporate these new technologies to layer pathogenetic insight 

onto pathologic features in allograft processes. This will ultimately enable better diagnosis, 

prognosis, and novel therapeutics enabling transplant professionals to develop a personalized 

roadmap to prolong allograft longevity in each individual patient.
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Key Points

1. Intrinsic limitations to allograft histopathology including Banff schema.

2. Novel complementary technologies for tissue interrogation reveal potential 

for better pathogenetic insight, diagnoses, and prognosis.

3. While technically and logistically challenging on precious biopsy tissue, these 

techniques are the future of tissue interrogation
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Figure 1 : 
Available histopathologic information from allograft biopsies is interpreted using 

Banff classification which is limited by sampling error, interobserver variability, and 

inability to prognosticate future graft function. Described in the image are tissue 

interrogation techniques (including AI, automated image analysis, in situ proteomics, biopsy 

transcriptomics, tissue metabolomics) being studied to improve upon our current limitations 

and in combination with orthogonal clinical data, better inform diagnostic, prognostic, and 

therapeutic options for the future.

( ABMR: Antibody mediated rejection, AI: Artificial intelligence, DSA: Donor specific 

antibodies, ScRNA: Single cell RNA, TCMR: T-cell mediated rejection)
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