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Abstract

Objective: COVID-19 is ravaging the world, but traditional reverse

transcription-polymerase reaction (RT-PCR) tests are time-consuming and

have a high false-negative rate and lack of medical equipment. Therefore, lung

imaging screening methods are proposed to diagnose COVID-19 due to its fast

test speed. Currently, the commonly used convolutional neural network

(CNN) model requires a large number of datasets, and the accuracy of the

basic capsule network for multiple classification is limital. For this reason, this

paper proposes a novel model based on CNN and CapsNet.

Methods: The proposed model integrates CNN and CapsNet. And attention

mechanism module and multi-branch lightweight module are applied to

enhance performance. Use the contrast adaptive histogram equalization

(CLAHE) algorithm to preprocess the image to enhance image contrast. The

preprocessed images are input into the network for training, and ReLU was

used as the activation function to adjust the parameters to achieve the

optimal.

Result: The test dataset includes 1200 X-ray images (400 COVID-19, 400 viral

pneumonia, and 400 normal), and we replace CNN of VGG16, InceptionV3,

Xception, Inception-Resnet-v2, ResNet50, DenseNet121, and MoblieNetV2

and integrate with CapsNet. Compared with CapsNet, this network improves

6.96%, 7.83%, 9.37%, 10.47%, and 10.38% in accuracy, area under the curve

(AUC), recall, and F1 scores, respectively. In the binary classification experi-

ment, compared with CapsNet, the accuracy, AUC, accuracy, recall rate, and

F1 score were increased by 5.33%, 5.34%, 2.88%, 8.00%, and 5.56%,

respectively.

Conclusion: The proposed embedded the advantages of traditional convolu-

tional neural network and capsule network and has a good classification effect

on small COVID-19 X-ray image dataset.
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1 | INTRODUCTION

The deep learning is used as an important means to assist
the diagnosis of COVID-19 because of its fast diagnosis
speed and high accuracy. As an excellent feature extrac-
tor, convolutional neural network (CNN) can capture
pixel-level information that cannot be obviously noticed
by human eyes and has been widely applied in the field
of deep feature extraction,1,2 which has been used to
detect COVID-19 by most researchers.

Although CNN has strong image processing ability, it
cannot capture the spatial relationship between image
instances with rotation or other transformations. Existing
studies have shown that COVID-19 has problems of
insufficient datasets and data imbalance, for which
researchers have put forward some solutions. Rahimza-
deh and Attar3 used the cascade network by Xception
and Resnet, which is reused COVID-19 images in stages.
The experiment was performed on 31 X-ray images of
COVID-19, 6,851 normal and 4,420 pneumonia images,
show that is achieved an average accuracy of 99.5%, and
a low sensitivity of 80.5%. Afshar et al.4 used the method
of pre training on more than 100 000 pneumonia pictures
before COVID-19 classification and finally achieved an
accuracy of 98.3%. However, this method has the prob-
lem of long training time. Das et al.5 use transfer learning
to transfer the weights, deviations, and features learned
on the Imagenet dataset to the TLCoV model. The verifi-
cation experiments on 219 COVID-191345 VP and 1341
normal X-ray images have achieved an accuracy of
97.67%.

Aiming at the problem of too little datasets, this paper
uses CapsNet6 as the basic network to solve the defects of
CNN’s low recognition ability of objects after large-scale
rotation and poor spatial recognition between objects,
obtain better recognition performance on small datasets,
and solve the problem of dataset imbalance caused by too
small COVID-19 dataset.

In addition, many detection models based on CapsNet
have the problems of good binary classification and poor
Multi-Class Classification. The evolutionary CapsNet
model proposed by Toraman et al.7 achieved 97.24%
accuracy in binary classification, but only 84.22% accu-
racy in three-class classification. The VGGCapsNet model
proposed by Tiwari and Jain8 has achieved good perfor-
mance on small datasets, but the accuracy of binary clas-
sification of the network has reached 97%, whereas the
accuracy of three-class classification is only 92%. The
DenseCapsNet model proposed by Quan et al.9 reduces
the dependence of CNN on a large amount of data, but
the three-class classification accuracy of this method is
only 90.7%. In order to solve the above problems, we have
improved the convolution layer of CapsNet and

introduced a new module structure, so that the network
model can achieve better results in binary classification
and Multi-Class classification. The key points of this
paper are as follows:

1. A deep learning framework IRCM-Caps for rapid
diagnosis of COVID-19 is proposed, which is based on
the CapsNet and CNN.

2. The convolution attention module is used to refine
the feature map to improve the network performance.

3. The multi-branch lightweight module (MBL) is used
to reduce the network parameters.

2 | IRCM-Caps

IRCM-Caps includes CNN, convolutional attention mod-
ule (CBAM), MBL and capsule layer (Capsule), and its
structure is shown in Figure S1. The CNN extracts the
initial feature map of the X-ray image, the CBAM
enhances the features of the initial feature map, the MBL
reduces the redundant information of the feature map,
and the capsule layer performs classification and outputs
the classification results.

2.1 | CNN

IRCM-Caps uses CNNs to extract the initial features of
lung X-ray images. In this paper, we investigate represen-
tative CNNs: VGG,9 Inception,10 Xception,11 ResNet,12

Inception-ResNet,13 DenseNet,14 and MobileNet,15 to
select the best performance among them. VGG can
reduce network parameters and capture more details
while ensuring the same receptive field. Inception main-
tains the sparsity of the network structure by gathering
highly correlated features. In addition, it selects 1 * 1 con-
volution to reduce the amount of parameters and deepen
the network. Xception has a linear stack of deeply separa-
ble convolutional layers with residual connections, which
is easy defined and modified the deep network structure.
Meanwhile, ResNet only needs to learn new features on
the basis of previous layer features, which effectively
avoids the disappearance of too small gradient informa-
tion and alleviates the problems of gradient dispersion
and network degradation. Inception-ResNet is a combi-
nation of Inception module and ResNet module, which
greatly improves the performance of the model. Dense-
Net extracts compact and distinct features through cross-
layer connections of different lengths, which effectively
alleviates the problem that deep networks are difficult to
optimize due to the disappearance of gradients, and
finally improves the robustness of the model. MobileNet
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uses 3 * 3 and 1 * 1 convolutions, bottleneck operations,
and average pooling to reduce the amount of parameters.

2.2 | CBAM

Aiming at the low accuracy of CapsNet and the conges-
tion of capsules caused by the weak ability of feature
description, this paper uses the attention mechanism to
refine the feature description and guide the network to
focus on the key information. The CBAM17 is located
between the CNN and the capsule network. CBAM is
composed of a channel attention module and a spatial
attention module.

2.2.1 | Channel attention module

Each channel of the feature represents a special detector,
so the channel pays attention to the meaningful features.
The channel attention module creates a channel atten-
tion map by using the feature relationship between chan-
nels and uses global average pooling and maximum
pooling to summarize spatial features. The specific pro-
cess is as follows: First, the input feature F (H � W � C)
is respectively global average pooling, and the global
maximum pooling is respectively performed to obtain
two sizes of 1 � 1 � C characteristic channel. Then, they
are sent to a two-layer neural network. The number of
neurons in the first layer is C/R (R is the reduction rate),
and the number of neurons in the second layer is
C. These two layers of neural networks are shared. Then,
the weight coefficient MC is obtained through the sig-
moid activation function after adding the obtained two
features. Finally, the new scaled feature can be obtained
by multiplying the input feature F by the weight
coefficient.

2.2.2 | Spatial attention module

The spatial attention module filters the spatial features of
the image. The process is as follows: First, the input fea-
ture F (H � W � C) is respectively global average pool-
ing, and the global maximum pooling is respectively
performed to obtain two sizes of H � W � 1 characteris-
tic channel. Then, after 7 � 7 convolution layers and Sig-
moid activation function to obtain the weight coefficient
MS. Finally, the new scaled feature can be obtained by
multiplying the input feature F by the weight coefficient.

The CBAM makes the network more convenient and
efficient, which is fully proved by the network module
effectiveness experiment in Section 4.2.

2.3 | MBL

In order to eliminate the influence of the increase of
CBAM parameters on the calculation performance of the
model, the MBL is added after CBAM. MBL is composed
of multiple parallel branches composed of deep separable
convolution.4.2 Network module effectiveness experi-
ments show that the number of parameters in the model
with MBL is reduced by about 30% compared with the
model without MBL.

2.3.1 | Depthwise separable convolution

Depthwise separable convolution18 can reduce the num-
ber of parameters of the model. Its extraction process is
divided into two steps.

Step 1: Perform a convolution operation on each chan-
nel in the target region of the input image.

Step 2: Use 1 � 1 convolution kernel to perform a
standard convolution operation on the result
obtained in the first step and change the
number of channels. This step is also an impor-
tant measure for DSWC to reduce the number of
parameters when performing convolution
operations.

Suppose the input feature map size is Mi�Mi, the
number of channels is L, the convolution kernel size is
Nf �Nf , and the number of convolution kernels is
N. The parameter quantities of standard convolution
(ISC) and DSWC (IDC) are calculated as follows:

Isc¼Mi�Mi�L�N�Nf �Nf :

IDC ¼Mi�Mi�L�Nf �Nf þN�L�Nf �Nf :

It can be seen from the above formula that when the
convolution operation is performed, when the number of
convolution kernels is greater than one, the standard
convolution has more parameters than DSWC. In this
paper, DSWC is used to significantly reduce the number
of parameters and training time of the model.

2.3.2 | Multi-branch parallelism

MBL is realized by adding maximum pooling and resid-
ual connections on the basis of the Inception structure.
First, the module parallelizes the depth-separable convo-
lution of four different receptive fields to extracts multi-
scale features to improve the adaptability of the network
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to different scales. Add the output features are aggregated
with strong correlation, decompose the sparse distribu-
tion features into multiple dense distribution subsets
which can reduce redundant information, and effectively
expand the depth and width of the network. Then, max
pooling and average pooling with a stride of two are used
to reduce the size of the feature map and reduce the
dimensionality. And fewer parameters can prevent the
network from overrunning. Finally, residual connection
is utilized to improve the parameter transfer efficiency
and alleviate the gradient dispersion problem. Thus, the
feature learning and model expression ability are
improved by increasing the network depth, which makes
the model easy to train.

2.4 | CapsNet

Unlike CNNs, CapsNet constructs shallow network and
employs capsule layers in other layers, thus avoiding the
need for deeper networks. Each capsule is used to detect
a specific entity in the image, and thus, a dynamic rout-
ing mechanism sends the detected entity to the parent
layer. Compared with CNNs, which require thousands of
images to be considered in many aspects, capsule net-
works can recognize objects from multiple angles in dif-
ferent situations, which can reduce the dependence on
the amount of data.

3 | EXPERIMENT

3.1 | Dataset

The experiments use two datasets, the COVID-19 adio-
graphy database and Chestxray.

The COVID-19 adiography database is a large open
COVID-19 dataset, containing 3616 COVID-19 positive,
10 192 normal, 6012 Lung opacity (non-COVID-19), and

1345 VP images (source: https://www.kaggle.com/
tawsifurrahman/covid19-radiography-database).

Chestxray is a publicly available pneumonia case
dataset, containing a total of 5856 X-ray images, mainly
classified into pneumonia and normal (source: https://
www.kaggle.com/andrewmvd/pediatric-pneumonia-
chest-xray).

This paper mainly conducts three-classification
and binary-classification experiments based on the
above datasets. Table 1 listed the composition of the data-
sets. The three-classification data are mainly from
COVID-19, VP images from the COVID-19 adiography
database, and normal images from Chestxray. The binary
data are mainly from COVID-19 and VP images of
COVID-19.

3.2 | Preprocessing

This paper uses CLAHE19 to enhance the image contrast,
and CLAHE obtains more details of the image by improv-
ing the local contrast of the image. CLAHE clips the his-
togram with a pre-defined threshold to change the slope
of the cumulative histogram (CDF), which, in turn,
affects the slope of the transform function to achieve the
purpose of contrast clipping.

The more blocks the image is segmented into, the
more accurate the CLAHE processing, and the better the
detail processing. After many experiments, considering
the operation speed and processing power, we selected
the parameters clipLimit = 2.5, and tileGridSize is (8,8).
After CLAHE preprocessing, X-ray image details are
more prominent, lung contour is clearer, and the histo-
gram is more balanced.

The three-classification experiments before and after
image enhancement in the dataset show that the images
processed by the CLAHE algorithm are beneficial to the
classification effect. The experimental results before and
after image preprocessing are shown in Table 2.

TAB L E 1 Datasets.

Dataset Type COVID-19 Normal VP Total

Three classification Train 190 190 190 570

Test 150 150 150 450

Val 60 60 60 180

Total 400 400 400 1200

Two classification Train 190 - 190 380

Test 150 - 150 300

Val 60 - 60 120

Total 400 - 400 800
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3.3 | Evaluation indicators

We utilize seven metrics: Accuracy, Receiver Operating
Characteristic Curve, Sensitivity, Specificity, Precision,
Recall, and F1 score. The calculation formula is as
follows:

Accuracy¼ TPþTN
TPþFPþFNþTN

, ð1Þ

FPR¼ FP
FPþTN

, ð2Þ

TPR¼ TP
TPþFN

, ð3Þ

SEN ¼ TP
TPþFN

, ð4Þ

SPE¼ TN
TNþFP

, ð5Þ

Precision¼ TP
TPþFP

, ð6Þ

Recall¼ TP
TPþFN

, ð7Þ

F1¼ 2�Precision�Recall
PrecisionþRecall

, ð8Þ

where TP is the number of positive examples that
predicted correctly, TN is the number of negative exam-
ples that predicted correctly, FP is the number of nega-
tive examples that predict incorrectly, and FN is the
number of positive examples that predict correctly. The
ROC curve describes the degree of change between the
true positive rate (TPR, ordinate) and the false positive
rate (FPR, abscissa). TPR refers to the probability that
it is actually predicted under that category. FPR denotes
to the probability that the prediction is correct under
all categories other than this. Area under the curve
(AUC) is the area under the ROC curve. The closer the
AUC is to 1, the higher the authenticity of the test
method.

3.4 | Parameter setting

In this paper, the stochastic gradient descent (SGD) opti-
mizer is used for optimization. Different network models
are trained on the same dataset with the same parame-
ters, and the training is stopped when a fixed period is
reached, and finally, the weight is selected when the loss
is stable.

The SGD optimizer randomly selects a sample for
training and gradient update each time. In order to
ensure that the model parameters are updated quickly
and converge to the global optimal point, an exponen-
tially decaying learning rate is used; that is, t the learning
rate is reduced by 1/10 every 10 batches during training,
and the learning rate decay value decay after each update
is set to 1e-4. In order to slow down the oscillation degree
of gradient descent and speed up the convergence, a
momentum of 0.9 is used in each calculation gradient,
and the optimized gradient is the exponentially weighted
average of the gradient from the start time to the current
time. Different classification tasks use different initial
learning rates and batch sizes. For the three-class classifi-
cation, the learning rate is 0.0001, and the batch size is
32; for the binary classification, the learning rate is
0.0001, and the batch size is 16.

4 | EXPERIMENT AND RESULT
ANALYSIS

In order to verify the classification effect of the
model, this paper mainly conducts basic network
selection experiments, network module validity experi-
ment, and algorithm comparison experiments. The data-
sets are three-class classification (COVID-19, VP and
normal) and binary classification (COVID-19 and VP)
datasets.

4.1 | Comparison of CNNs

This experiment adopts VGG, Inception, Xception,
ResNet, Inception-ResNet, DenseNet, and MobileNet, as
the basic convolutional network, and CBAM, MBL, and
capsule network to form seven different classification
models, which are, respectively, represented as:

VGG_CBAM_MBL-Caps (VCM-Caps),
Inception_CBAM_MBL-Caps (ICM-Caps),
Xception_CBAM_MBL-Caps (XCM-Caps),
Resnet_CBAM_MBL-Caps (RCM-Caps),
Inception-ResNet_CBAM_MBL-Caps (IRCM-Caps),
DenseNet_CBAM_MBL-Caps (DCM-Caps),
MobileNet_CBAM_MBL-Caps (MCM-Caps).

TAB L E 2 Model performance before and after CLAHE

pretreatment.

ACC AUC PRE REC F1

Original 0.9215 0.9117 0.8929 0.8822 0.8828

Enhance 0.9304 0.9217 0.9123 0.8956 0.8960

Note: Bold font is the optimal value for each column.
Abbreviation: AUC, area under the curve.
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To avoid the good effect of binary classification and
poor effect of three-class classification, this experiment
mainly conducts experiments on three-class classifica-
tion. Experiments compare the classification capabilities
of these models to choose the best base convolutional
network. Tables 3 and 4 show the experimental results
of three-class classification and binary classification,
respectively.

As can be seen from Tables 3 and 4, IRCM-Caps
achieved similar results in three-class classification and
binary classification. On the same dataset, the values

of accuracy, ROC, precision, recall, and F1 of IRCM-
Caps composed of the Inception-ResNet-V2 CNN are
99.11%, 99%, 98.66%, 98.67%, and 98.66%, respectively.
All the five indexes are higher than other classification
models composed of basic convolutional networks. The
classification model based on MoblieNetV2 convolu-
tional network is lower than IRCM-Caps in accuracy,
ROC, precision, recall, and F1, but its parameter quan-
tity is about 7.5% of IRCM-Caps, and it shows that
lightweight is our main research direction in the
future.

TAB L E 3 Comparison of classical experiments in three categories.

Network structure ACC AUC PRE REC F1 Parameter

VCM-Caps 0.9585 0.9533 0.9430 0.9378 0.9379 20 473 940

ICM-Caps 0.9867 0.9849 0.9801 0.9800 0.9799 25 767 740

XCM-Caps 0.9570 0.9517 0.9402 0.9356 0.9357 25 767 740

RCM-Caps 0.9793 0.9767 0.9707 0.9689 0.9690 28 493 972

DCM-Caps 0.9881 0.9867 0.9822 0.9822 0.9821 8 448 340

MCM-Caps 0.9733 0.9700 0.9613 0.9600 0.9596 4 346 068

IRCM-Caps 0.9911 0.9900 0.9866 0.9867 0.9866 57 233 140

Note: Bold font is the optimal value for each column.
Abbreviation: AUC, area under the curve.

TAB L E 4 Comparison of classical experiments in two categories.

Network structure ACC AUC PRE REC F1 Parameter

VCM-Caps 0.9733 0.9733 0.9863 0.9600 0.9730 20 473 940

ICM-Caps 0.9833 0.9833 1 0.9667 0.9830 25 767 740

XCM-Caps 0.9667 0.9667 0.9545 0.9800 0.9671 25 767 740

RCM-Caps 0.9800 0.9800 0.9865 0.9733 0.9799 28 493 972

DCM-Caps 0.9867 0.9867 1 0.9667 0.9830 8 448 340

MCM-Caps 0.9700 0.9700 0.9796 0.9600 0.9697 4 346 068

IRCM-Caps 0.9900 0.9900 1 0.9800 0.9898 57 233 140

Note: Bold font is the optimal value for each column.

Abbreviation: AUC, area under the curve.

TAB L E 5 Ablation experiment.

Network structure ACC AUC PRE REC F1 Parameter

CapsNet 0.9304 0.9217 0.9123 0.8956 0.8960 266 304

IR-caps 0.9778 0.9750 0.9672 0.9667 0.9666 79 515 104

IRC-caps 0.9851 0.9833 0.9780 0.9778 0.9777 81 876 722

IRCM-Caps 0.9911 0.9900 0.9866 0.9867 0.9866 57 233 140

Note: CapsNet is the basic network; IR-caps adds a convolutional neural network on the basis of CapsNet; IRC-caps adds CBAM module on the basis of IR-
caps; IRCM-Caps adds MBL on the basis of IRC-caps Module.; bold font is the optimal value for each column.
Abbreviation: AUC, area under the curve.
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4.2 | Experiment of network module
effectiveness

The model in this paper is mainly composed of four parts:
CNN, CBAM, MBL module, and capsule layer. In order
to verify the effectiveness of each module or component,
ablation experiments are performed on the three-class
classification datasets, and the results are shown in
Table 5. From Table 5, it can be found that the accuracy
of IR-caps is 5.63% higher than that of CapsNet, indicat-
ing that adding a CNN can effectively improve the classi-
fication accuracy; IRC-caps increases AUC by nearly 1%
by adding a CBAM module; as the addition of modules
increases the number of network parameters, MBL mod-
ule is added in this paper. Because MBL possesses the
advantages of the depthwise separable convolution and
Inception, the IRCM-Caps network with the MBL mod-
ule improves the performance while reducing the
amount of parameters by about 30% compared to IRC-
caps.

Minimizing false-negative and false-positive results
is important in medical research, especially for image
analysis of critical diseases such as COVID-19. The
false negatives and false positives of the four models
can be clearly seen from the confusion matrix in
Figure S1. In the figure, the vertical axis is the real
label, the horizontal axis is the predicted label, 0 repre-
sents COVID-19, 1 represents normal, and 2 represents
VP. It can be seen that CapsNet has a high classifica-
tion accuracy for normal, and it is easy to misjudge
COVID-19 and VP as normal. The misjudgment
situation is improved with the addition of CNN,
CBAM, and MBL modules. Among these adding strate-
gies, IRCM-Caps has the highest classification
accuracy for the three types, and each type of samples
is balanced, indicating that this method can achieve
better overall classification, stronger network feature
extraction ability, and achieve good generalization.
However, there is still a small amount of classification
errors due to the too similar regions of COVID-19 and
VP lesions.

The ROC curve is described by plotting the TPR
and FPR in a graph with various threshold settings,
which is benefit to classify, analyze, and visualize the
classification results. The ROC curves on the three-
classification datasets are shown in Figure S1. It can
be observed that with the increase of the number of
iterations, the error rate gradually decreases, in which
there is no over-fitting phenomenon, and the overall
curve is located in the upper left corner, indicating
that IRCM-CAPS has good performance. The ROC area
of the four experiments shows an increasing trend,
among which the micro average area and macro aver-
age area of the ROC curve of IRCM-Caps both reached
0.99, which demonstrates the effect was the best.
Meanwhile, this shows that the method is more stable
and robust. In addition, CapsNet and IR-CAPS have
lower ability to classify VP than COVID-19 and nor-
mal, and IRC-CAPS has lower ability to classify
COVID-19 and VP than normal, whereas IRCM-Caps
has good discrimination ability for all categories. It can
better learn and identify lesion features with large spa-
tial scale differences.

4.3 | Compared with CapsNet-based
model

This section compares the performance of IRCM-Cap
with other CapSnet-based methods in terms of dataset,
accuracy, specificity, sensitivity, and precision, as
shown in Table 6. COVID-FACT20 requires fewer
training parameters but is easily misclassified as
COVID-19. COVID-CAPS4 address the dataset imbal-
ance, but the number of pre-trained lung images is
huge. The Convolutional CapsNet7 model is relatively
simple, but the dataset used is large and requires a
lot of time and hardware resources to process the
images. Relatively speaking, although IRCM-Cap has
a large number of parameters; it has certain advan-
tages because of its high accuracy and less required
datasets.

TAB L E 6 Compared with CapsNet-based model.

Method Dataset ACC SEN PRE SPE

IRCM-Cap 450 COVID-19, 450 VP, 450 normal 0.9911 0.9888 0.9866 0.9845

450 COVID-19, 450 VP 0.9900 1

COVID-FACT20 COVID-CT-MD 0.9082 0.9455 0.8604

COVID-CAPS4 112 120 X-ray images 0.9830 0.9860

Convolutional CapsNet7 231 NCP, 1050 normal, 1050 pneumonia 0.8422

231 NCP, 1050 normal 0.9724

Note: Bold font is the optimal value for each column.
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4.4 | Compared with multi-network
fusion model

This section compares the performance of IRCM-Cap
with other methods based on multi-network fusion in
terms of dataset, accuracy, specificity, sensitivity, and
precision, as shown in Table 7. ResNet50 + Xception3

has the best accuracy and specificity, but it has low sensi-
tivity and requires a large number of datasets. Dense-
CapsNet21 reduces the reliance of CNN on large amounts
of data but has low accuracy. COFE-Net uses fuzzy mea-
surement to greatly reduce the search space, but it takes
a long time and will cause certain classification errors.
VGGCapsNet8 solves the limitations of traditional CNN
and enhances the computing power of the initial feature
map, but the effect of multiple classification is not good.
In summary, IRCM-Cap is the best model with high
indexes.

4.5 | Comparison with state-of-the-art
approaches

This experiment compares the performance of IRCM-
Caps and SoTA methods in terms of dataset, accuracy,
specificity, sensitivity, and precision. The experimental
results are shown in Table 8. SOTA methods include
DeCoVNet,21 VSBN,22 COVNet,23 ResNet50,24 COVID-
Net,25 DenseNet121,26 SVM,27 VGG19,28 DLM,29 HTV30

(homomorphic transformation and VGG), ChestX-
ray6,31 and Dense-CNN.32

By comparison, IRCM-CAPS shows good results in
each of the performance indicators. Although individual
indicators are slightly lower than those of other net-
works, overall, IRCM-CAP performs well on small data-
sets, which can help radiologists more accurately locate
the location of suspected lesions greatly reduces the pres-
sure on doctors to deal with the epidemic.

TAB L E 7 Compared with CapsNet-based model.

Method Dataset ACC SEN PRE SPE

IRCM-Cap 450 COVID-19, 450 VP, 450 normal 0.9911 0.9888 0.9866 0.9845

450 COVID-19, 450 VP 0.9900 1

ResNet50 + Xception3 8851 normal, 6012 pneumonia, Chestxray 0.9950 0.8050 0.9960

DenseCapsNet21 750 X-ray images 0.9070 0.9600

COFE-Net9 568 NCP, 6052 pneumonia, 8851 normal 0.9830 0.9840

VGGCapsNet8 219 NCP, 1345 pneumonia, 1341 normal 0.9200

219 NCP, 1345 pneumonia 0.9700

Note: Bold font is the optimal value for each column.

TAB L E 8 Comparison of classic papers.

Method Dataset ACC SEN PRE SPE

IRCM-Cap 450 COVID-19, 450 VP, 450 normal 0.9911 0.9888 0.9866 0.9845

450 COVID-19, 450 VP 0.9900 1

DeCoVNet22 313 COVID-19, 229 non-COVID-19 0.9590 0.9070 0.9110

VSBN23 125 COVID-19, 123 CAP, 134 SPT, 139 normal 0.95 above 0.95 above

COVNet24 1292 COVID-19, 1735 CAP, 1325 normal 0.9600 0.900 0.9600

ResNet5025 341 COVID-19, 2772 BP, 1493 VP, 2800 normal 0.9610 0.765 0.9660

COVID-Net26 COVID-chestxray, pneumonia-chestxray 0.8350 1 0.800

DenseNet12126 924 COVID-19, 342 non-COVID-19 0.8700 0.8000

SVM28 53 CT images 0.9827 0.9893 0.9760

VGG1929 102 COVID-19, 118 normal 0.9500 0.9600 0.9600

DLM30 1252 COVID-19 and 1230 non-COVID-19 0.9891 0.9896 0.9888 0.9886

HTV31 2250 COVID-19, 2250 pneumonia, 2250 normal 0.9656 0.9514

ChestX-ray632 9514 X-ray images 0.9794

Dense-CNN32 273 COVID-19 and 225 non-COVID-19 0.9378 0.9340 0.9510 0.9420

Note: Bold font is the optimal value for each column.
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5 | CONCLUSION

This paper designs a model IRCM-Caps to detecting
COVID-19. The IRCM-Caps model is composed of CNN,
CBAM, MBL, and capsule. The CNN enhances the
expression ability of the initial feature map. CBAM
makes the image features more prominent. MBL
improves the model performance while reducing the
amount of parameters. Capsule avoids increasing the
convolution depth to improve the network performance.
Comparative experiments show that IRCM-Caps has
better accuracy than CapsNet; IRCM-Caps has better
overall performance than SOTA method. However, the
parameter quantity of IRCM-Caps is much larger than
that of CapsNet, so reducing the parameter quantity of
the model will be a major research direction in the
future.
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