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A B S T R A C T

Medical cyber–physical systems (MCPS) firmly integrate a network of medical objects. These
systems are highly efficacious and have been progressively used in the Healthcare 4.0 to achieve
continuous high-quality services. Healthcare 4.0 encompasses numerous emerging technologies
and their applications have been realized in the monitoring of a variety of virus outbreaks. As
a growing healthcare trend, coronavirus disease (COVID-19) can be cured and its spread can
be prevented using MCPS. This virus spreads from human to human and can have devastating
consequences. Moreover, with the alarmingly rising death rate and new cases across the world,
there is an urgent need for continuous identification and screening of infected patients to
mitigate their spread. Motivated by the facts, we propose a framework for early detection,
prevention, and control of the COVID-19 outbreak by using novel Industry 5.0 technologies.
The proposed framework uses a dimensionality reduction technique in the fog layer, allowing
high-quality data to be used for classification purposes. The fog layer also uses the ensemble
learning-based data classification technique for the detection of COVID-19 patients based on the
symptomatic dataset. In addition, in the cloud layer, social network analysis (SNA) has been
performed to control the spread of COVID-19. The experimental results reveal that compared
with state-of-the-art methods, the proposed framework achieves better results in terms of
accuracy (82.28 %), specificity (91.42 %), sensitivity (90 %) and stability with effective response
time. Furthermore, the utilization of CVI-based alert generation at the fog layer improves the
novelty aspects of the proposed system.

. Introduction

Healthcare is one of the most extensive factors that need to be efficiently managed for the development of any country, as it is
significant determinant of the well-being of its citizens [1]. A country with an inadequate healthcare system can have a profound

mpact on the health of its people, resulting in a higher mortality rate, particularly during outbreaks. Therefore, it is imperative for
overnments to take substantial measures to safeguard their citizens from such prevalent epidemics. The recent outbreak that has
ffected countries worldwide is the novel coronavirus [2,3] (see Table 1).

COVID-19 (short for ‘‘Coronavirus Disease 2019’’) is an infectious respiratory illness caused by the SARS-CoV-2 virus, which
ffects the respiratory system in humans [4,5]. This type of virus spreads from person to person and continues to spread when a
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Table 1
List of abbreviations.
Acronyms Description

MCPS Medical cyber–physical systems
COVID-19 Coronavirus disease
SNA Social Network Analysis
GDP Gross Domestic Product
NHI National Health Index
ICT Information and Communication Technology
IoT Internet of Things
CVI Covid-19 Vulnerability Index
LDA Latent Dirichlet Allocation
PCA Principal Component Analysis
WHO World Health Organization
cANN Conventional Artificial Neural Network
K-NN k-Nearest Neighbor
SVM Support Vector Machine
RF Random forest (RF)

healthy person comes into contact with Covid-19 infected patient [6]. Covid −19 can also spread by touching a surface or object
ontaminated with the virus and then touching one’s mouth, nose, or eyes. The symptoms of COVID-19 can vary from mild to
evere and may resemble those of other illnesses such as flu, pneumonia, and allergies. As a result, healthcare professionals may
ace difficulties in identifying and providing appropriate treatment to patients without proper testing [7,8]. One potential solution
o address the challenges of identifying and treating COVID-19 is to incorporate Medical Cyber-Physical Systems (MCPS) into the
ealthcare system. MCPS can assist healthcare professionals in accurately diagnosing and providing effective treatment for patients
ith COVID-19, thereby improving patient outcomes.

The latest development in information and communication technology (ICT), fog computing, and cloud computing technology
akes it feasible to design fog–cloud assisted medical cyber–physical systems (MCPS) [9]. In the recent internet technology era,

yber–physical systems can be interpreted as next-generation systems that combine communication and computing capabilities with
he capabilities of physical entities. MCPS is capable of collecting user-centric personal and health-related attributes using mobile or
eb-based applications and processing real-time health-sensitive data in a fog–cloud environment. Medical cyber–physical systems
quipped with fog and cloud layers have the potential to process highly sensitive health data and generate real-time alerts in order
o treat patients in a timely manner.

In cyberspace, remote cloud data centers are used to perform multiple operations across the internet such as storing and
rocessing large amounts of data. These services of cloud computing can be accessed using the internet and have the potential
o offer several benefits such as high-speed processing, high performance, scalability, lower operational cost, and the ability to store
uge volumes of data at a lower cost without any need for additional infrastructure [10]. However, there exist various challenges,
uch as downtime, low security, high latency in the transmission of analysis results, etc., which make cloud services impossible to
se with time-critical healthcare applications. Henceforth, a new computing layer, the fog layer has been introduced which works on
he complementary side of the cloud layer [11]. The fog layer is composed of a group of fog nodes, located at the edge of the device,
nd is responsible for processing data coming directly from the physical device [12]. With a reduced latency in the transmission of
ealth-sensitive information to the stakeholders, the fog layer plays a vital role in MCPS [13,14].

A comprehensive review of medical research articles was conducted to identify research gaps, with a focus on the use of Cyber-
hysical Systems (CPS) in healthcare. Although several CPS-based articles were found, none specifically addressed COVID-19 in
articular, to the best of our knowledge. In this regard comparative analysis of the recent papers, considering several attributes
uch as Cyber-Physical Systems (CPS), Predictive Analysis (PA), Alert generation (AG), and Internet of Things (IoT) has been shown
n Table 2. Moreover, the survey on various classification algorithms used for COVID-19 predictions has also been carried out and
resented in Fig. 1. In the current work, a CPS based on fog-cloud computing for early detection, prevention, and control of Covid-19
as been proposed. The proposed framework is responsible for the prediction of possible cases of COVID-19 disease and the alert
eneration to the multiple stakeholders of the systems, followed by a social network analysis-based prevention methodology.In
ddition to that, list of abbrevations were also included in Table 1, for easy understanding of terminology used in the proposed
ystem.

.1. Major contributions

The major contributions of the proposed framework are listed as:

1. To design an automated fog–cloud-centric medical cyber–physical framework for the detection and prevention of COVID-19
impact at the early stages.

2. Principal component analysis with ensemble learning based classification at fog layer.
3. To calculate the COVID-19 vulnerability index (CVI) at cloud layer and generate real-time alert messages to the users,
2

caretakers, and healthcare professionals.
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Fig. 1. Algorithms and methods recently used in the literature review to detect MERS-COV disease(2022).

4. To develop a framework for sharing the information of affected patients with government agencies and to take precautionary
measures for the control of the COVID-19 outbreak in nearby areas.

5. Finally, Adopting social network analysis-based computational methodology at the cloud layer for preventing the spread of
disease with information and suggestions box for infected and uninfected patients.

.2. Paper organization

The paper is organized into various sections. Section 2 presents the proposed medical cyber–physical based COVID-19 prediction
ramework. Section 3, comprises of detailed experimental evaluation. In Section 4, a comparative analysis of the proposed framework
ith previous studies has been carried out. Finally, Section 5 concludes the paper with some recommendations for future work.

. System model

The proposed framework for early detection, prevention, and control of the COVID-19 outbreak has been presented in Fig. 2. The
roposed framework mainly comprises physical space and cyberspace. Physical space is concerned with the task of collecting the
ser’s personal, geographic, and COVID-19-related symptoms specifically either through medical IoT devices or directly from the
ser’s smart devices. In addition, physical space also collects data related to the user’s nearby caretakers or healthcare professionals
uch as name, phone number, and address. Cyberspace utilizes the potential of fog–cloud computing to provide critical healthcare
ervices at a low cost without any delay. The fog layer receives heterogeneous data from the physical space and then performs
imensionality reduction, followed by classification into viable classes: infected or non-infected. The fog layer calculates the Covid-
9 vulnerability index (CVI) and correspondingly, warning alerts are sent to stakeholders based on the CVI value. Additionally, the
eal-time analyzed results and information of a user along with geographic information is also sent to the cloud layer for decision-
aking and sharing with government agencies for timely arrangement of required resources. Table 3, describes the system workflow

f the proposed framework and description of the physical and cyber layers of the proposed framework is explained in the further
ub-sections.

.1. Physical space

Physical space primarily acts as a data collection component of MCPS and is responsible for collecting users’ personal,
emographic, and COVID-19-sensitive attributes. The information is collected through a mobile application that is connected to
he network with the help of cellular technologies. Each user first registers with the system by entering personal details. After
uccessful registration, the system generates a unique tracking number and is assigned to a particular user for future communication.
he personal attributes along with their description are given in Table 4. The user is also responsible for entering the symptoms
hat a particular user is facing in the form of yes or no. Table 5, shows the relevant attributes of COVID-19. These attributes
ay be further categorized as primary and secondary symptoms. Primary symptoms may be possibly found in almost all old-age
sers. Instead, secondary symptoms are found in users who may or are suspected of being infected by COVID-19. Physical space
rimarily deals with different types of participants such as users, caretakers, healthcare professionals, healthcare providers, and
ther government agencies responsible for providing several medical services to society. The accumulated information is forwarded
o cyberspace for further computations.
3
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Table 2
Comparison of the proposed approach with the state-of-the-art approaches.

Reference Year Major contributions CPS FC CC IoT ML PA AG

[15] 2022 Presented a AI-based framework for analyzing Covid-19
trends

✗ ✗ ✗ ✗ ✓ ✓ ✗

[16] 2022 Presented a machine learning based IoT system for COVID-19 ✗ ✗ ✗ ✓ ✓ ✓ ✗

[17] 2022 Presented a machine learning approach for autonomous
detection and classification of COVID-19 Virus

✗ ✗ ✗ ✗ ✓ ✓ ✗

[18] 2022 Presented a sustainable advanced artificial intelligence-based
framework for analysis of COVID-19 spread

✗ ✗ ✗ ✗ ✓ ✓ ✗

[19] 2022 Proposed a framework for determining deterioration rate of
infected patients

✗ ✗ ✗ ✗ ✓ ✓ ✗

[20] 2022 Presented an H-CPS COVID-19 framework with a smart X-ray
machine interface

✓ ✗ ✓ ✗ ✓ ✓ ✗

[21] 2022 Presented an artificial intelligence-based cyber–physical
system for severity classification of chikungunya disease

✓ ✗ ✗ ✗ ✓ ✓ ✗

[22] 2021 Presented an quantum machine learning architecture for
COVID-19 classification based on synthetic data generation
using Conditional Adversarial Neural Network

✗ ✗ ✗ ✓ ✓ ✓ ✗

[23] 2021 Prediction of COVID-19 risk in public areas using IoT and
machine learning

✗ ✗ ✗ ✓ ✓ ✓ ✗

[24] 2021 Cyber-Physical systems and smart cities in India:
opportunities, issues, and challenges

✓ ✗ ✗ ✓ ✓ ✗ ✗

[25] 2021 Comparative study of machine learning methods for
COVID-19 transmission forecasting

✗ ✗ ✗ ✗ ✓ ✓ ✗

[26] 2020 Presented an IoT-based student healthcare monitoring system ✗ ✗ ✓ ✓ ✓ ✓ ✗

[27] 2020 Presented a healthcare system based on video surveillance ✗ ✗ ✓ ✗ ✓ ✓ ✗

[28] 2020 Presented a smart healthcare system based on Information
Fusion and Neural networks

✗ ✗ ✗ ✗ ✓ ✓ ✗

[29] 2020 Presented a model for diabetic chronic disease prediction. ✗ ✗ ✗ ✗ ✓ ✓ ✗

[30] 2020 Presented a smart healthcare and quality of service in IoT
using grey filter convolutional based cyber physical system

✓ ✗ ✗ ✓ ✓ ✓ ✗

[31] 2020 Presented a fog-cloud based cyber–physical system for
ulcerative colitis diagnosis, stage classification and
management

✓ ✓ ✗ ✗ ✓ ✓ ✗

[32] 2018 Presented survey on the use of IoMT in Cyber-Physical
Systems.

✓ ✗ ✓ ✓ ✗ ✗ ✗

Proposed – An Intelligent Healthcare system for the diagnosis and
management of COVID-19

✓ ✓ ✓ ✓ ✓ ✓ ✓

Fig. 2. Proposed medical cyber–physical framework for coronavirus detection and prevention.
4
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Table 3
Work-flow for prediction and prevention of Covid-19 Outbreak.

Working of the proposed framework

Step 1 Each user is required to register with the MCPS.
Upon successful registration, a distinct tracking
number is allocated to the user.

Step 2 User input their personal information along with
symptoms faced by them through the mobile or
web-based application.

Step 3 The inputted information is transferred to
cyberspace, which is composed of fog and cloud
layers.

Step 4 In the fog layer, the ensemble learning
technique-base classifier is employed which
classifies the user into different categories such as
non-infected or possibly infected, and the user’s
COVID-19 vulnerability index is computed and
alerts are sent to the stakeholders.

Step 5 The information about possibly infected or
suspected cases of COVID-19 is transferred to the
cloud layer for storage and further computation
using SNA metrics.

Step 6 The information in the cloud layer about suspected
cases may be used by government agencies to take
precautionary measures to prevent the outbreak of
COVID-19 in nearby areas.

Table 4
Personal attributes of a patient.
S.No. Attribute Description Datatype

1 Unique ID Any Identification number assigned by the country
for unique identification of a person

Integer

2 Reference no. A unique number assigned to a patient upon
successful registration with the CPS

Integer

3 Name Name of a patient String
4 Age Patient’s age in years Integer
5 Gender Gender of a patient (Male or Female) Character
6 Address Permanent address of user’s home and office String
7 Mob. No. Mobile No. of a user Integer
8 Caretaker’s contact no. Mobile No. of a caretaker Integer
9 Caretaker’s Address Permanent address of caretaker String

Table 5
COVID-19 related symptoms.

Primary Symptoms User’s Response Secondary Symptoms User’s Response

Hypertension High/low Sudden Fever Yes/No
Diabetes Yes/No Dry cough Yes/No
Cardiovascular disease Yes/No Sore throat Yes/No
Vomiting Yes/No Difficulty in breathing Yes/No
Lethargy Yes/No Chest Pain Yes/No
Headache Yes/No Bluish lips or face Yes/No
Red Eyes Yes/No Travel history to Infected or risk-prone area Yes/No
Normal cough Yes/No Exposure to Infected Human Yes/No
Lung Disease Yes/No Regular Visits to Hospitals Yes/No
Body Temperature Yes/No

2.2. Cyber space

Cyberspace is responsible for performing computation on the data forwarded by distinct entities in the physical space. Cyberspace
nalyzes the data for possibly infected COVID-19 cases and generates alerts to the caretakers and hospitals for further investigation.
yberspace is formed by the integration of two layers namely, cloud and fog layer. The fog layer in cyberspace collects the
eterogeneous data, performs dimensionality reduction, and the task of classification of users into possibly suspected cases and
on-infected case. The fog layer that consists of multiple fog nodes acts as a middleware between physical devices and cloud servers.
og nodes with limited storage capacity process the health-sensitive data in real time. Due to the limited storage capacity of fog
5

odes, cloud servers are used to perform storage tasks. The data stored in cloud servers can be used by government agencies to
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take crucial decisions to avoid the spread of the highly prevailing outbreak. The description of fog and cloud layers in cyberspace
is given ahead.

2.2.1. Fog layer
The fog layer in cyberspace includes four components namely, data dimensionality reduction, classification component,

ulnerability index calculation, and alert generation component.

a) Data dimensionality reduction:. The data set used for the prediction and prevention of COVID-19 may contain a wide range of
ttributes. Many of these attributes are highly correlated, analyzing and processing such a large amount of data is very expensive and
ime-consuming. Moreover, the storage of such a huge volume of data becomes a tedious task, leading to high storage requirements.
n order to eliminate the inconsistency in the system, a dimensionality reduction component, namely Principal Component Analysis
PCA) is used in the fog layer. The data dimensionality reduction component is responsible for reducing the attribute set by
onsidering only a small set of relevant attributes, thereby improving interpretability without losing any prediction accuracy.

The data dimensionality reduction component reduces the data in a higher-dimensional space to a lower-dimensional space with
ewer attributes, which are called Principal Components (PCs). Algorithm 1, details the working principle of data dimensionality
eduction. Consider a data set 𝐷𝑆 with 𝑚 attributes and 𝑛 instances. Any instance of the data set is defined by a set of attributes

given by Eq. (1).
{

𝑥1, 𝑥2, 𝑥3,…… , 𝑥𝑚
}

(1)

This dataset is passed as an input to the principal component analysis. The algorithm generates a new transformed dataset 𝐷𝑆𝑇 with
the fewer number of attributes defined by 𝐷𝑆𝑇𝑛∗𝑘 where 𝑘 denotes the number of principal components. Therefore, the converted
ata set 𝐷𝑆𝑇𝑛∗𝑘 is used for further analysis

Algorithm 1: Working of PCA based data dimensionality reduction
Input:: A dataset 𝐷𝑆 with 𝑚 attributes and 𝑛 instances; where an instance of a dataset is represented by a range of attributes
𝑥1, 𝑥2, 𝑥3,… , 𝑥𝑚.
utput: A transformed dataset 𝐷𝑆𝑇 with reduced feature-set.
1: Calculate the mean for each attribute of 𝐷𝑆 by using 𝑥−𝑖 = 1∕𝑛

∑𝑛
𝑖=1 𝑥𝑖

2: Compute the deviation from mean corresponding to each data value such that the resultant value is obtained using
(

𝑥𝑗𝑖 − 𝑥−𝑖
)

where 1 < j < n and 1 < i < m and is represented by matrix 𝐷𝑆𝑚.
3: Calculate Eigenvalues (𝑒1, 𝑒2, 𝑒3 … , 𝑒𝑚), for m attributes such that det(CoV − eI) = 0. Also calculate eigenvectors corresponding

to calculated eigenvalues.
4: Sort the eigenvectors in the descending order of their eigenvalues and take first ’ 𝑘′ eigenvectors so that variance is maximized

and store in a matrix 𝑀 = (𝑚1, 𝑚2, 𝑚3 … , 𝑚𝑚), of dimensions 𝑚 ∗ 𝑘 where 𝑚𝑖, denotes eigenvector.
5: New Data matrix of dimensions m*k is formed such that 𝐷𝑆𝑇 = (𝐷𝑆) ∗ 𝑀
6: Exit.

(b) Event classification:. The classification component in the fog layer is responsible for classifying users into one of the two
categories i.e. possibly infected or uninfected. For efficient prediction and prevention of COVID-19, it is very important to provide
accurate classification results to the user or caretakers. To achieve this purpose, an ensemble learning technique has been utilized.
The ensemble is a popular learning technique that involves integrating the output of multiple machine learning models to generate
a high-level model that makes predictions with higher accuracy [33]. These individual machine-learning models are also called base
learners. The proposed ensemble classifier has been designed using three base learners namely, SVM, K-NN and RF. Fig. 3, shows
the conceptual framework of the newly formed ensemble classifier.

The proposed ensemble classifier uses a 𝐷𝑆𝑇 dataset with n number of instances, and m features respectively. Each instance of the
dataset is defined by a set of COVID-19-related features (𝑥1, 𝑥2 … 𝑥𝑚). Moreover, the data set consists of two types of labeling results,
namely infected and uninfected. Initially, the reduced data set with the most critical feature set is randomly divided into a training
set and a test set. Each base learner uses 80% of the data for training using the 10-fold cross-validation technique, and the remaining
20% of the data is used for testing and validation purposes. Various hyper-parameters for each of the base learners are adjusted
using a grid search parameter tuning scheme. Parameter adjustment helps to obtain the best model architecture, thereby reducing
training errors. After successful training, the model is tested using a test dataset. For each instance, 𝑖 present in the dataset, the
posterior probability score for each class is computed to determine the outcome of an instance 𝑖. The class with the highest value of
posterior probability determines the outcomes chosen by each base learner. Various ensemble learning techniques based on voting
such as weighted-average voting, average voting, and majority voting are available in the literature. Amongst all, the weighted
average voting is superior to other technologies and is used for the proposed work.

In the weighted-average voting-based ensemble learning model, weights are assigned to the base learners (𝐵1, 𝐵2 …𝐵𝑚) such that
∑𝑚

𝑖=1 𝑤𝑖 = 1. Each base learner is assigned the weight, according to its performance on the test data and the final class is determined
using the formula given in Eq. (2) as:

𝑦 =𝑊1 × P
(

𝐵1(𝑋)
)

+𝑊2 × P
(

𝐵2(𝑋)
)

+⋯ +𝑊𝑀 × P
(

𝐵𝑀 (𝑋)
)

(2)

Where, 𝐵1, 𝐵1,… , 𝐵𝑚, represents the base learners and the value of 𝑦 determines the predicted class.
The user is classified as possibly infected only if the value of 𝑦 evaluates to be more than 0.5. Correspondingly, CVI for the

respective user is computed and alerts are generated to the various stakeholders for timely action.
6
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Fig. 3. Ensemble learning based classification.

Algorithm 2: Working of Voting-ensemble classification algorithm
Input: : A dataset 𝐷𝑆𝑇 with n number of instances, m features respectively, and a series of m base learners.
Output: A predictive outcome as infected or uninfected.

1: Split the dataset into the training set and test set with 80% of total data in the training set.
2: for i = 1 to M do
3: Train the base classifiers using a 10-fold cross-validation scheme and tune the hyper-parameter for each base classifier

(𝐵1, 𝐵1,…𝐵𝑚) using grid search parameter tuning scheme.
4: Test and evaluate the performance of each base classifier (𝐵1, 𝐵1,…𝐵𝑚) using the test dataset.
5: Compute the class probability and predict the result of (𝐵1, 𝐵1,…𝐵𝑚) for all instances in test dataset.
6: end for
7: Apply the weighted-average voting scheme and obtain the classified result of the ensemble classifier.
8: Exit.

(c) Vulnerability index computation and alert generation:. Once the user’s current status comes under the infected category, the
vulnerability index component sends real-time alerts by computing the CVI of the user. The CVI computation is based on the
conditional probability status of the user for various events. Real-time events, such as medical history, COVID-19-specific health
attributes along with environmental, and location-specific attributes also play an important role in computing CVI. The formula for
computing CVI, concerning the time for various events 𝐸𝑖 is

𝐶𝑉 𝐼 = 𝑃

(

𝑉 𝐻𝐼
𝑈𝑛
𝑖=1𝐸𝑖

)

(3)

Where VHI represents the vulnerability category as infected. If the CVI value is higher than the predefined threshold, the user will
automatically receive a warning about the required action and go to a nearby hospital for a COVID-19 test. Moreover, after the test,
if the user is diagnosed with a positive test, the user will be isolated in the hospital for the next few weeks until recovery. These
alerts are also stored in cloud data servers and used to share information with healthcare professionals and government agencies
to overcome the spread of coronavirus disease. Therefore, the user’s CVI improves the decision-making capabilities of doctors and
government agencies by reducing the threat of coronavirus spread. Algorithm 3 demonstrates the detailed working of automatic
alert generation in real-time.

2.2.2. Cloud layer
The Cloud layer includes three components, namely cloud storage, SNA-based graph creation and computation, suggestion box,

and health communication. A detailed description of each component is given ahead.

(a) Cloud storage. The main goal of the cloud-based storage component is to store information related to infected patients or
uninfected patients, and the location of COVID-19-infected areas. This component also includes compiled medical data and a security
mechanism to grant privileges to the other entities in physical space for accessing necessary information. In addition, diagnostics
and emergency warnings from the fog layer are also stored in the cloud layer for further incident-based actions in the future. Cloud
storage stores historical records of infected and uninfected patients to create a dynamic global SNA graph. The detailed process is
shown in Algorithm 4. Henceforth, after forming the global instance of a graph, the area is covered based on Fig. 4. Moreover, the
7

final hexagonal structure formation and route prediction is based on SNA outbreak prevention strategy, discussed below.
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Algorithm 3: Fog computing based alert generation
Input:: User’s classified category, an event happening probability, and predefined Threshold Value (PTH).
utput: Alerts to the users and other stakeholders.
1: The user classification, key health attributes, and events are categorized.
2: if user’s classified category is infected then
3: Calculate a future compromised user’s coronavirus vulnerability index (CVI) and the probability of multiple time stamp

occurrences.
4: else if CVI exceeds PTH then
5: The user is in the infected stage and an immediate message is sent to the user and caregiver.
6: else
7: User is in safe stage compute its events probability after 𝛥𝑡 time-interval.
8: end if
9: Exit.

Algorithm 4: To create a dynamic coronavirus SNA graph
Input:: Infected or Uninfected user, resident address, and traveling history.
utput: Updated Global coronavirus SNA graph.
1: Get a classified category of user, resident address, and visited locations.
2: if user classified category is infected after COVID-19 test then
3: Create two nodes or vertices one for the user and the second for his/her residence with a Red color, connected through the

edge.
4: Get the visited locations of the user through the mobile app.
5: else
6: Create a new node of the user’s residence address with Green color.
7: Get traveling locations of the user.
8: end if
9: for i = 1 to N do

10: if visited location [i] is already in the graph then
11: Create a new edge between the visited location [i] and the user. Change the area color by user category.
12: else
13: Create a new node with visited location [i].
14: Create an edge between the visited location [i] and the user. Change the area color by user category.
15: end if
16: end for
17: Exit.

Fig. 4. SNA graph nodes color indications.

(b) SNA metric for prevention of outbreak. SNA graphs play a vital role in mapping important information related to the COVID-19
8

pandemic and future directions to mitigate its impact on the community.
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Definition 1. Degree centrality 𝜕𝑝 determines the number of direct contacts between users and other people, as an indicator of
correlation. In the SNA graph G(V, E) with a set of vertices and edges, the adjacency matrix A =

(

a𝑖𝑗
)

can be used to formalize
(𝜕𝑝(𝑥)) as:

𝜕𝑝(𝑥) =
𝑛
∑

𝑖=1
𝑎𝑖𝑥 (4)

Therefore, the higher the centrality score, 𝜕𝑝(𝑥) of a node 𝑥, the more connections there are to node 𝑥.

Definition 2. Proximity centrality 𝜕𝑐 can be defined as users who are close to other nodes can spread the coronavirus very effectively
through the network.

𝜕𝑐 (𝑥) =
1

∑𝑛
𝑖=1 𝑑𝐺(𝑥, 𝑖)

(5)

In this equation, by using the reciprocal, we can say that as the distance from another node decreases, the proximity centrality value
increases.

Definition 3. If the network members are on the shortest path as much as possible between other pairs of nodes, the network
members are considered to be well connected, and hence, In betweenness centrality 𝜕𝑏 is higher.

𝜕𝑏(𝑥) =
𝑛
∑

𝑖=1,𝑖≠𝑥

𝑛
∑

𝑗=1,𝑗<𝑖,𝑗≠𝑥

𝑔𝑖𝑗 (𝑥)
𝑔𝑖𝑗

(6)

Here, 𝑔𝑖𝑗 (𝑥) represents the number of shortest paths from node i to node j, and gij(x) denotes the number of those paths which pass
through the node 𝑥.

Definition 4. The eigenvector centrality 𝜕𝐸 is based on the idea that the relationship with a node with a higher degree of
interconnection contributes more to its centrality than a relationship with a node with a lower degree of interconnection. For a
user 𝑥, the 𝜕𝐸 (𝑥) can be defined as:

𝜕𝐸 (𝑥) = 𝑣𝑥 = 1
𝜆max(𝐴)

𝑛
∑

𝑗=1
𝑎𝑗𝑥𝑣𝑗 (7)

With v =
(

v1, v2 ……… , v𝑛
)𝑇 , refers to an eigenvector for the maximum eigenvalue 𝜆max(𝐴) of the adjacency matrix.

Definition 5. The formation of clusters in any region is very important. It will take strict measures such as blocking the area to
help government agencies seize the area or region and restrict people’s travel. The global clustering coefficient is based on triplets
of nodes. It is defined as:

GCC =
number of closed triplets (or 3*triangles)

total number of triplets (both open and closed) (8)

Local clustering coefficient: The neighborhood 𝑁𝑖 of vertex 𝑉𝑖 is defined as its directly connected neighbors, as follows:

𝑁𝑖 =
{

𝑣𝑗 ∶ 𝑒𝑖𝑗 ∈ 𝐸, 𝑒𝑗𝑖 ∈ 𝐸
}

(9)

We define 𝐾𝑖 as the number of vertices, |𝑁𝑖| in the neighborhood, 𝑁𝑖, of a vertex.
The local clustering coefficient |𝑐𝑖| for a vertex |𝑣𝑖| is given by the proportion of links between the vertices in its neighborhood

divided by the number of links that could possibly exist between them. An undirected graph has the property that 𝑒𝑖𝑗 and 𝑒𝑗𝑖 are
considered identical. Therefore, if vertex |𝑣𝑖| has |𝑘𝑖| neighbors, there may be|𝑘𝑖| (|𝑘𝑖| -1)/2 edges between vertices within the
neighbors. Thus, the local clustering coefficient for undirected graphs can be defined as:

𝐶𝑖 = 2
∣
(

𝑒𝑗𝑘 ∶ 𝑣𝑗 , 𝑣𝑘 ∈ 𝑁𝑖, 𝑒𝑗𝑘 ∈ 𝐸 ∥

𝑘𝑖
(

𝑘𝑖 − 1
) (10)

(c) Information and suggestions box. The World Health Organization has been working with governments and experts to provide
timely advice and help prevent the spread of the epidemic in affected countries. According to the World Health Organization (WHO),
several guidelines have been proposed to reduce the spread of COVID-19. The detailed description of the guidelines for Uninfected
and COVID-19 infected patients is given in Table 6.

According to the results of the SNA graph, users can be divided into two categories. The users who fall under the red zone are
considered as severely infected and the others who fall under the orange zone are the users with a higher chance of being infected.
The users who fall under the orange zone are those who have a travel history of COVID-19-infected countries or the persons who
9

have been in contact with the infected users. The detailed guidelines for both the category of users are depicted in Tables 7 and 8.
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Table 6
Guidelines for uninfected users.
S.No Guidelines

1 All users under the age of 12 and over 60 years of
age are advised to stay at home as they are more
prone to COVID-19 due to their lower immunity
level.

2 Users are suggested to wash hands thoroughly at
regular intervals by using alcohol-based hand
sanitizer and prevent touching of eyes, nose, and
lips.

3 Maintain social distancing and avoid unnecessary
travel.

4 Healthcare professionals must maintain proper
hygiene, wear masks, gown, and gloves, and avoid
direct contact with family members.

5 Do not share wearings, eating utensils, and food or
drinks with others.

Table 7
Guidelines for infected red zone users based on SNA graph.
S.No Guidelines

1 All the COVID-19 infected users are advised to
take regular COVID-19 tests at hospitals and stay
in isolation wards set up in nearby government
hospitals until they found COVID-19 negative for
the two consecutive times.

2 All the family members of an uninfected user are
advised to visit the hospital for the COVID-19 test.

Table 8
Guidelines for infected orange zone users based on SNA graph.
S.No Guidelines

1 Users are advised to stay in isolation for at least
14 days.

2 Share information regarding any recent travel
immediately with the healthcare provider after
arriving from an infected area.

3. Users with flu or any symptoms must inform the
nearby healthcare agencies and test themselves for
possible COVID-19 infection.

4. While Coughing or sneezing, cover nose and
mouth with a flexed elbow.

3. Experimental setup and performance analysis

In this section, various experiments have been carried out to evaluate the performance of the proposed framework. The
xperimentation has been conducted on a system with the following specifications: Intel(R) Core(TM) i7-11700 processor, memory
apacity 16 GB, clock frequency 2.50 GHz, and 64-bit Windows-11 pro operating system. This section is composed of multiple
ub-sections and a description of each sub-section is given ahead.

.1. Dataset description

To evaluate the performance of the proposed framework, a dataset with a large number of instances is required. After a rigorous
earch of COVID-19 symptoms on the internet, few symptoms-based datasets are found. The description of COVID-19 and its related
atasets have been presented in Table 9. Based on the consultation with medical experts, the probabilistic value for the presence of
ach attribute is obtained and presented in Table 10. Based on the probabilistic values, numerous COVID-19 cases are created for
etting effective results. Algorithm 5, describes the working of COVID-19 dataset generation.

.2. Data dimensionality reduction analysis

The best-case data sets generated using Algorithm 5, are further reduced using PCA for efficient and more rigorous results, using
he R Studio tool. Multiple principal components with eigenvalues and cumulative variance for system stability are shown in Fig. 5.
10



Internet of Things 23 (2023) 100828P. Verma et al.

O

t
p

Algorithm 5: Dataset generation for COVID-19
Input: : Data containing COVID-19 symptoms and number of distinct cases required.
utput: A dataset with the distinct COVID-19 symptoms.
1: Initialize 𝑖 = 1.
2: for i = 1 to N do
3: Assign values to attributes as primary symptoms based on probabilities set in Table 10.
4: Assign values to attributes as secondary symptoms based on probabilities set in Table 10.
5: Bootstrap datasets by adding new cases, combining all COVID-19 symptom values based on the probability distribution set.
6: if new case with same data values for attribute-set is already present then
7: Discard entry of new record.
8: else
9: Add the new record to the database.

10: end if
11: increment 𝑖 by 1.
12: end for
13: Exit.

Table 9
Coronavirus datasets description and its available sources.

1. Dataset of patients affected by MERS-CoV in Saudi Arabia consisted
of all cases in the second half of 2016.
Available on the Ministry of Health Control and Command Centre
website.

[https://www.moh.gov.sa/Ministry/Open-
Data/Pages/default.aspx].

2. Articles collected from the Internet reported by 153 news media
outlets in Korea and comments associated with these articles from
day 1 (the
first confirmed case on May 20, 2015) to day 70 (the de facto end
declared by the government on July 28, 2015), in addition to
short-text comments on news articles in Twitter and Facebook.

[http://www.naver.com]

3. A dataset was collected from UCI. -A dataset containing 322
records, 92 infected cases, and 230 uninfected cases was obtained.
Each record contained 24 attributes.

[https://www.nejm.org/doi/full/10.1056/ne-
jmoa1306742]

4. ARS and MERS Spike glycol protein data from National Center for
Biotechnology Information database.

[www.ncbi.nlm.nih.gov]

5. COVID-19 dataset on Kaggle [http://www.kaggle.com/imdevskp/corona-virus-
report/version/98/kernels]

Table 10
Probability for COVID-19 symptoms.

Primary Symptoms User’s Response Secondary Symptoms User’s Response

Hypertension 0.08 Sudden Fever 0.17
Diabetes 0.12 Dry cough 0.16
Cardiovascular disease 0.07 Sore throat 0.08
Vomiting 0.15 Difficulty in breathing 0.15
Lethargy 0.13 Chest Pain 0.05
Headache 0.06 Bluish lips or face 0.03
Red Eyes 0.09 Travel history to Infected or risk-prone area 0.30
Normal cough 0.12
Lung Disease 0.10
Body Temperature 0.08

The figure depicts the first five PCs have eigenvalues greater than 1 and cumulative variance near 90% for different PCs. Therefore,
the first five PCs are considered for accumulating most of the information and are further forwarded to the ensemble learning
classifier for initial analysis.

3.3. Performance analysis of classification model at fog layer

In the fog layer, the proposed framework uses an ensemble learning technique for the classification of patients based on
heir symptoms. Determining the performance is one of the major aspects to judge the quality of the framework. Therefore, the
erformance of the proposed framework has been evaluated using various metrics as follows:
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Fig. 5. Scree Plot PCA.

Table 11
Correlation analysis with 95% confidence interval.

Measure cANN SVM k-NN RF Proposed

Pearson’s
Correlation
coefficient (𝜏)

𝜏= 0.53 ± 0.09 𝜏= 0.51 ± 0.06 𝜏 =0.45 ± 0.07 𝜏= 0.48 ± 0.08 𝜏= 0.64 ± 0.08

Kendell rank
coefficient (𝜅).

𝜅 =0.38 ± 0.021 𝜅 =0.29 ± 0.015 𝜅 =0.14 ± 0.070 𝜏= 0.40 ± 0.024 𝜅 = 0.48 ± 0.034

1. Accuracy: Accuracy represents the fraction of the number of correct predictions to the total number of predictions made.
Accuracy = T P + T N

T P + T N + F P+ F N

2. Specificity: Specificity measures the number of predictions correctly identified as negative out of the total actual negatives.
Specificity = T N

T N + F P

3. Sensitivity: Measures the number of predictions correctly identified as positive out of the total actual positive predictions.
Sensitivity = T P

T P + F N

4. F-score: F-score measures the effectiveness of predictions.
𝐹− score = 2 × Precision × Recall

Precision + Recall
5. Response time: It is characterized by the time taken to determine the class of an event by each classification algorithm.

The results of the proposed classification model have been compared with other sophisticated prediction models, primarily
Random forest (RF), k-Nearest Neighbor (K-NN), Support Vector Machine (SVM), and the conventional Artificial Neural Network
(cANN) to validate the proposed system.

1. Fig. 6(a) depicts the graphical representation of the accuracy of the proposed model in comparison to other models. In this
case, the proposed model acquires an average accuracy of 82.28%. In comparison to this, RF achieves 79.25%, k-NN acquires
77.85 %, SVM was able to register 67 % and cANN predicts 79.85 % of attributes results correctly. Henceforth, the proposed
classifier is comparatively effective in the accurate determination of COVID-19 results.

2. Fig. 6(b) shows the specificity values calculated for the proposed model in contrast with other states of the art prediction
models. From the figure, it can be concluded that over 14 days and continuous feeding of inputs to the models, the proposed
model acquires an average precision of 91.42 %. On the other hand, the RF, cANN, k-NN, and SVM models were able to
acquire mean specificity of 82.5 % 83 %, 80.42 % and 77 % respectively. Moreover, as the number of days increased, the
specificity of the proposed model is also increased, therefore depicting better performance.

3. Fig. 6(c) shows the sensitivity analysis of the proposed model. Numerically, the proposed model acquires maximal sensitivity
value as compared to other models with an average of 90 %. On the other hand, other predictive models show comparatively
low output.
12
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Fig. 6. Comparative analysis with state-of-the-art models. (a) Classification Accuracy (b) Specificity (c) Sensitivity (d) F-measure (e) Response time.

4. F-measure is also computed for the proposed system due to its statistical importance. Fig. 6 (d) shows the graphical values
obtained for the f-measure for 14 days. The proposed model shows consistency in f-measure results with an average value of
85.66%.

5. Fig. 6(e) shows the graphical results of each classifier’s average response time for giving input for the predefined COVID-19
symptoms defining attributes. From Fig. 6(e), we also conclude that the proposed model has a minimum average response
time of 14.79 msec as compared to other predictive models. Based on the results, we can conclude that the proposed model
is statistically better in terms of performance when predicting the COVID-19 symptoms results.

3.4. Correlation analysis

Correlation analysis is the measure that is used to test the relationship between categorical variables. It is an important measure to
determine the analogous behavior of the model with the real-time results of the proposed model. Two parameters are determined to
13



Internet of Things 23 (2023) 100828P. Verma et al.
Fig. 7. (a) GPS-based routing from A to B. (b) Default routing when location and user mapped. (c) New routing after identification of risk-prone regions.

validate the proposed model authenticity, namely Correlation coefficient (𝜏) and Kendell rank coefficient (𝜅). Correlation coefficient
(𝜏) between variable 𝑥 and 𝑦 can be computed using 𝜏 = cov(𝑥,𝑦)

𝜕𝑥𝜕𝑦
, here cov (x, y) is covariance. Similarly, predicted results are

compared with actual obtained results using Kendell rank coefficient (𝜅).

(𝜅) = 𝑋 − 𝑌
√

𝑛(𝑛−1)
2 −𝑋

√

𝑛(𝑛−1)
2 − 𝑌

(11)

Where X =
∑

𝑥 𝑥(𝑥−1)∕2,Y =
∑

𝑦 𝑦(𝑦−1)∕2 Here, n is the parameters of data to be analyzed. Based on these formulas, the acquired
results for different prediction models are shown in Table 11. Moreover, the confidence interval for prediction is fixed at 95% with
a normalized coefficient of 1.9. From the reference range set for different attributes in Table 11, the proposed model registers
maximum correlation (𝜏 = 0.64 ± 0.08) with respect to actual results as compared to K-NN (𝜏 = 0.45 ± 0.07), cANN (𝜏 = 0.53 ± 0.09),
SVM (𝜏 = 0.51±0.06), and RF (𝜏 = 0.48±0.08) prediction models. Moreover, Kendell rank coefficient (𝜅) is maximal for the proposed
technique as compared to other state-of-the-art techniques. Henceforth, it can be inferred that the proposed methodology is much
more precise and efficient than other predictive techniques.

3.5. SNA graph based COVID-19 outbreak prevention

The SNA graph is generated using a net logo [34]. Data about infected COVID-19 patients and locations are generated in Jammu
city of India to produce SNA-based graph risk assessments and infected regions. The reports of 5000 users and their locations of
travel are stored in two .csv files in the format of a hexagonal structure in the geographic region of Jammu city, as shown in Fig. 7.
Moreover, Fig. 7(b) depicts without precautions the routing of the user from path A to B. To minimize the spread and outbreak of
COVID-19, the user must pass through non-infected or risk-free regions. Based on the results, the user must be directed to follow a
safe route or path using an appropriate rerouting green zone-based algorithm, a demo is shown in Fig. 7(c).

3.6. System stability

In our proposed framework, the system stability has been evaluated because of the increasing number of days required for
continuous monitoring of the patients. System stability is practically measured as a result of Mean Absolute Shift (MAS). System
stability is defined based on the result provided by the system within a short period as the number of available datasets increases. In
the present framework, whenever the system encompasses a significant number of days of high MAS values (above 0.5) the system
stability is low, and vice versa. Fig. 8, indicates the results obtained for stability measurements. The MAS value (averaging 0.2409)
indicates that the system remains stable even if the number of days is raised and hence highly effective.

4. Comparative analysis

In this section, a comparative analysis of the presented work with the recent studies on diagnosis and monitoring of COVID-19
has been carried out to verify the efficiency. The comparative analysis has been presented in Table 12. From Table 12, it is clear
that the proposed methodology is novel and performs better from all evaluation aspects.
14
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Fig. 8. Overall system stability.

Table 12
Comparison between state-of-the-art methods.

Ref. Year Technique Challenges addressed Remarks

[35] 2022 CNN-LSTM hybrid model Solution for economic and social
prosperity

Prediction and current status of
medical resource availability

[36] 2022 Harris Hawks Optimization and
Feature Analysis Using SHAP

Real-time prediction of COVID-19 Presented a ML framework to
predict COVID-19.

[37] 2022 EAMA, a multimodel machine
learning technique

Prediction of COVID-19 based on
different aspects

Long-term prediction compared to
other models.

[38] 2021 Support vector machine,
Multi-layer perceptron

Short-term forecasting of
COVID-19 cases

Presented a model for the
forecasting of COVID-19 cases
using ML models. SVM
outperformed other classifiers
with the highest accuracy and
minimal root mean square error.

[39] 2021 Convolutional neural networks
(CNN), Texture analysis methods

COVID-19 detection using
texture-analysis CT-scanned lung
images

The results achieved were better
compared to the existing studies.

[40] 2021 Convolutional neural network;
Deep transfer learning

Automatic coronavirus pneumonia
detection using X-ray images

Proposed five algorithms namely,
ResNet50, ResNet101, ResNet152,
InceptionV3 and
Inception-ResNetV2 for
prevention of pneumonia
associated with coronavirus.

[41] 2021 Decision tree, Random Forest,
Support vector machine and
neural networks

Predictive analysis using machine
learning

Results better for decision tree
and random forest in terms of
specificity, sensitivity, and area
under the curve.

[42] 2021 Enhanced KNN classifier, feature
selection

Predictive analysis using machine
learning

Introduced an enhanced KNN
classifier with feature selection
for IoT-based COVID
identification.

[43] 2021 Federated Learning Chest X-ray images for prediction Performance evaluated in terms
of prediction accuracy and loss
with high-performance time.

[44] 2020 Multichannel exponent moments,
Manta-Ray Foraging Optimization

COVID-19 diagnosis using two
datasets on X-rays

Accuracy achieved above 95%.

[45] 2020 Logistic regression based
classification technique

Ventilation need among
COVID-19 patients

The proposed methodology
resulted in minimizing the false
positive rate with high sensitivity
(0.90) and specificity (0.58).

5. Conclusion and future work

COVID-19 is an acute severe respiratory syndrome that causes lung inflammation and may lead to critical health issues, if not
etected and treated early. Moreover, it is an infectious disease that can be transmitted to another person through coughing or
15
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sneezing, and physical contact. To mitigate the spread of COVID-19, the recent advances in Industry 4.0 technologies can be used as
an effective solution. The fog–cloud-based MCPS not only diagnoses the symptoms of COVID-19 at an early stage but also provides
effective information so that efficient decisions can be taken to control this life-threatening disease for further spread. Additionally,
in the event of chaos around the world, the use of novel computing techniques such as SNA indicators is a top priority for real-time
decision-making. In this paper, an MCPS framework for early detection and efficient decision-making of COVID-19 cases using
fog–cloud computing and social network analysis is presented. The fog layer uses PCA to reduce the dimensionality of the data
and then classifies it at the gateway to provide immediate results without any delay. The Ensemble learning-based classification
technique classifies events and provides information about the severity of COVID-19, and then generates real-time alerts. Social
network analysis-based services are used in the cloud layer for preventing the further spread of the disease. The outcomes of
the adoption of the proposed methodology show the efficacy of diagnosed COVID-19 cases and their stability over a wide time
span. Besides that, suggestions and an alarm generation mechanism enhance the novelty of the proposed system. In the future, the
capabilities of the presented methodology will be enhanced by considering various security aspects associated with the transmission
and storage of patient data. Moreover, the utilization of related features from the patient’s electronic medical records for efficient
data analysis and decision-making may also be explored.
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