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Significance

Hybrid lethality prior to 
gastrulation frequently occurs in 
various animal hybridization 
experiments. Genome instability 
is considered as a widespread 
hybrid incompatibility 
phenotype. Hybrids derived from 
Xenopus tropicalis eggs fertilized 
by Xenopus laevis sperm suffer 
specific loss of paternal 
chromosomes 3L and 4L and die 
before gastrulation. This study 
aims to investigate the 
underlying lethal causes for this 
hybrid. Using a combination of 
approaches, we find that P53 is 
stabilized and activated in the 
hybrids at late blastula stage. 
Inhibition of P53 activity rescues 
the early lethality. Our data 
indicate that P53 is involved in 
the hybrid lethality.
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Hybrid incompatibility as a kind of reproductive isolation contributes to speciation. The 
nucleocytoplasmic incompatibility between Xenopus tropicalis eggs and Xenopus laevis 
sperm (te×ls) leads to specific loss of paternal chromosomes 3L and 4L. The hybrids die 
before gastrulation, of which the lethal causes remain largely unclear. Here, we show 
that the activation of the tumor suppressor protein P53 at late blastula stage contributes 
to this early lethality. We find that in stage 9 embryos, P53-binding motif is the most 
enriched one in the up-regulated Assay for Transposase-Accessible Chromatin with 
high-throughput sequencing (ATAC-seq) peaks between te×ls and wild-type X. tropicalis 
controls, which correlates with an abrupt stabilization of P53 protein in te×ls hybrids 
at stage 9. Inhibition of P53 activity via either tp53 knockout or overexpression of a 
dominant-negative P53 mutant or Murine double minute 2 proto-oncogene (Mdm2), 
a negative regulator of P53, by mRNA injection can rescue the te×ls early lethality. Our 
results suggest a causal function of P53 on hybrid lethality prior to gastrulation.

P53 | reproductive isolation | Xenopus | hybrid inviability

Xenopus laevis, an allotetraploid frog with 36 chromosomes, and Xenopus tropicalis, a true 
diploid frog with 20 chromosomes, are two evolutionarily distant frog species that diverged 
from a common ancestor approximately 48 Mya (1). Hybrids derived from crossfertilization 
of X. laevis eggs with X. tropicalis sperm (le×ts) are viable, whereas the reciprocal hybrids 
developed from X. tropicalis eggs fertilized by X. laevis sperm (te×ls) die before gastrulation 
(2–4). Defects in the maintenance of specific centromeres and DNA replication stress 
underlying the nucleocytoplasmic incompatibility between X. tropicalis eggs and X. laevis 
sperm lead to the specific loss of majorities of paternal chromosomes 3L and 4L (3, 4). To 
date, no robust models have been established, which could rescue this early lethality.

Nucleocytoplasmic interactions and zygotic genome activation during early develop-
ment have intrigued embryologists for more than a century (5). Seminal studies in fish 
and amphibian embryos with X-ray irradiation have experimentally defined the morpho-
genetic function of nuclei, now more prevailingly known as zygotic genome activation. 
Upon selective inactivation of embryonic nuclei before mid-blastula transition (MBT) 
with optimal doses of X-ray, developmental cessation always takes place at the late blastula, 
before gastrulation, similar to the late blastula arrest observed in numerous fish and 
amphibian lethal interspecies hybrids (5–7). Ionizing radiation causes DNA damage and 
activates cell cycle arrest or cell death. It has been firmly established that P53 is a central 
regulator of the DNA damage response (8, 9). X. laevis embryos irradiated with γ-ray 
before MBT fail to undergo gastrulation. Of note, apoptosis is induced in these embryos 
with no detectable stabilization of P53 protein (10). A subsequent study reveals a devel-
opmental timer that regulates apoptosis at the onset of gastrulation in Xenopus embryos, 
which can be activated by either γ-irradiation or inhibition of DNA replication, tran-
scription, or protein synthesis (11). In contrast, time-lapse videoing and TdT (terminalde-
oxynucleotidyl transferase)-mediated dUTP nick end labeling (TUNEL) analyses indicate 
that le×ts hybrids suffer explosive cell lysis rather than apoptosis at gastrulation (3). Lytic 
cell death is the characteristic of necrosis, necroptosis, or pyroptosis. The subtypes of cell 
death occurring in le×ts hybrids remain to be defined.

In this study, we aim at addressing the lethal causes of te×ls hybrids and find that sta-
bilization and activation of P53 contributes to the early lethality of te×ls hybrids with 
partial involvement of apoptosis.

Results

An Abrupt Stabilization of P53 Protein Occurs in te×ls Late Blastulae, as well as Wild-Type 
Frog Embryos Irradiated with X-Ray or Injected with Linear Plasmid DNA. To address the 
early lethality of te×ls hybrids, we conducted a comparative analysis of their early dynamic 
transcriptional profiles against wild-type controls. High-throughput RNA sequencing 
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(RNA-seq) analyses of stage 8, 9, 10, and 11 embryos (Fig. 1A 
and SI Appendix, Fig. S1A) revealed a sharp upregulation of about 
200 genes with functional enrichment in epidermis development, 
stress response, and cell cycle arrest in te×ls hybrids compared to X. 
tropicalis wild-type ( XtWT) embryos from stage 8 to stage 9, just 
before and after the major zygotic genome activation, respectively, 
while the number of down-regulated genes remained relatively 
stable (Fig.  1B and SI  Appendix, Fig.  S1 B–F). We reasoned 
that there might be a corresponding sharp change of chromatin 
accessibility from stage 8 to stage 9. Given the technical challenge 
to conduct ATAC-seq analysis with Xenopus embryos before MBT 
(12), we then chose stage 9 embryos for ATAC-seq analysis. Motif 
enrichment analysis of the up-regulated ATAC-seq peaks in te×ls 
hybrids vs. XtWT controls identified that P53-binding motif was the 
most enriched one (Fig. 1C). Consistent with this, we detected a 
sharp increase of P53 protein level in stage 9 and 10 te×ls hybrids, 
which was not observed in either le×ts or XtWT and X. laevis wild-
type controls (Fig. 1D and SI Appendix, Fig. S2A). In contrast, 
given the high levels of maternal full-length tp53 transcripts in both 
X. laevis (1, 13) and X tropicalis (14), no significant change of full-
length tp53 mRNA was detected in all the four groups of embryos 
from stages 8 to 11 upon RNA-seq analysis (SI Appendix, Fig. S2 B 
and C). A discernable increase of Δ99tp53 transcripts was detected 
between te×ls and XtWT from stage 8 to stage 11 (SI Appendix, 
Figs.  S2D and S8E), which is reminiscent of the morpholino-
induced innate immune response, including induction of internal 
promoter driven Δ99tp53 transcription, in Xenopus (15). X. 
tropicalis Δ99P53 is equivalent to human Δ133P53 and zebrafish 
Δ113P53 isoforms, which have been reported to suppress apoptosis 
by lowering transcriptional activity mediated by full-length P53 
(16, 17), suggesting a similar negative feedback response to full-
length P53 activation in te×ls hybrids.

In nonstressed conditions, P53 levels and activity are kept low 
by the E3 ubiquitin ligase Mdm2-mediated degradation. In 
response to various stresses, including DNA damage, P53 activa-
tion occurs largely through protein stabilization (18). We assessed 
P53 protein levels in X. tropicalis embryos either irradiated with 
X-ray, or treated with DNA replication inhibitor aphidicolin, 
transcription inhibitors α-amanitin and triptolide, or protein 
synthesis inhibitor cycloheximide (3, 11). All the treatments were 

carried out before MBT, which led to developmental arrest at the 
onset of gastrulation (3, 11 and Fig. 1E and SI Appendix, Fig. S2E). 
Robust increase of P53 protein levels was only detected in 
X-ray-irradiated stage 9 and stage 11 embryos, while weak signals 
were observed with the two transcription inhibitors, α-amanitin 
and triptolide (Fig. 1F and SI Appendix, Fig. S2F). X-ray irradia-
tion also induced P53 stabilization in X. laevis embryos 
(SI Appendix, Fig. S2G). Although we used X-ray instead of γ-ray, 
the previous failure in detecting P53 stabilization in γ-irradiated 
X. laevis embryos is likely due to the antibody used (10). Thus, 
with respect to the effect on P53 stabilization, te×ls hybrid incom-
patibility resembles X-ray irradiation.

It has been reported that relatively high doses of exogenous 
DNA have an unspecific toxicity to Xenopus embryos and lead to 
gastrulation defects (19–21). Linearized plasmid DNA injected 
into Xenopus fertilized eggs can form head-to-tail tandem repeats 
and become degraded after gastrulation (20, 21). Small pseudo-
nuclei can be formed around the injected bacteriophage λ DNA 
(linear) in both Xenopus unfertilized eggs and embryos (22, 23). 
Although we did not analyze the formation of tandem repeats or 
pseudonuclei after linear plasmid DNA injection, we noticed that 
fertilized eggs of our tp53-null X. tropicalis line (24) could with-
stand four times more exogenous plasmid DNA than their 
wild-type counterparts. We reasoned that P53 pathway might be 
activated in the exogenous DNA-induced gastrulation defect 
model. Indeed, western blot analysis revealed a dose-dependent 
P53 protein stabilization in XtWT embryos in response to injected 
linear pBluescript II SK+ plasmid, which could occur as early as 
stage 4 (SI Appendix, Fig. S2 H and I). These embryos partially 
resemble the te×ls hybrids at both morphological and molecular 
levels (SI Appendix, Fig. S2 J–M). Together, the te×ls hybrid incom-
patibility, X-ray irradiation, and exogenous plasmid DNA can all 
lead to gastrulation defects and P53 stabilization in Xenopus.

Activation of P53 Pathway Contributes to te×ls Early Lethality. 
To assess the functionality of stabilized P53 in te×ls hybrids, we 
carried out a P53 chromatin immunoprecipitation sequencing 
(ChIP-seq) analysis. Consistently, we observed a sharp increase of 
P53 occupancy throughout the genome at stage 9 in te×ls compared 
to XtWT, which in turn matched with the up-regulated ATAC-seq 
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Fig. 1. Specific stabilization of P53 protein in te×ls hybrids and X-ray-irradiated embryos. (A) Representative images of wild-type and hybrid embryos at stage 
8 (animal pole view) and stage 10 (vegetal pole view). Independent crossfertilization experiments have been carried out for more than 6 times. (Scale bars, 
200 µm). (B) Differential gene expression analysis of the RNA-seq data revealing dynamics of the number of differentially expressed genes between te×ls and 
XtWT from stage 8 to stage 11. s, stage; VS, versus. (C) ATAC-seq heatmaps and enriched motifs showing P53-binding motif as the most enriched one in the up-
regulated peaks between te×ls and XtWT at stage 9. (D) Western blot data showing specific stabilization of P53 protein in te×ls embryos at stages 9 and 10. Identical 
results were obtained in three independent experiments. s, stage; β-tubulin was used as a loading control. (E) Representative images of embryos irradiated 
with different doses of X-ray. Identical results were obtained in three independent experiments. (Scale bar, 200 µm). (F) Western blot data showing specific 
stabilization of P53 protein in X-ray-irradiated embryos at stages 9 and 11. Identical results were obtained in three independent experiments. s, stage; β-tubulin 
was used as a loading control.
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peaks (Fig. 2 A and B and SI Appendix, Fig. S3 A–C). H3K4me1/
H3K27ac and H3K27ac/H3K4me3 are active enhancer and 
promoter histone marks, respectively. The up-regulated P53 
ChIP-seq signals correlate with increased RNA Pol II, H3K4me1, 
H3K27ac, and H3K4me3 ChIP-seq signals (Fig. 2A), as well as the 
up-regulated RNA-seq signals, which is well illustrated via zooming 
in individual P53 target genes, such as maternal ccng1 and cdkn1a 
(Fig. 2C and SI Appendix, Fig. S3D) and paternal ccng1.l, ccng1.s, 
and foxi1.s (SI  Appendix, Fig.  S3E). Based on the up-regulated 
ATAC-seq signals, a similar correlation also exists (SI Appendix, 
Fig. S3C), indicating the reliability of our multiomics data. Among 
the differentially expressed genes between te×ls and XtWT, at stage 
9, 19 of the top 30 up-regulated hub genes, based on the node 
degrees of protein–protein interaction (PPI) network analysis, were 
covered by P53 ChIP-seq signals, including mdm2, ccng1, and 
cdkn1a (Fig. 2D). At stages 10 and 11, significant numbers of both 
top up-regulated and top down-regulated hub genes were covered 
by P53 ChIP-seq signals, relating to cell cycle arrest, perturbation 
of signaling pathways involved in germ layer specification, and 
apoptosis (SI Appendix, Fig. S4).

P53 is known to regulate various metabolic pathways and can 
act as a metabolic sensor (25, 26). Our functional enrichment 

analysis of differential expression genes between te×ls and XtWT in 
the context of metabolism attributed to P53 and FoxO pathways 
(SI Appendix, Fig. S1F). Further analysis of the differentially 
expressed genes in each signaling pathway suggested their step-wise 
and fine-tuned regulation of cell cycle, apoptosis, DNA repair, 
and metabolism during stages 8 to 11 (SI Appendix, Fig. S5). 
Inspection of the ATAC-seq signal distribution in the noncoding 
gene loci revealed a sharp decrease of chromatin accessibility in 
genome-wide tRNA loci in te×ls vs. XtWT (Fig. 2E).

Together, the activity of activated P53 in te×ls hybrid inviability 
is reminiscent of embryonic lethality caused by P53 overexpression 
in X. laevis embryos (27) or Mdm2 knockout in mice, which can 
be rescued by deletion of P53 (28, 29), suggesting a causal role of 
P53 to the death of the te×ls hybrids.

Apoptosis Is Partially Involved in te×ls Lethality. To validate our 
multiomics data on P53-mediated apoptosis, we modulated the 
apoptotic pathway in te×ls hybrids. Despite the robust stabilization 
of P53 in te×ls hybrids, activated Caspase-3 was relatively low 
compared to other treatments (Fig. 3A). Blocking apoptosis with 
either the pan-Caspase inhibitor Z-VAD-FMK and the Caspase-3 
inhibitor Z-DEVD-FMK, or antiapoptotic Bcl2 and Xiap (inhibitor 
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of apoptosis), partially rescued te×ls lethality (Fig.  3 B and C), 
reminiscent of the partial rescue effects of Bcl2 on the cell death 
induced by P53 (27), γ-ray, α-amanitin, or cycloheximide in X. 
laevis embryos (11). Consistent with the previous study (3), TUNEL 
staining signals can hardly be detected in te×ls hybrids at stage 10.5. 
However, clear TUNEL staining signals were detected in te×ls hybrids 
when control siblings reached stage 12 (Fig. 3D). Together, these 
data suggest that apoptosis plays a partial role in te×ls lethality, and 
additional types of cell death underlying te×ls inviability remain to 
be defined.

Inhibition of P53 Activity Rescues te×ls Hybrid Early Lethality. 
Utilizing a tp53 knockout line established in our laboratory 
(24), which disrupted both the full-length P53 and the Δ99P53 
(SI Appendix, Fig. S6A), we found that hybrids produced from 
crossfertilization of X. tropicalis tp53−/− eggs with wild-type X. laevis 
sperm (referred to as te

tp53−/−×ls) exhibited a successful progression 
through gastrulation and continued to survive until stage 37, 
indicating a clear rescue that significantly postponed the lethal 
stage (Fig. 4A and SI Appendix, Fig. S6 B and C). Overexpression 
of a dominant-negative P53 (Dnp53) mutant or Mdm2 by mRNA 
injection can also rescue the early lethality of te×ls hybrids to stage 
25 (SI Appendix, Fig. S6 C and F). Similarly, disruption of P53 
rescued 5 Gy of X-ray-induced gastrulation lethality in X. tropicalis 
(SI Appendix, Fig. S6 D, E, and G ).

ATAC-seq and RNA-seq analyses indicate that P53 activation–
related chromatin accessibility changes and up-/down-regulated 
expression of hub genes seen in te×ls hybrids are largely corrected 
in te

tp53−/−×ls hybrids (Fig. 4 B–D and SI Appendix, Figs. S4 and 
S7 A–C). For the previously reported 165 differentially expressed 
metabolism transcripts (3) between te×ls and XtWT, we could cat-
egorize them into 5 classes in our rescue model. Except for the 
expression of 33 genes in Class 2, which can hardly be rescued in 
te

tp53−/−×ls hybrids, the expression of the rest ones, especially of 
Class 4 genes, can be rescued to almost normal levels in te

tp53−/−×ls 
hybrids, suggesting that alteration of these transcripts in te×ls is 
the consequence of activated P53, rather than the cause of hybrid 
inviability (Fig. 4E and SI Appendix, Fig. S7C).

It has been reported that P53 activation can repress RNA poly-
merase III-mediated transcription by targeting TBP and inhibiting 

promoter occupancy by TFIIIB (30). Based on the ATAC-data, the 
reduction of chromatin accessibility in genome-wide tRNA loci 
seen in te×ls was also partially rescued in te

tp53−/−×ls, indicating the 
dependence of this reduction on activated P53 (Fig. 4F). X. laevis 
tp53l locus located on chromosome 3L is lost in the te×ls hybrids, 
while the tp53s locus is retained. Western blot analysis indicates that 
no full-length P53 (potentially from the X. laevis tp53s locus) is 
expressed in te

tp53−/−×ls, ruling out P53 contribution to the death of 
te

tp53−/−×ls at tailbud stage of development (Fig. 4G).
The te

tp53−/−×ls and te×ls hybrids provide a valuable reciprocal 
reference for comparative analyses of the paternal genome-related 
data. Focusing solely on the paternal genome, we observed that the 
most enriched motifs of up-/down-regulated ATAC-seq signals 
between te×ls and te

tp53−/−×ls illustrated just a reverse picture of those 
seen in the comparison between XtWT and te×ls based on maternal 
genome alone (SI Appendix, Fig. S8A in comparison with Fig. 1C). 
Similarly, analyzing the paternal genome alone revealed a reversed 
picture of the changes in chromatin accessibility in genome-wide 
tRNA loci between the te×ls /te

tp53−/−×ls pair and the XtWT/te×ls pair 
(SI Appendix, Fig. S8B in comparison with Fig. 2E). Examination 
of paternal-only differential expression genes between te×ls and  
te

tp53−/−×ls demonstrated the rescue of the most prominently acti-
vated P53 pathway and down-regulated developmental signaling 
pathways in stage 9 te×ls hybrids (SI Appendix, Fig. S8 C and D). 
Integrative analysis of ATAC-seq, H3K4me3 ChIP-seq, and 
RNA-seq data on individual paternal loci revealed the rescue of the 
paternal response to activated P53 pathway in stage 9 te×ls hybrids 
(SI Appendix, Fig. S8E).

Specific Loss of Paternal Chromosomes 3L and 4L Persists 
in te

tp53−/−×ls Hybrids. It was shown that cold shock–induced 
triploid hybrid tte×ls can survive longer, but the X. laevis DNA 
was eliminated by the tadpole stage (3). Our whole-genome 
sequencing (WGS-Seq) data revealed that the majority of the 
paternal chromosomes 3L and 4L were similarly lost in te

tp53−/−×ls 
hybrids and this hybrid genotype was maintained in tailbud 
stage te

tp53−/−×ls hybrids (Fig.  5 A–C). The death of te
tp53−/−×ls 

at late tailbud stage of development is likely due to the specific 
loss of chromosomes 3L and 4L, which remains to be further 
investigated.
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Discussion

In fish and amphibians, many interspecific lethal hybrids arrest 
their embryonic development prior to gastrulation, which resem-
bles the phenotype induced by ionizing radiation applied before 
MBT (5–7). In this study, we find that P53 protein is indeed 
stabilized in both te×ls hybrids and X-ray-irradiated wild-type 
Xenopus embryos, which plays a pivotal role in controlling the fate 
of these embryos around gastrulation. As a third model, linear 
plasmid DNA can also induce gastrulation defects and P53 sta-
bilization in X. tropicalis embryos in a dose-dependent manner.

P53 is known to regulate various forms of cell death, including 
necrosis and necroptosis (31–33). Our study shows that apoptosis 
only partially contributes to the death of te×ls hybrids. We were 
unable to identify significant signals for other types of cell death 
from our multiomics data including the P53 ChIP-seq data. The 
transcription-independent cytoplasmic function of P53 is impor-
tant for regulating cell death. For example, in mammalian cells, 
P53 can accumulate in the mitochondrial matrix in response to 
oxidative stress, physically interact with cyclophilin D, and trigger 
mitochondrial permeability transition pore opening and necrosis 
(31). The other types of P53-regulated cell death involved in the 
lethality of te×ls hybrids, as well as X-ray-irradiated and linear 
plasmid DNA-injected embryos, remain to be identified.

In sum, chromosome loss has also been detected in lethal hybrids 
of fish (34, 35) and Drosophila (36) and genome instability might 
be a widespread hybrid incompatibility phenotype (37). It has been 

proposed that quality control of germ cells is the ancestrally con-
served function of the P53 family members (38, 39). Here, we find 
that P53 is involved in Xenopus te×ls hybrid lethality.

Materials and Methods

Frogs and Animal Experimentation. All animal experiments in this study were 
approved by the Institutional Animal Care and Use Committee at the Southern 
University of Science and Technology. Adult X. tropicalis and X. laevis frogs were 
purchased from NASCO. All X. tropicalis tadpoles, froglets, and frogs were housed 
in a room with a constant temperature at 25 °C and the constant room tempera-
ture for X. laevis was 18 °C. The frog housing rooms follow a 12-h light-dark cycle. 
The X. tropicalis tp53−/− line was established using the CRISPR/Cas9-mediated 
targeted disruption strategy in our laboratory (24). Embryos were obtained from 
mature X. tropicalis (8 mo to 2 y) and X. laevis (approximately 2 y old) frogs via 
either hormone-induced mating or artificial fertilization/crossfertilization. No 
statistical methods were used to predetermine sample size. The experiments 
were not randomized and the investigators were not blinded to allocation during 
experiments and outcome assessment.

Hormone-Induced Mating, Artificial In  Vitro Fertilization, and Cross
fertilization. Mature X. laevis males and females were primed with 300 U and 
500 U of human chorionic gonadotropin (hCG), respectively. Mature X. tropicalis 
males and females were initially primed with 20 U of hCG 1 d in advance, followed 
by injection of a full dose (150 U of hCG).

For hormone-induced mating, each pair of frogs (one male and one female 
of the same species) was housed in individual tanks containing 0.1× Mordified 
Barth's Solution (MBS) 1× MBS: 88  mM NaCl, 1.0  mM KCl, 0.41  mM CaCl2, 
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0.33  mM Ca(NO3)2, 0.82  mM MgSO4, 2.4  mM NaHCO3, 10  mM HEPES, pH 
7.4). Once sufficient quantities of eggs were spawned and fertilized, they were 
promptly collected.

For artificial in vitro fertilization and crossfertilization, the frogs were primed 
with hCG as mentioned above. Males and females were kept separately. When 
females started spawning, males were killed by injecting 200 to 300 µL 4% tric-
aine (MS222) and the testes were dissected. X. laevis testes can be stored in 1× 
MBS at 4 °C for 1 to 2 wk, while X. tropicalis testes should be used immediately 
as sperm viability is severely reduced upon 4 °C storage. The testes were minced 
in a small Petri dish using a sharp blade, suspended in 1× MBS (500 µL for two 
minced X. tropicalis testes and 1 ml for one minced X. laevis testis), and kept on 
ice. To generate embryos with X. tropicalis eggs, approximately 1,000 eggs were 
squeezed onto a Petri dish, mixed well with 500 µL of desired (either X. tropicalis 
or X. laevis) sperm suspension, incubated for 2 min, then added with 4.5 mL 
double distilled water (ddH2O), swirled, and further incubated for 10 min at room 
temperature. The fertilized eggs were transferred to a beaker and dejellied with 
3% L-cysteine solution (pH 8.0) by swirling for 3 min and washing five times with 
0.1× MBS. They were then transferred to Petri dishes coated with 1% agarose 
and incubated at 25 °C. To generate embryos with X. laevis eggs, about 500 eggs 

were squeezed to a Petri dish, mixed well with 2 mL of desired sperm suspension 
(200 µL of either X. laevis or X. tropicalis sperm suspension diluted with 1.8 mL 
of ddH2O), and incubated for 10 min at room temperature. The fertilized eggs 
were dejellied with 2% L-cysteine solution (pH 8.0) for 3 to 5 min, washed five 
times with 0.1× MBS, transferred to a new Petri dish, and incubated at 18 °C 
with 0.1× MBS.

Plasmid Construction and Microinjection. The open-reading frames of four X. 
tropicalis genes, tp53, mdm2, bcl2, and xiap, were amplified by RT-PCR using total 
RNA extracted from stage 11 X. tropicalis embryos and cloned into the pCS2+ vec-
tor. To design an X. tropicalis Dnp53, we deleted amino acids 10 to 282 including 
the whole DNA-binding domain (40). To clone this fragment, the segment coding 
for the first 9 amino acids was prepared by annealing two synthesized primers 
and the fragment coding for amino acids 283 to 362 was obtained by PCR ampli-
fication. The two fragments were assembled into the linearized pCS2+ vector 
using a one-step clone method (pEASY®-Basic Seamless Cloning and Assembly 
Kit, CU201-02, TransGen Biotech). All constructs were verified by Sanger DNA 
sequencing. Linear double-stranded DNA used for microinjection was generated 
by PCR amplification with pBluescript II SK+ plasmid as a template and purified 
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by gel electrophoresis using a Gel Extraction kit (28706, Qiagen). Sequences of 
all primers are listed in SI Appendix, Table S1.

For mRNA injection, all constructs were linearized with NotI and transcribed 
with the mMESSAGE mMACHINE SP6 Kit (AM1340, Thermo Fisher Scientific). 
The synthesized mRNAs were purified with the RNeasy Mini Kit (74106, Qiagen), 
dissolved in nuclease-free water, quantified by NanoPhotometer (IMPLEN), and 
stored at −80 °C. Two nanoliters of each mRNA (300 pg per egg) was injected into 
fertilized eggs at 1-cell stage at the animal pole using a pneumatic Pico Pump 
PV830 (WPI, Sarasota, Florida). The injected embryos were collected or imaged 
at desired stages using a stereo microscope (SMZ18, Nikon).

Chemical Treatments. All chemicals were purchased from MedChemExpress 
unless otherwise stated. The experimental procedure for chemical treatment of 
embryos is as described previously (3, 11). The 24-well cell culture plates were 
precoated with 1% agarose, and each treatment and control group used 30 
embryos. Stage 6 embryos were transferred to the coated plates and incubated 
in 1 mL of 0.1× MBS solution containing the appropriate concentration of chem-
icals at 25 °C. The stock solutions of aphidicolin (ab142400, Abcam), α-amanitin 
(HY-19610), triptolide (HY-32735), cycloheximide (46401, Merck), Z-DEVD-FMK 
(HY-12466), and Z-VAD-FMK (HY-16658B) were prepared with dimethyl sulfoxide 
(DMSO), which allow for at least 1:1,000 dilution in use. Corresponding volumes 
of DMSO were added to the controls. α-amanitin and triptolide were injected into 
each fertilized egg at the 1-cell stage at the dose of 2 ng per egg.

X-Ray Irradiation. For each X-ray irradiation group, 30 embryos at stage 6 
were used and irradiated using the RS2000 X-ray irradiator (RS2000pro-225, 
Rad Source). For doses below 5 Gy, embryos were placed on the first tier of the 
shelf and the RS2000 irradiator was set to operate at 10 mA and 225 kV. For 
doses above 5 Gy, embryos were placed on the sixth tier of the shelf and the X-ray 
machine was configured to operate at 17.7 mA and 225 kV.

Whole-Mount TUNEL Staining. Whole-mount TUNEL staining was performed as 
described previously (11). After MEMFA: (MOPS (3-morpholinopropanesulfoinc 
Acid)/EGTA (ethylene glycol tetraacetic acid)/Magnesium Sulfate/Formaldehyde 
fixative: 100 mM Mops, pH 7.4, 2 mM EGTA, 1 mM MgSO4, and 4% formalde-
hyde) fixation, embryos were dehydrated and stored in Dent's solution (20% 
DMSO in methanol) overnight at −20 °C. The embryos were then rehydrated in 
phosphate-buffered saline (PBS) and permeabilized in PTw (0.2% Tween 20 in 1× 
PBS). For the end labeling reaction, the embryos were first bleached with a mixed 
solution containing 2% H202 and 5% formamide and 0.5× SSC (saline-sodium 
citrate: 7.5 mM NaCl, 7.5 mM C6H5Na3O7, pH 7.0) for 2 h under light, washed 
three times with PBS, incubated for 1 h at room temperature in 1× TdT buffer, 
followed by overnight incubation in a TdT buffer containing 150 U/mL TdT enzyme 
(10533065, Invitrogen) and 1  pmol/l digoxigenin-11-dUTP (11570013910, 
Roche). The reaction was terminated in 1 mM EDTA-containing PBS at 65 °C and 
washed three times at room temperature with 1× MAB (100 mM maleic acid, 
150 mM NaCl, pH 7.5). For antibody incubation, the embryos were blocked in 
a 1× MAB solution containing 2% BMB for 1 h, incubated in a 1×MAB solution 
containing the antidigoxigenin AP antibody (diluted 1:5,000) and 2% BMB at 
room temperature for 4 h, and then washed with large volume (50 mL) of 1× 
MAB overnight at 4 °C. For chromogenic reaction, the embryos were incubated 
in APB (Alkaline Phosphatase Detection Buffer: 100 mM Tris, pH 8.45, 50 mM 
MgCl2, 100 mM NaCl, 0.1% Tween 20) for 10 min and stained with APB buffer 
containing nitro blue tetrazolium/5-bromo-4-chloro-3-indolyl-phosphate for 2 
h. Afterward, the embryos were washed with H2O, transferred to 1× MEM (0.1M 
MOPS, 0.2mM EGTA, 1mM MgSO4, pH 7.4), and imaged using a stereo micro-
scope (SMZ18, Nikon).

Western Blot Analysis. Western blot was performed as described previously 
(41). Ten embryos at indicated stages were collected and homogenized in immu-
noprecipitation assay buffer (Thermo Fisher Scientific) containing a protease inhib-
itor cocktail (Merck). Anti-P53 (1:3,000, ab16465, Abcam), anticleaved Caspase-3 
(1:3,000, 9661S, Cell Signaling Technology), anti-HA (1:3,000, 3724S, Cell 
Signaling Technology), and anti-β-tubulin (1:3,000, HC101, TransGen Biotech) 
were used as the primary antibodies. β-tubulin was used as the loading control. 
Goat anti-mouse or goat anti-rabbit horseradish peroxidase (HRP) (1:10,000, 
HS201-01, TransGen Biotech) was used as the secondary antibody. The signal 
was detected using a chemiluminescent western blot detection kit (Millipore) 
and imaged using the ChemiDox XRS Bio-Rad Imager.

RNA-Seq Library Preparation. Ten embryos at the desired developmental 
stages were collected for RNA-seq library preparation. Total RNA was extracted 
using TransZol Up lysis reagent (ET111-01, TransGen Biotech). RNA-seq libraries 
were prepared using the VAHTS® Universal V6 RNA-seq Library Prep for Illumina 
Kit (NR604, Vazyme) in accordance with the manufacturer’s instructions. The qual-
ity of the libraries was assessed using an Agilent Technologies 2100 Bioanalyzer 
(Agilent). Sequencing of the libraries was performed on the NovaSeq 6000 
(Illumina).

ChIP-Seq Library Preparation. ChIP-seq library preparation was performed as 
described previously (41). Briefly, 300 to 1,000 embryos at the desired stages 
were cross-linked with 1% formaldehyde for 30 min. Fixation was then stopped 
by a 10-min incubation in 0.125 M of glycine dissolved in 0.1× MBS, followed by 
three washes with 0.1× MBS. The fixed embryos were frozen at −80 °C in 1.5 mL 
microcentrifuge tubes with 200 embryos per tube. Chromatin was sheared to an 
average size of 150 bp using a sonicator (Bioruptor Pico; Diagenode). Sonicated 
chromatin fragments were immunoprecipitated with 3 μg anti-P53 (ab16465, 
Abcam), anti-Rpb1 (sc-56767, Santa Cruz Biotechnology), anti-H3K27ac (39685, 
Active Motif), anti-H3K4me1 (39635, Active Motif), and anti-H3K4me3 (61379, 
Active Motif). Chromatin-bound antibodies were recovered with 30 μl Protein 
A/G Magnetic Beads (16 to 663; Millipore). Immunoprecipitated DNA and input 
DNA were recovered using the MinElute PCR Purification Kit (28006, QIAGEN). 
The final libraries were prepared using the VAHTS Universal DNA Library Prep 
Kit for Illumina V3 (ND607, Vazyme). Amplified libraries were sequenced on the 
NovaSeq 6000 platform (Illumina).

WGS-Seq Library Preparation. Ten embryos from each experimental group 
were used for WGS-seq library construction. Genomic DNA was extracted using 
the EasyPure Genomic DNA Kit (EE101, TransGen Biotech) following the manu-
facturer’s instructions. The genome was fragmented using a sonicator (Bioruptor 
Pico; Diagenode). The fragmented DNA was purified and concentrated with a 
MinElute PCR Purification Kit (28006, QIAGEN). WGS-seq libraries were prepared 
according to the manufacturer’s instructions using the VAHTS® Universal DNA 
Library Prep Kit for Illumina V3 (ND607, Vazyme). Amplified WGS libraries were 
subsequently sequenced on both the NovaSeq 6000 platform (Illumina) and 
DNBSEQ-T7 (MGI Tech Co) platform.

ATAC-Seq Library Preparation and Analysis. ATAC-seq was performed with 
a significantly modified protocol. To analyze the obtained data, the genomes of 
X. tropicalis v10.0 and X. laevis v10.1 were merged into a fusion genome and 
an index was generated. Raw fastq reads were trimmed by fastp and aligned to 
the fusion genome using Burrows-Wheeler Aligner (BWA) (42). Low mapping 
quality (MAPQ < 20) and PCR-duplicated reads were removed by (Sequence 
Alignment/Map format (SAMtools) and sambamba, respectively. The filtered 
Binary Alignment Map (BAM) files were split according to the genomes of X. 
tropicalis and X. laevis, thus generating the X. tropicalis and X. laevis bam files, 
respectively. The sequencing coverage of X. tropicalis and X. laevis was calcu-
lated using bamCoverage (43) with options “--binSize 10 --normalizeUsing 
RPKM –ignoreDuplicates.” Peaks were identified using MACS2 with the options 
“macs2 callpeak -f BAM -g 1.4e9/2.6e9 -B -q 0.1 --nomodel --shift 70 --extsize 
140 --keep-dup all” (44). High-confidence accessible regions were determined 
by merging the two ATAC-seq replicates and calling peaks from the merged data. 
Only peaks that had more than 50% overlap with peaks called from both bio-
logical replicates individually were defined as accessible regions (45, 46). Peak 
merging and identification of differential peaks were performed using DiffBind 
(False Discovery Rate (FDR) < 0.05, absolute fold change > 1.5) (47). Accessible 
regions with significantly higher or lower ATAC-seq signals between the control 
and the experimental groups were further used for motif enrichment. The Homer 
script “findMotifsGenome.pl” was used to enrich known motifs and predict new 
motifs for specified genomic regions (48).

RNA-Seq Analysis. The low-quality and adapter sequences of raw fastq reads 
were removed by fastp with the option “-f 15 -F 15 -c” (49). The clean reads were 
mapped to the combined X. tropicalis v10.0 and X. laevis v10.1 reference genomes 
downloaded from Xenbase (http://www.xenbase.org/, Research Resource Identifiers 
(RRID): SCR_003280) using HISAT2 (50). Low MAPQ reads (MAPQ < 20) and PCR 
duplicates were filtered by SAMtools and sambamba, respectively (51, 52). The 
genes in X. tropicalis and X. laevis were counted separately using featureCounts 
(53). The XB_GENE_NAME of X. tropicalis and X. laevis was then converted to 

http://www.pnas.org/lookup/doi/10.1073/pnas.2303698120#supplementary-materials
http://www.xenbase.org/
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XB_GENEPAGE_NAME according to the gene ID conversion file provided by 
Xenbase. The count values of genes with the same NAME were combined. Genes 
that could be converted to XB_GENEPAGE_NAME and were contained in X. laevis 
but not in X. tropicalis will be removed (3). Differential expression analysis was 
performed using DESeq2 (54), and genes with an adjusted P-value <0.05 and abso-
lute log2(fold change) > 1 were considered differentially expressed. The protein 
interaction network of related differentially expressed genes was analyzed using 
the STRING database V11.5 (55). For metabolism gene analysis, we obtained a list 
of metabolism genes from publicly available sources PANTHER version 16 (56) and 
filtered the list using X. tropicalis and “metabolic process” as the keywords in AmiGO 
(57). Gene Ontology (GO) (58) and Kyoto Encyclopedia of Genes and Genomes 
(KEGG) (59) enrichment analyses were performed with the R package clusterProfiler 
version 4.2.2 (60). Adjusted P values were used to screen for plausible biological 
process terms and KEGG pathways. The dot and bar plots for enrichment analysis 
were drawn by the python package Matplotlib version 3.5.1 (61). Path plots for 
KEGG were redrawn based on the R package pathview version 1.34.0 (62).

ChIP-Seq Analysis. Raw data trimming and mapping analysis was carried out as 
previously described (41). To assess the reproducibility of replicates, the read cov-
erage of genomic regions was calculated for filtered BAM files using the deeptools 
v3.5 multiBamSummary bins command with a bin size of 10 kb. The coverage was 
calculated by bamCoverage with options “--binSize 10 --normalizeUsing RPKM 
–ignoreDuplicates.” The replicate BAM files were merged for further peak calling 
analysis using MACS v.2.0 (63) with options “macs2 callpeak -f BAMPE -g 1.4e9 
-q 0.05.” High-confidence determination and differential peak identification were 
handled as described for ATAC-seq. Peaks were annotated using the Homer script 
“annotatePeaks.pl” with default parameters.

WGS-Seq Analysis. The low-quality and adapter sequences of raw fastq reads 
were removed by fastp. The resulting clean reads were then mapped to the 

combined X. tropicalis v10.0 and X. laevis v10.1 reference genome using BWA. 
Low MAPQ reads were removed by samtools (MAPQ < 20). The comparison data of 
X. tropicalis and X. laevis were split and stored. BAM files were converted to bigwig 
files using bamCoverage (bin size = 10 and 1,000,000). The bigwig files with a 
bin size of 1,000,000 were converted to bedgraph files using bigWigToBedGraph 
and utilized to generate circle plots. The circos graph was created using the R 
package “circlize” (version 0.4.15) (64).

Heatmaps and Plots. Heatmap plots based on RNA-seq data were gener-
ated using R 3.6 and the pheatmap package (https://github.com/raivokolde/
pheatmap). Heatmaps for scores associated with genomic regions based on 
ATAC-seq and ChIP-seq data were generated using plotHeatmap. Scatter plots, 
bar plots, and density plots were created using the R package ggplot2 (65). 
Correlation matrix was generated using multiBamSummary and plotted using 
plotCorrelation with default parameter.

Data, Materials, and Software Availability. Genomic studies data have been 
deposited in National Genomics Data Center of China (CRA007094) (66). All study 
data are included in the article and/or SI Appendix.
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