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Abstract

Agricultural crops are subject to a variety of biotic and abiotic stresses that adversely affect growth and reduce the yield
of crop plantss. Traditional crop stress management approaches are not capable of fulfilling the food demand of the
human population which is projected to reach 10 billion by 2050. Nanobiotechnology is the application of nanotechnol-
ogy in biological fields and has emerged as a sustainable approach to enhancing agricultural productivity by alleviating
various plant stresses. This article reviews innovations in nanobiotechnology and its role in promoting plant growth
and enhancing plant resistance/tolerance against biotic and abiotic stresses and the underlying mechanisms. Nano-
particles, synthesized through various approaches (physical, chemical and biological), induce plant resistance against
these stresses by strengthening the physical barriers, improving plant photosynthesis and activating plant defense
mechanisms. The nanoparticles can also upregulate the expression of stress-related genes by increasing anti-stress
compounds and activating the expression of defense-related genes. The unique physico-chemical characteristics of
nanoparticles enhance biochemical activity and effectiveness to cause diverse impacts on plants. Molecular mechanisms
of nanobiotechnology-induced tolerance to abiotic and biotic stresses have also been highlighted. Further research is
needed on efficient synthesis methods, optimization of nanoparticle dosages, application techniques and integration
with other technologies, and a better understanding of their fate in agricultural systems.

Keywords Nanobiotechnology - Plant stresses - Abiotic factors - Biotic factors - Insect pests - Plant diseases -
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Introduction

Crop production has been stagnant during the last decades while food demand is increasing sharply due to ever
increasing human population [1]. It has been reported that almost 800 million people are chronically hungry and 2
billion suffer micronutrient deficiencies while 653 million people would still be undernourished in 2030 [2]. Therefore,
food security will remain a huge challenge as the world’s human population will reach around 10 billion in 2050 [3].

> Ahmad Nawaz, ahmad.nawaz1793@uaf.edu.pk;> Muhammad Faroog, farooqcp@squ.edu.om | 'Department of Entomology,
University of Agriculture, Faisalabad 38040, Pakistan. 2Department of Agronomy, University of Agriculture, Faisalabad 38040,

Pakistan. *PEIE Research Chair for the Development of Industrial Estates and Free Zones, Center for Environmental Studies and Research,
Sultan Qaboos University, Al-Khoud 123, Muscat, Oman. “Institute of Soil and Environmental Sciences, University of Agriculture,
Faisalabad 38040, Pakistan. >Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan. ®Department of Plant
Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Al-Khoud 123, Muscat, Oman.

Discover Nano (2023) 18:74 | https://doi.org/10.1186/511671-023-03845-1

Check for
updates

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1186/s11671-023-03845-1&domain=pdf

Review Discover Nano (2023) 18:74 | https://doi.org/10.1186/511671-023-03845-1

The global losses of one-third of food produced have been estimated by FAO (Food and Agriculture Organization) in
2011 which amounts to about 1.3 billion tons per year [4]. The pre-harvest crop losses reported are around 35% due
to different factors (diseases, animal pests, weeds, abiotic stresses) which account for 1051.5 Mt (million tonnes). In
addition, the losses during harvesting and storage are about 690 Mt [5].

Both biotic and abiotic stresses cause significant crop yield losses. However, the global crop yield losses due to
biotic stresses vary among major crops and regions [6]. Insect pests cause 15-20% yield losses in principal food and
cash crops [7]. Similarly, the global estimates of yield losses due to pathogenic disease range from 11 to 30% [6,
8, 9]. Abiotic stresses (drought, water logging, temperatures, salinity, heavy metals and mineral toxicity, etc.) lead
to morphological, physiological, biochemical, and molecular changes in plants that adversely affect their growth,
development, and productivity [10]. They can cause significant losses (50-70%) in growth and yield [11-15]. The
overproduction of reactive oxygen species (ROS) is one of the major reasons for crop losses caused by abiotic stresses
[16]. The global models have predicted an increase in CO, levels from 400 to 800 ppm [17, 18]. Moreover, more than
45% of arable lands are endangered by drought [19, 201, above 27% of the global area is under aridity, and most crop
species are sensitive to salt stress (1.0-1.8 dS m™"). These abiotic stresses can cause 10 to 50% yield loss [21, 22]. In
addition, heavy metal (Cr, Cd, As, Pb, Cu, Hg) pollution negatively affects seed germination, photosynthesis, respira-
tion, and transpiration and ultimately reduces growth, yield as well as yield quality [23, 24].

The use of synthetic chemicals had been the main focus to mitigate the effects of abiotic and biotic stresses in
crop plants. The estimated increase in pesticide use was up to 3.5 Mt in 2020 [25] with an estimated value of US$
103.5 billion. The global pesticide market is predicted to reach more than US$ 107.5 to 184 billion in 2023 to 2033
respectively with a steady growth of 5.5% (https://www.persistencemarketresearch.com/market-research/pesticides-
market.asp: data retrieved on 12-02-2023). The facts about health hazards and impacts on non-target organisms of
pesticides revealed a 35% decrease in soil respiration, a 90% water pollution of agricultural lands, a 70% decline in
insect biomass, a 50% decline in farmland birds, a 30% decline in the honey bee population, a 42% reduction in spe-
cies richness in Europe, Australia and Americas. In addition, a 25-30% increase in cancer and mental health risks and
a 50% risk of leukemia, lymphoma and brain cancer is linked to pesticide exposure to children [26]. Moreover, the
combined impacts of different stresses increase the complexity of plant responses. Thus, a second green revolution
is needed to fulfill the food demand of the human population. Therefore, this is required to find some alternative
solutions focusing on environmental sustainability and human health.

Nanotechnology as a “Key Enabling Technology” [27] has the potential to serve as a key alternative to achieve
the goal of sustainable agriculture [28]. Nanoparticles are synthesized through physical, chemical and biological
approaches (Fig. 1) by using metal or metal oxide [29]. Metal-based nano- insecticides, pesticides, and insect repel-
lant formulations show significant potential against plant pathogens and insect pests [30]. However, the biological
synthesis (green synthesis) of nanoparticles using plants or plant extracts, entomopathogens and other biomaterial
has potential benefits over other approaches. Plants or plant extracts contain enzymes, sugars, and phytochemi-
cals like flavonoids, latex, phenolics, terpenoids, alcohols, amines and cofactors, etc. which act as reducing and
stabilizing agents during the synthesis of metal nanoparticles. This helps to prepare not only the most promising
and eco-friendly nanoparticles with well-defined sizes and shapes but also prevent environmental contamination
[31-33]. Therefore, the present review encapsulates the innovations in nanobiotechnology applications in agriculture
especially focusing on the potential of biosynthesized nanoparticles to mitigate abiotic and biotic stresses in crop
production.

Nanobiotechnology for abiotic stress tolerance

Abiotic stresses significantly affect plant growth and cause a substantial reduction in crop yield (by about 50%) [11,
13-15]. These stresses disturb the plant metabolism lead causing a significant reduction in plant growth, develop-
ment, and yield formation [35]. In addition to other effects, the overproduction of reactive oxygen species (ROS) is one
of the major reasons for crop losses caused by abiotic stresses [16, 36]. The application of nutrients, osmoprotectants
and stress signaling compounds has been effective in scavenging the ROS and improving the tolerance against abiotic
stresses [13, 15, 37]. However, the application of these materials in nano-sizes can be more effective. For example,
increasing evidence indicates that delivery of the above-mentioned substances as nanomaterials improves plant
tolerance against heat [38], drought [39], salinity [40] and trace metal [41] stresses. Nanomaterials have high surface
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energy and a high surface/volume ratio that helps improve their biochemical activity, reactivity and effectiveness
when delivered to plants [28]. In plant defense, nanomaterials not only shield against ROS but also act as oxidative
stress inducers at the same time [42]. The latter stimulates the plant antioxidant defense system. Novel properties
of nanoparticles (NPs) exhibit their potential not only for crop management but also to deal with abiotic stresses.
Several metals including silver (Ag), copper (Cu), gold (Au), iron (Fe), titanium (Ti) and zinc (Zn) and their oxides have
been used to produce NPs. These NPs have been recently used for the green synthesis of NPs using plants and their
extracts, micro-organisms and membranes, and DNA of viruses including diatoms. Green-synthesized NPs widely
used in agriculture include AgNPs [43, 44].

In the following lines, the role of nanobiotechnology in improving tolerance against different abiotic stresses has
been discussed.

Drought stress

Drought is one of the major abiotic stresses with devastating effects on growth and productivity of crop plants [13,
45]. The US weather disaster analysis from 1980 to 2012 revealed that drought and heat stresses caused extensive agri-
cultural losses of around $200 billion in which drought alone caused $50 billion worth of damage [46]. Drought exerts
several morphological, physiological, biochemical and molecular responses in crop plants for adaptation to drought.
Some adaptive mechanisms include the activation of the defence system, reducing leaf area, osmotic balance, hormonal
homeostasis, expression of stress genes and shortening of plant life cycle [45]. However, only a few studies report the role
of green synthesized NPs in the alleviation of drought stress. For instance, the application of green synthesized AgNPs
increased antimicrobial activity against Escherichia coli and Staphylococcus aureus under drought stress in Tephrosia
apollinea [47]. The improved response was observed with a decrease in membrane damage and an increase in hydro-
gen peroxide (H,0,) contents in the roots of T. apollinea under incremental drought. Likely, Ag-synthesized green NPs
improved the seed germination (89.5%), germination rate (6.88) and seedling biomass in lentil under drought stress. This
improvement was associated with the maintainance of tissue water balance [48]. Thus, green synthesized NPs can be
used to reduce the detrimental effects of drought, however, further investigation of associated physiological, biochemical
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and molecular mechanisms is needed. Future studies on other metals NPs may be extended to explore their biological
roles under drought.

Salt stress

More than 20% of cultivated lands are affected salt stress. Salt stress affects the plant growth through salinity-induced
osmotic stress, specific ion toxicity and mineral imbalance. The application of NPs improves plant growth, modulates
carbohydrate and protein synthesis, and enhances the activities of antioxidant enzymes such as catalase (CAT), guaiacol
peroxidase (POX), ascorbate peroxidase (APX) under salt stress and thus helps reducing the impact of salt stress by ROS
detoxification and hormonal regulation [49]. In another study, the foliage applied Se and Cu nanofertilizer reduced the
impact of saline water and significantly improved the tomato growth, nevertheless, soil properties were negatively
affected due to the application of saline water [50].

Under salt stress, Na* and Cl~ uptake increases that causes oxidative damage and restrict the K™ and Ca" uptake
[51]. The Application of NPs restrict Na* and CI~ entry to plants under salinity. The application of ZnO-NPs improved the
uptake of K and Ca?* while reducing Na* and CI~ accumulation [52]. The NPs of iron (Fe), cesium (Cs) and cobalt (Co)
play a supportive role for catalase enzyme, whereas, copper (Cu), iron (Fe), caesium (Cs) and manganese (Mn) do the
same role for peroxidase (POD) enzyme [53]. The application of silver NPs at low concentrations improved antioxidant
enzymatic activity and improved plant growth under salt stress conditions [54]. Likewise, the application of TiO,-NPs
improved salt tolerance in Dracocephalum moldavica through the activation of antioxidant defense system that helped
reduce the salinity-induced oxidative damages and improve plant growth under salt stress [55]. The use of NPs can
help improve plant salt tolerance through the activation of antioxidant system, maintenance of tissue water status and
ion homeostasis, etc. (Fig. 2). However, further research is desired to improve the efficiency of NPs for field-scale use to
improve plant salt tolerance.

Thermal stresses

Temperature extremes, high and low, have a strong impact on plant growth, development and yield formation [37, 57].
High temperature stress or heat stress is the rise in temperature beyond a critical threshold for a period of time sufficient
to cause irreversible damage to plant growth, development, and yield [13, 58]. Heat stress induces the overproduction
of ROS causing oxidative damage to plant biological membranes and other vital molecules [59, 60] and causing a sig-
nificant reduction in photosynthetic pigments and carbon assimilation in wheat and chickpea [60, 61]. Low temperature
may cause chilling (0-15 °C) or freezing (< 0 °C) stresses. The chilling stress causes injuries without ice crystal formation
whereas the freezing stress damage plant tissues by forming ice crystals [37]. Low temperature stresses affect plant
growth due to photoinhibition, ROS-induced oxidative damages, reduction in the nutrient update, activities of various
enzymes and carbon assimilation [13].

The use of nanomaterials has been quite effective in improving the plant tolerance to heat stress (Table 1). For example,
Igbal et al. [62] reported significant improvement in plant biomass and leaf area in wheat under heat stress by exogenous
application of AgNPs synthesized with moringa extract. The green-synthesized AgNPs balanced the tissue water content
status and improved chlorophyll content under heat stress compared to the control in wheat crop [62]. The application
of moringa extract-synthesized AgNPs improved the tolerance against heat stress through the activation of antioxidant
defense system [62] as AgNPs application modulates the activation of antioxidant genes (MeCu/ZnSOD and MeAPX2)
under thermal stresses in Arabidopsis thaliana [63].

Selenium (Se) is known for its vital role in the plant antioxidant defense system. Application SeNPs, at low concentra-
tion, stimulated the antioxidant defense system by enhancing the activities of antioxidant enzymes, and improved the
photosynthetic pigments and plant growth of tomato [67] and grain sorghum [68]. The application of SeNPs, green-syn-
thesized with a bacterial strain Lactobacillus casei, improved the tolerance against heat stress in chrysanthemum through
the activation of the antioxidant defense system [69]. The application of titanium dioxide (TiO,) NPs also contributed to
heat tolerance in tomato by regulating the stomatal oscillation [71].

Heat shock proteins (HSPs) are molecular chaperones expressed in plant exposure to heat stress [76]. These HSPs
induce heat tolerance in plant species by stabilizing the protein structure [77]. The application of nanomaterials has been
very effective in inducing heat stress through the expression of HSPs (Table 1). For instance, Zhao et al. [65] reported
that the application of cerium oxide (CeO,) NPs improved maize growth under heat stress due to the upregulation of
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HSP70. In another study, the application of multi-walled carbon nanotubes (MWCNTs) improved tomato growth under
heat stress through the expression of various stress-related genes including HSP90 [66].

The use of nanomaterials has been found effective to induce cold tolerance in different plant species. For example,
SeNPs application improved the photosynthetic pigments, activated the plant antioxidant defense system and increased
tomato plant growth under cold stress [67]. Likewise, the application of titanium oxide (TiO,) NPs improved the cold
tolerance in chickpea through a significant increase in the activities of antioxidant enzymes (superoxide dismutase, cata-
lase, ascorbate peroxidase, glutathione peroxidase, guaiacol peroxidase, polyphenol oxidase, lipoxygenase, allenoxide
synthase), chlorophyll contents, and a significant reduction in ROS and oxidative damage compared with control under
cold stress [78] The application of TiO,NPs also induced the expression of cold tolerance genes [74].

Plant photosynthesis, the key physiological process responsible for food production for all, is sensitive to cold stress
[16]. In addition to ROS-induced oxidative damages, cold stress causes a significant reduction in photosynthetic pig-
ments and activity of key photosynthetic enzymes including Rubisco carbon resulting in a decrease in photosynthetic
rate [13, 79]. However, the application of nanomaterials has been found to reduce the ROS-induced damage in the
thylakoid membrane [80, 81] and improves the light absorption capacity of chloroplast [82], electron transport rate and
the activity and efficiency of Rubisco [73, 83, 84]. The application of TiO, NPs in chickpea caused a significant increase
in the activities of antioxidant enzymes (superoxide dismutase, catalase, ascorbate peroxidase, glutathione peroxidase,
guaiacol peroxidase, polyphenol oxidase, lipoxygenase, allenoxide synthase), chlorophyll contents [78] and expression
of genes controlling the chlorophyll-binding protein and Rubisco [73] under cold stress and increased plant cold toler-
ance (Table 1).
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Toxic metals stress

Soil contamination by toxic metals has been recognized as an important threat to plant development, soil ecosystem,
and human health. Metals are grouped into two categories including (i) essential metals and (ii) non-essential metals.
Essential metals are required to support plant development as micronutrients. These include cobalt (Co), copper (Cu),
iron (Fe), manganese (Mn), molybdenum (Mo), nickel (Ni), selenium (Se), and zinc (Zn). Nevertheless these essential met-
als becomes toxic to plants if their concentration increases the threshold levels [85]. On the other hand, non-essential
metals like arsenic (As), cadmium (Cd), chromium (Cr), lead (Pb), mercury (Hg), and silver (Ag),do not have any biological
role in plantsand can have detrimental impacts even at low concentration [86].

Toxic metals stress affect plant metabolism by disturbing the protein structure, hampering functional groups of vital
molecules, and causing oxidative damage to biological membranes [87-89].

The use of various nanomaterials with microbes simultaneously or sequentially, can impede the effects of toxic met-
als in plants. For example, the inoculation of arbuscular mycorrhizal fungi along with nanoscale zero-valent iron (nZVI)
even in lower amounts (100 mg kg™') improved the immobilization of Cd reducing their uptake in sweet sorghum in
acidic polluted soil [90]. Similarly, the use of polyvinylpyrrolidone-coated iron oxide (Fe,05) nanoparticles along with
Gram-negative bacterium Halomonas sp. completely removed Cd and Pb while shortening the remediation time. On
the other hand, nanoparticles alone removed about 66% of Cd and 82% of Pb as compared to 84% of Cd and 81% of Pb
removal by bacterium alone [91].

Nanomaterials can also improve the phytoextraction efficiency for soil remediation. For example, Lolium perenne
plants in the presence of nZVI (100 mg kg™') showed the highest accumulation of Pb (1175 ug per pot). However, higher
doses of nZVI (2000 mg kg™') reduced the uptake of Pb (to 832 pg per pot) by causing oxidative stress to plants [92].
Nanobiotechnology can also rely on the use of biologically synthesized materials to combat toxic metal stress in soils
[93, 94]. For example, biogenic copper nanoparticles developed by involving a copper-resistant bacterium (Shigella
flexneri SNT22) decreased Cd uptake (by 50%) from contaminated soil to wheat plants [94]. This treatment also improved
the shoot dry weight (by 28%), plant length (by 44%), and the contents of nitrogen (41%), and phosphorus (58%). It
has been proposed that biogenic copper nanoparticles adsorb Cd on its surface and prevent its uptake by plants [94].
Moreover, these nanoparticles hinder metal translocation into plants by competing with metal for membrane entry
channels. After they enter into the plant body, these nanoparticles activate many defense-related enzymes reducing
the metal translocation to plants (Fig. 3).

Despite the potential of nanobiotechnology in alleviating metal stress, there exist limited studies in this emerging field.
The integration of nanotechnology and bioremediation can combine the benefits of both strategies and can facilitate
the development of sustainable remediation technology. However, the biogeochemistry of contaminated soils can have
a significant effect on the efficiency and interactions of nanoparticles with pollutants and microbes [95]. This needs to
be explored for field application with an emphasis on the fate and environmental impacts of nanomaterials.

Organic pollutants stress

Organic pollutants (OPs) are ubiquitous in all compartments of the environment. They are very diverse in nature and
are classified into more than 20 different classes [96]. The OPs are classified as industrial chemicals, pesticides, and
pharmaceuticals. Polycyclic aromatic hydrocarbons, organochlorine pesticides, polychlorinated dichlorodiphenyl-
trichloroethane, polybrominated diphenyl ethers, and hexachloro-cyclohexane, are among the most common classes
of OPs [97]. These compounds are very toxic; some are mutagenic and carcinogenic even at low concentrations. They
are highly stable and may persist in the environment for many decades due to their recalcitrant and hydrophobic
nature. These can be absorbed in the food chain and threaten human health, and even at higher concentrations, can
cause phytotoxicity. A higher concentration of OPs affects the germination and growth of plants mainly by affecting
physiological processes including activities ofkey enzymes, carbon assimilation and several other metabolic events.
Like other abiotic stresses, POPs also induce oxidative stress through stimulation of ROS, [98], which leads to lipid
peroxidation (LPO) that in turn damage DNA/RNA, and their membranes.

Phytoremediation involves the use of plants for de-contamination of OPs and is a very cost-effective and environ-
ment-friendly approach; however, it doesn't work at higher concentrations of OPs in the environment mainly due to
their toxicity in plants. The application of nanomaterials would be effective in reducing the toxicity of OPs to plants. In
a study on the effect of Ni/Fe bimetallic-nanoparticles on polybrominated diphenyl ethers (PBDEs) toxicity in Chinese
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Fig.3 The role of biogenic copper nanoparticles (CuNPs) in reducing the translocation of Cd from soil to plants and facilitating the plant to
activate defense system to combat Cd-stress. This figure is reproduced with permission from [94]

cabbage, nanomaterials significantly decreased the phytotoxicity of PBDEs. This was inferred that the coupling of
NMs and bioremediation could reduce the toxicities of soil contaminants and NMs in the plants simultaneously [99].
In another study, the effect of carbon nanotubes (CNTs), on the uptake of four persistent organochlorine insecticides,
by lettuce was evaluated. The application of CNTs dramatically decreased the uptake of chlordane components and
p,p-DDE by lettuce seedlings. The reduced uptake by plants was probably due to the higher sorption capacity of CNTs
for OPS [100]. The use of Ag NPs has also been found effective in decreasing the uptake and accumulation of p,p*-
DDE in Zucchini and soybean [Glycine max (L.) [101]. Similarly, the use of multiwalled carbon nanotubes decreased
the pyrene and 1-methylpyrene concentrations in roots and shoots, and reduced their translocation in maize [102].

Some NPs such as ZnO, carbon nanotubes, nZVI particles, graphene quantum dots, Ag, etc. could improve plant
growth under OPs stress conditions through different mechanisms. For example, ZnO and graphene quantum dots
might serve as nanofertilizer [103]. Praveen et al. [104] reported that the application of ZnO NPs would increase
tolerance against Fe,O; stress in Indian mustard by altering enzyme activities. In addition, NPs may increase growth
by improving the uptake and translocation of water and nutrients and by stimulating the soil microbial community.

Biosynthesized nanomaterials have also shown promising results in the degradation of several organic pollutants
from the environment. For instance, biosynthesized PdNPs were many folds effective, catalyst powder of commercial
palladium, in the dehalogenation of several toxic congeners of polychlorinated biphenyl’s (PCBs) in water and sedi-
ments [105]. Likewise, five times more catalytic dehalogenation of a flame retardants tris-(chloroisopropyl)-phosphate
(TCPP) was noted with the palletized cells of Desulfovibrio desulfuricans compared to the chemically reduced pal-
ladium powder [106]. Another study reported that the surface application of biosynthesized PANPs on a graphite
cathode caused a significant increase in the rates of trichloroethylene (TCE) dehalogenation and diatrizoate deio-
dination [107]. Although several studies have shown the promising results of biosynthesized nanoparticles on the
overall dissipation of OPs from the environment, no studies are found on the ameliorative impact of biosynthesized
NPs on the phytotoxicity of OPs.
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Hypoxia and anoxia stresses

Due to climate change, plants experience many environmental stresses including submerged and waterlogged condi-
tions [108]. Both stresses cause variable availability of oxygen (O,) ranging from normal O, level (normoxia) to hypoxia
(partial O, deficiency) and anoxia (total O, deficiency) because O, diffusion is slower in water than in air [15]. Flooding
stress/hypoxia conditions inhibit respiration, seed germination, and plant growth [109]. Under O, deficiency (hypoxia
and anoxia stresses), the phosphorelation (ATPs generation) significantly reduces. The accumulation of lactate and etha-
nol, produced during oxygen-deficient respiration, becomes toxic to plants beyond a threshold nd results in cytosolic
acidification [110]. Hypoxia-anoxia stresses in plants reduce green pigments, gaseous exchange at stomata, and pho-
tosynthetic activity. In addition, hypoxia stress causes oxidative damage by accelerating lipid peroxidation due to the
hyperproduction of reactive oxygen species (ROS) in leaf and root tissues [111].

To enhance hypoxia and anoxia tolerance in plants, several molecular and breeding techniques along with natural
selection are being used [112]. The exploration and exploitation of novel strategies (nanobiotechnology) complement-
ing existing conventional approaches have become very crucial for sustainable plant growth [112]. The development
of green-(bio) nanotechnology by exploiting biological routes helps in minimizing hazards of abiotic stresses in plants
including hypoxia/anoxia stresses [113]. In this regard, silicon nanoparticles (SiNPs) -treated plants combat hypoxia
stress more efficiently compared with conventional Si by improving antioxidant activities, osmoprotectant accumulation,
and micronutrient regulation [111]. AImutairi [114] reviewed that AgNPs and aluminum oxide nanoparticles (Al,O;NPs)
decreased the adverse effects of flooding stress. Similarly, Mustafa et al. [115] used Al,O;NPs, ZnONPs, and AgNPs in soy-
beans to alleviate the abiotic stress of flooding. Proteome analysis revealed that most of the protein expressions related
to energy metabolism were changed under flooding stress and this change was decreased with the usage of Al,O;NPs.

Mustafa and Komatsu [116] indicated that the influence of the size of NPs in anoxia tolerance was more prominent
in soybean, rather than the quantity and types. Nevertheless, nanomaterials reduce flooding stress (hypoxia and anoxia
stresses) and enhance plant growth by hindering ethylene biosynthesis in Arabidopsis [117]. Further studies may be
initiated to explore the potential of nanomaterial application in improving plant tolerance against hypoxia and anoxia
stresses.

Nanobiotechnology and tolerance against biotic stresses

The state of a plant in which living organisms (viruses, bacteria, fungi, nematodes, insects, arachnids, and weeds) disrupt
their normal metabolic (growth, vigor, and productivity) activities is known as biotic stress. Biotic stresses are respon-
sible to cause significant economic yield losses in major crops like wheat (28.2%), rice (37.4%), maize (31.2%), potatoes
(40.3%), soybeans (26.3%), and cotton crops (28.8%) [118]. The weeds alone causes the highest (32%) yield loss followed
by animal pests (18%), fungi and bacteria (15%) and viruses (3%) [8]. Thus, a number of pests are responsible for causing
infections and ultimately inciting biotic stress to host plants. Igbal et al. [111] reported that insects and mites impair
plants by piercing and sucking the cell sap or chewing their parts. In addition, insects also act as vectors and carriers for
different viral and bacterial diseases. Fungi can kill host cells by toxin secretions (necrotrophic) or feed on living host cells
(biotrophic). Nematodes cause nutrient deficiency, stunted growth, and wilting by feeding on host plants. Plant patho-
genic bacterial infection symptoms include galls and overgrowths, wilts, leaf spots, specks and blights. Similarly, viruses
cause damage resulting in chlorosis and stunting the growth of host plants [111]. Plants defend themselves against biotic
stresses through their immune system, physical barriers (cuticles, wax, and trichomes) and chemical compounds [119,
120]. Pesticides (herbicides, insecticides, fungicides, etc.) are used as a major component for the management of pests
causing biotic stresses [121, 122]. The facts about health hazards and impacts on non-target organisms of pesticides
are linked with serious effects on micro and macro flora as well as fauna including negative impacts on human health
[26, 123, 124]. In this regard, the use of nanobiotechnology has been proven very effective for the management of the
aforementioned issues. Therefore, the potential of nanobiotechnology to counter biotic stress has been highlighted
and discussed below.
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Insect pest management

In developing countries, pre-harvest and post-harvest grain crop losses ranging from 15 to 100% and 10-60% [125].
Insects belong to the phylum Arthropoda and 20% of global annual crop losses, valued at over US$ 470 billion are attrib-
uted to arthropod pests [126]. In addition to direct damage, insect pests can also transmit or facilitate pathogens (viruses,
bacteria, fungi) to cause diseases in plants [127]. The damages reported [128] in major crops due to insect pests are 25%,
5-10%, 30%, 35%, 20%and 50% in rice, wheat, pulses, oilseeds, sugarcane and cotton respectively. The intensive use of
pesticides has led to the development of resistance, resurgence and replacement of insect pest species. The resistant
insects and mite species had risen to more than 700 [129]. These facts highlight the need for alternate control tactics
for the sustainable management of insect pests. The implications of biosynthesized nanoparticles against insect pests
have been discussed in this section.

Entomopathogenic bacteria with nanoparticles

Bacteria are ubiquitous in nature and have developed a variety of interactions with insects. They have evolved an array
of tactics to invade the host insects, and overcome their immune responses to infect and kill them. Entomopathogenic
bacteria (EPB) are generally recognized as low-risk substances than conventional synthetic pesticides. The application of
EPB alone for pest management has some limitations i.e., (i) ingestion of spores in the host body to cause infection, (ii)
solar radiation, (iii) leaf temperature, (iv) vapor pressure, (v) host resistance and can affect the pathogenicity/virulence of
these pathogens [130, 131]. Several studies highlight the compatibility and synergistic effects of EPB and nanoparticles
for insect pest management [132]. The bioefficacy of EPB-based nanobiopesticides with different biocompatible chemical
elements like silver (Ag), zinc oxide (ZnO), copper oxide (CuO, Cu,0), gold (Au), etc., have been proven effective (Table 2).

The Bacillus thuringiensis kurstaki mediated silver nanoparticles (Btk-AgNPs) application against cabbage
looper (Trichoplusia ni Hibner) and black cutworm (Agrotis ipsilon Hufnagel) demonstrated to be significantly more
virulent toward larvae of T. ni than to A. ipsilon [133]. The marine pathogen Shewanella alga is known to produce a strong
neurotoxin (tetrodotoxin). Shewanella alga-mediated AgNPs significantly increased the mortality of 3rd instar white grub
beetle, Lepidiota mansueta Burmeister (Coleoptera: Scarabaeidae) in all concentrations used [180]. The larvicidal toxicity of
Bt-AgNPs was significantly higher than control against 3rd instar larvae of Aedes aegypti [138]. Similarly, Soni and Prakash
[181] reported that Listeria monocytogenes, Bacillus subtilius and Streptomyces anulatus-mediated AgNPs revealed signifi-
cantly more larval and pupal toxicity against Culex quinquefasciatus than Anopheles stephensi. In contrast, An. stephensi
were found more susceptible than Culex quinquefasciatus at the adult stage. The Bacillus megaterium-mediated AgNPs
by using the extracellular method were found to show higher insecticidal efficacy against Culex quinquefasciatus and
Aedes aegypti [138]. Several studies revealed more promising results than control treatments but the focus of research
is quite limited (Table 2). Further studies are needed to utilize the potential of EPB-mediated nanobiopesticides for the
management of economic insect pests of various crops.

Entomopathogenic fungi with nanoparticles

Entomopathogenic fungi (EPF) are natural inhabitants of the soil and are mostly isolated from insect cadavers [182]. The
EPF consists of over 100 genera and > 700 species [183, 184]. They provide a direct adaptive response through different
mechanisms (adhesion and recognition of host surface), specialized infectious structures (penetrant tubes or appressoria),
enzymes (lipase/esterases, catalases, cytochrome P450s, proteases, and chitinases), and secondary metabolites [185].
Currently, there has been a resurgence of interest in EPF use due to increasing insecticide resistance and environmental
concerns over pesticide use [123, 186]. Several insect pests of different crops can be managed by EPF [187-189]. The
most common fungal infection in fresh water, soil surfaces, and aerospaces environments are Metarhizum, Beauveria,
Nomurea rileyi, Verticillumlecanii, and Hirsutella. The EPF can also produce broad-spectrum secondary metabolites and
physical as well as biological alterations to manage insect pests [190].

The formation of nanoparticles utilizing fungus is known as myco-nanotechnology. The nanotechnology integration
with EPF for entomotoxicity can enhance their effectiveness many folds (Table 2). The literature revealed the higher pes-
ticidal efficacy of Chitosan Nanoparticle Coated Fungal Metabolite (CNPCFM) than Uncoated Fungal Metabolite (UFM)
and Fungal Spores (FS). Chinnaperuma et al. [146] reported a significant reduction of detoxifying enzymes of Helicoverpa
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armigera due to Trichoderma viride-mediated biosynthesis of titanium dioxide nanoparticles (TDNPs) and showed sig-
nificant mortality of 1st instar (100%), 2nd instar (100%) and 3rd instar (92.34%) larvae of H. armigera. Similarly, Sitophilus
oryzae infestation was effectively managed in storage bags treated with nano-based formuations of B. bassiana and M.
anisopliae [191]. The use of the cell filtration method to prepare B. bassiana mediated AgNPs showed maximum (60.09%)
mortality of Lipaphis erysimi [141]. The significant reduction in fecundity of females and malformed development of
adults was also reported in potato tuber moth (Phthorimaea operculella) when treated with the nano-based formulation
of fungus Metarhizium rileyi [191].]. The resistance development can also be managed with nano-based EPF formulations.
The combination of mycosynthesised TiNPs and M. anisopliae revealed synergistic interaction against Galleria mellonella
larvae with a synergistic factor (SF) of 1.6 for LC50 and 4.2 for LC90 [147]. It was concluded that EPF can be effectively
employed for the reduction of increased insect resistance to entomopathogenic fungi. Therefore, nanotechnology inte-
gration with EPFs can enhance their efficacy many folds as compared to NPs or EPFs alone.

Bonatnicals with nanoparticles

Many plants have biocidal properties and are being used against insect pests due to their efficacy, biodegradability,
varied modes of action and low toxicity to non-target organisms [192]. Therefore, many botanical pesticides are used
mainly for insect pest management [193-198]. Many studies have listed the plant species with known and yet to be
exploited pesticidal properties [199, 200]. The commercially available botanical pesticides sources include Tanacetum
cinerariifolium (pyrethrum), Azadirachta indica (neem), Schoenocaulon officinale (sabadilla), Nicotiana tabacum (tobacco)
and Ryania speciose (ryania) [201]. Overall, extract from the leaves, flowers and twigs of many plants can be used as an
insecticide [202].

Several promising outcomes of plant extracts integration with nanoparticles of different metals [203-205] are reported.
The plant extracts act as capping and reducing agents and convert metals into nanoparticles with the aid of alkaloids,
phenolic acids, polyphenols, proteins and terpenoids. The AgNPs and neem extract showed no toxicity against Cu.
quinquefasciatus and A. aegypti during individual application of neem extract and AgNOj; in aqueous formulations. The
neem-mediated AgNPs revealed 0.047 mg/L and 0.006 mg/L LCs, values against Cu. quinquefasciatus and A. aegypti [206].
Similar outcomes were reported by [170] in a study of Pongamia pinnata leaf extract mediated ZnONPs against pulse
beetle. They reported significant variations in hatchability, larval time, pupal period and fertility including 100% mortality
of pulse beetle. Similarly, characterization and entomotoxicity of Hypnea musciformis mediated AgNPs demonstrated
effective management of mosquitos and diamondback moth (Plutella xylostella L.) and environment friendly nature [156].

Entomopathogenic nematodes with nanoparticles

The phylum Nematoda consists of around 1 million species and only 27,000 species have been described till now [207].
Entomopathogenic nematodes (EPNs) belong to the families Steinemernatidae and Heterorhabditidae. They parasitize
soil inhibiting pest insects and kill them due to the associated mutualistic bacteria (Xenorhabdus, Photorhabdus, Het-
erorhabditis) [208, 209]. EPNs cause infection in individuals of a number of insect orders e.g., Coleoptera, Dictyoptera,
Lepidoptera, Hemiptera, and Orthoptera [210].

The EPNs and nanotechnology integration is quite promising and can produce effective control of insect pests
(Table 2). However, protocols should be developed to optimize the efficacy of EPNs and nanoparticles as EPNs efficacy is
dependent on nanoparticle concentrations and exposure time [211]. For instance, the reproduction rates were enhanced
with two concentrations assayed (500 and 1500 ppm) while a little variation was recorded in pathogenicity. Similar results
have also been reported in other studies on the mortality of Steinernema feltiae (Owinema biopreparation) and Heter-
orhabditis bacteriophora (Nematop biopreparation) EPNs [212, 213]. The Au nanoparticles also produced similar results
of mortality when exposed to Steinernema feltiae from Owinema biopreparation of nanoparticles [213]. The mortality
increased with increased concentrations of Au nanoparticles. Kucharska et al. [214] used copper (Cu) nanoparticles and
also showed S. feltiae mortality as well as its ability to control Alphitobius diaperinus depending on the exposure time
and nano-Cu concentrations. The combined application of EPNs with nanoparticles of different metals (Ag, Au, or Cu) to
control lesser mealworm (Alphitobius diaperinus) revealed variations of host growth stages sensitivity and susceptibility
to S. feltiae and H. bacteriophora. In addition, the negative effect of AuNPs was also recorded on Alphitobius diaperinus
adults infected by S. feltiae (Owinema) [178]. Furthermore, there are also reports of toxicity of nanoparticles (silica, tita-
nium oxide, ZnO, Al,O;, silver, and Fe,03) on Caenorhabditis elegans [215-217]. Further research is needed to improve
the integration of nanoparticles with EPNs.
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Nanobiotechnology and Management of Plant Diseases

Phytopathogens (fungi, bacteria, mollicutes, nematodes, viruses) causes enormous losses to human society by damaging
their food production, economic growth, sustainable agriculture, environmental resilience and natural landscape. In this
regard, bacterial diseases are the most damaging and economically significant pathogens invading various agricultural
crops. The wide host range, survival capability and sustainable latent infection make bacteria a challenging pathogen to
control [218]. Likewise, more than 19,000 fungi are reported to involve in causing diseases in crop plants globally. Addi-
tionally, the fungal spores are freely disseminated by wind currents, water, soil, insects, and other invertebrates, which
make the whole crop to be invaded [219]. Nevertheless, there is not a single crop that has been free of plant parasitic
nematodes (PPNs) infection. They pose a substantial yield loss (~ 173 billion $), annually [220]. Crop rotation is a routine
practice to manage PPNs, but the polyphagous characteristics make this tactic unworkable [221]. In contrast, plant
viruses have been revealed to cause ~50% of total crop losses which is a great threat to worldwide food security [222].
According to one of the surveys, nearly more than 900 plant virus species are responsible to infect over 700 crop species
[223]. They are very challenging due to the fact that they are distributed by insect vectors. The virus management relies
fundamentally upon (i) immunization, and (ii) prophylaxis measures. Several strategies including chemicals are unable
to offer ultimate control [224]. Therefore, a prodigious opportunity prevails to utilize the applications of nanotechnology
for the sustainable management of plant disease epidemics.

Management of Bacterial Diseases

Bacteria are single-celled prokaryotic organisms exhibiting symbiotic, parasitic, and saprophytic natures. Various fac-
tors such as size, density, the shape of NPs, as well as bacterial motility and specificity (gram + ve and —ve) influence
the efficacy of nanoparticles [225]. According to previous research work, different concentrations of biosynthesised
AgNPs such as 10, 20, 30, and 40 ppm respectively were applied against Citrus reticulata suffering from canker disease
at different time intervals. The AgNPs at a concentration of 30 ppm were the most effective concentration to produce
the resistance in Citrus reticulata against canker disease [226]. The direct application of AgNPs eradicates the bacteria
responsible for Huanglongbing disease (Candidatus Liberibacter asiaticus) on sick trees and reduced 80-90% of bacte-
rial titre [227]. Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae (Xoo) were effectively treated with
biologically synthesized AgNPs from Bacillus cereus strain SZT1 and it was found to be effective weapon for BLB manage-
ment. The AgNPs significantly increased the plant biomass with a decreased cellular concentration of ROS and increased
concentration of antioxidant enzyme activity in the pot-treated plants [228]. Similarly, AuNPs synthesized from biogenic
materials exhibited eco-friendly and strong antibacterial properties [229]. Gram-positive and gram-negative bacteria were
effectively inhibited by the plant based gold nanoparticles. Furthermore, it has been also reported that biogenic ZnONPs
have a much stronger antibacterial impact than chemically generated nanoparticles [230, 231]. Plant extracts such as O.
basilicum T. pratenese, C. fistula and others have been used for green synthesis of ZnNPs [232]. The antibacterial effect of
ZnONPs synthesized by Olea europaea on Xoo strain GZ 0003 had an inhibition zone of 2.2 cm at 16.0 ug mL™' that was
significantly different from zinc oxide nanoparticles synthesized by Lycopersicon esculentum and Matricaria chamomilla.
The biofilm formation, swimming motility, bacterial cell membrane and bacterial growth of Xoo strain GZ 0003 were
significantly affected by ZnONPs [233]. Biosynthesized CuNPs provide significant results because of the antimicrobial
ability of these nanoparticles against the bacterial blight of rice [234] and it CuNPs also proved to be less harmful to the
environment [235]. The increasing concentrations (50, 100, and 200 ppm) of CuNPs suppressed the bacterial growth by
approximately 61%, 64% and 77% compared to the control [236]. Overall, the biologically synthesized nanoparticles
have great potential to counter bacterial disease in plants (Table 3).

Management of fungal diseases

There are approximately 1.5 million fungal species that are saprophytic and parasitic in nature responsible for~70 to
80% of crop losses equal to 200 billion Euros [254]. Myco-nanotechnology presents a greener alternative to chemically
generated nanoparticles (Table 4) because of their broad applicability in disease detection and control [255]. Green syn-
thesis of CuNPs utilizing Citron juice (Citrus medica) demonstrated repressing effects against the F. graminearum, Fusar-
ium culmorum, and F. oxysporum. The F. oxysporum was shown the most susceptible to CuNPs when compared with F.
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graminearum and F. oxysporum [256]. The clove (S. aromaticum) bud extract containing CuNPs demonstrated significant
antifungal ability against Aspergillus niger, Aspergillus flavus, and Penicillium spp [257]. Similarly, in vitro application of
CuNPs against phytopathogens such as Alternaria alternata, and Curvularia lunata, Alternaia alternata, Phoma destructiva,
Phytophthora cinnamon, Fusarium oxysporum, Fusarium solani, and Penecillium digitatum showed fungal growth inhibi-
tion at 20 and 60 ug mL™" [258]. An antifungal nanocomposite based on biosynthesized CUONPs was made that has the
potential to increase banana roots and seedling growth and also protects them from fungal diseases [259]. The biosyn-
thesis of AUNPs through fresh fruit extract of P. serrulate proved more effective against the Aspergillus flavus, Didymella
bryoniae, and Fusarium oxysporum compared to traditional fungicides [260]. The uses of Melia azedarach leaf extract for
the green synthesis of AgNPs against Verticillium dahliae in eggplants (Solanum melongena L.) both in vitro and in vivo
conditions significantly decreased the growth of Verticillium dahlia compared with controls [261]. Trichoderma spp could
produce metal NPs, particularly Ag which is an effective controlling agent against F. oxysporium f. sp. ciceri [262, 263].
In addition, AgNPs synthesized by Trichoderma spp (Trichoderma viride, Trichoderma hamatum, Trichoderma harzianum
and Trichoderma koningii) [264] have been used as an antifungal to control four Fusarium spp (F. solani, F. semitectum, F.
oxysporum, and F. roseum) which are considered serious soil-borne fungi. The study proved significant inhibitory effects
against all four pathogenic Fusarium species [265].

Management of viral diseases

Nanotechnologies based on biologically synthesize nanoscale materials offer great potential to use as a novel and eco-
friendly antiviral therapy for plant disease management (Table 5). For instance, a recent study used ginger and horsemint
extracts for biosynthesis of ZnNPs and reported an increase in viral suppression and inhibition [295]. Likewise, Zn and
ammonium synthesized NPs from spearmint and plant flavanol extracts showed strong antiviral activity against tomato
mosaic virus (TMV). Another work revealed antiviral activity against cucumber mosaic virus (CMV) by using seaweed
extract-mediated ZnNPs [296]. The outcome of this study suggested that ZnNPs could serve as a strong antiviral agent
due to their promising antiviral characteristics. A similar observation was also witnessed in the work of El-Shazly et al.
[297], who synthesized the AgNPs from salicylic acid (SA) and investigated the strong antiviral activity to counter potato
virus Y (PVY). It was found that biosynthesized NPs may enter the viral cell and start their antiviral mechanism via inter-
acting with viral genetic material (RNA or DNA) or by preventing the channels that are indispensable for viral reproduc-
tion. Different entomopathogenic bacteria were also used to synthesize AQNPs and exploited them for antiviral activity
on Tobacco mosaic virus (TMV), Barley yellow mosaic virus (BaYMV), Sunhemp rosette virus (SHRV) and Bean yellow
mosaic virus (BYMV) [298-301]. After a post-infection treatment of a certain incubation time as required for each virus,
it was observed that all plants showed typical symptoms of TMV, BaYMV, SHRV and BYMV infection. However, plants
treated with NPs exhibited negative symptoms of virus infection. Moreover, viral concentration and disease severity
were also observed very low in synthesized NPs treated plants (Table 5). Chitosan is another nontoxic biodegradable
compound consisting of different monocrotaline and pyrrolizidine alkaloids and has a strong antiviral activity against
virus replication and severity of tobacco mosaic virus (TMV) and alfalfa mosaic virus (AMV) [302, 303]. The biologically
(plant extract or pathogen based) synthesized NPs are capable of inhibiting plant virus replication and improving host
plant growth, however further studies are needed to identify different biological sources for NPs synthesis which are
nontoxic to human health.

Management of nematode diseases

Plant parasitic nematodes (PPNs) are holoparasites which pose a substantial yield loss (~ 173 billion $) annually [220].
Around 4100 species of PPNs have been recognized, and a majority of them are polyphagous [338]. Biologically (plant,
fungus, or bacteria) synthesized NPs exhibiting a strong nematicide activity [309]. For instance, AUNPs synthesized by
pomegranate peel and African locust bean extracts, effectively inhibit the multiplication and reduced the fertility of
Caenorhabditis elegans and Parasitaph elenchidae [255, 312, 339]. Likewise, biologically synthesized AgNPs by using
more than 14 plants showed significant mortality of J2 nematode, and antifilarial effects against Meloidogyne incognita,
M. javanica, H. contortus, C. elegans and Setaria cervi[313, 318, 320, 323-325, 327, 340-346]. The presence of flavonoids
and other phenolic compounds in plant extracts may help improve the efficiency of the NPs in inhibiting nematode
populations [347]. The strong effect of AQNPs might be due to the high concentration of secondary metabolites includ-
ing epi-shyobunol, aromdendrene, a- and t-cadinol, caryophyllene, a-humulone, B-isocomene, and a- and (3-selinene)
[328]. The aqueous leaf extract of Jacob'’s coat and strawberry waste extract and their antinematod activity restricts the
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movement of M. incognita but have the ability in preventing both, eggs and J2 stages of nematode population [239,
342]. Different polymers and compounds were investigated from various entomopathogenic fungi including Fusarium
oxysporum, Duddingtonia flagrans, sea lettuce (Ulva lactuca), and brown algae to synthesize AgNPs, SiNPs, ZeinNPs, AgB
and their nematicidal activity was successfully evaluated [333, 334, 348]. The findings verified the successful inhibition
and reduction of J2 population of nematodes. The growth of plants was also remarkable. It was witnessed from different
research findings that biologically synthesized NPs exhibited strong nematicidal activities (Table 5).

Challenges/risks of nano biotechnology

Nanobiotechnology could be an important driver for the imminent agri-tech revolutions, especially in the face of climate
change and increasing populations which make the existing agricultural practices unsustainable. Therefore, it is needful
to explore more about nanomaterials and their characteristics as they behave totally differently than in bulk form. There
are concerns that some materials could be toxic at the nanoscale because of their significant, still mysterious, hazardous
properties related to their unique physico-chemical characteristics. This can pose risks for a wide range of manufacturers,
formulators, handlers, applicators and also the consumers. Therefore, nanotechnology causes heterogeneous effects
[349]. Toxic effects on non-target organisms upon contact i.e., nanoparticles can come in direct contact with humans
and can cause unfavorable or undesirable toxic effects on humans. The nanoparticles can reach various human body
parts to exert ill effects and may disrupt cellular pathways, enzymatic actions and functions of different organs. The
disposal of nanomaterials might form a new class of non-biodegradable pollutants in the environment. Nanomaterials
can enhance environmental pollution by increasing water, soil and air contamination including health hazards. Stud-
ies on nanotoxicity in agriculture are limited but reveal potential risks to plants, beneficial microbes, animals, and even
humans. Health issues of workers during different activities (production, packaging, formulations, loading, unloading,
or transport) of nanomaterials. The hazardous effects of nanoparticles on non-target organisms include dermal absorp-
tion of nanoparticles, translocation to go deep into lungs and brain through inhalation and crossing the brain barriers
respectively, environmental concerns due to resilience and reactive potential of some nanomaterials, and lack of knowl-
edge to estimate environmental exposure can pose a number of risks to different stakeholders including human beings.

The possible risks associated with nanomaterials lead to the challenges of basic as well as applied nanobiotechnology
in different sectors including crop production. The major possible challenges [349] are:

—_

i) Mass production of nano-based products with standard quality at an economical cost.

(i) Availability of nanomaterials in ready to use product with proper particle size, surface chemistry, etc.

(iii) The establishment of a customized nanomaterial production system to fulfill local needs.
)
)
)

(iv) Environmental and human health safety and protection during the use and disposal of nanomaterials.

(v) The challenge to overcome the gap between basic and applied nano-based research.

(vi) The cost of production, intensive risks, and technical knowledge gaps are also considered as major concern/chal-
lenge in nanobiotechnology applications.

(vii) The problems faced by regulatory institutions and the lack of inter-institution coordination are the main chal-

lenges in the current situations of applied nanobiotechnology.

Therefore, governmental and workforce efforts based on sound scientific research, and technological advancements
should be focused to meet the described challenges and associated risks. This would provide the necessary informa-
tion to devise appropriate guidelines for comprehensive risk management and applications of nanobiotechnology for
sustainable crop production.

Conclusion/future perspectives

The biologically synthesized nanoparticles provide promising solutions against biotic (insect pests, plant diseases) and
abiotic (drought, salinity, thermal stresses, toxic metals, organic pollutants) stress factors. Nonetheless, nanobiotechnol-
ogy application in the agriculture sector is at its nascent stage to counter biotic and abiotic stress factors. Remarkable
work has been done regarding biosynthesized nano-based formulations but most of the work has been done in vitro con-
ditions while in vivo applications are lacking. Therefore, only a few green nanotechnology-based products are available
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in the market may be due to production cost, a major hindrance along with other environmental issues towards wider
marketing which could be overcome by promoting green nanoformulations. that the industrial scale manufacturing
of green nanomaterials, not yet been widely started, can help with affordable prices, and is safer due to little chemical
usage and low energy requirements in nanobiotechnology. The biologically synthesized nanoparticles also have some
limitations regarding their stability and degradability in the environment which need to be addressed through innovative
techniques of application and integration with other molecules. Therefore, it is important to understand plant-nanopar-
ticle interaction and optimization of size, concentration and compatibility of NPs with biological systems before practical
applications in the fields to reduce the degradability and negative impact on the natural environment and crops as well.
Conclusively, nanobiotechnology requires comprehensive basic and advanced research on fabrication, characteriza-
tion, standardization, biodegradability and also possible uptake and translocation of nanoparticles by plant systems for
sustainable crop production and protection from biotic and abiotic stress factors.
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