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Abstract

Non-pharmacological behavioral addictions, such as pathological gambling, videogaming, social 

networking, or internet use, are becoming major public health concerns. It is not yet clear how 

behavioral addictions could share many major neurobiological and behavioral characteristics 

with substance use disorders, despite the absence of direct pharmacological influences. A 

deeper understanding of the neurocognitive mechanisms of addictive behavior is needed, and 

computational modeling could be one promising approach to explain intricately entwined 

cognitive and neural dynamics. This review describes computational models of addiction based 

on reinforcement learning algorithms, Bayesian inference, and biophysical neural simulations. We 

discuss whether computational frameworks originally conceived to explain maladaptive behavior 

in substance use disorders can be effectively extended to non-substance-related behavioral 

addictions. Moreover, we introduce recent studies on behavioral addictions that exemplify the 

possibility of such extension and propose future directions.
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Introduction

Psychobiological and neurocomputational investigations in addictive disorders have largely 

focused on the effects of substances of abuse on neural dynamics, cognitive processes 

and behavior (cf. reviews: Everitt & Robbins, 2016; Koob & Volkow, 2016; Mollick & 

Kober, 2020; Redish, Jensen, & Johnson, 2008; Smith, Taylor, & Bilek, 2021). However, 

recent studies strongly suggest that non-pharmacological behavioral addictions share with 

substance use disorders key neurobiological (Antons, Brand, & Potenza, 2020; Potenza, 

2013), computational (Lindstrom et al., 2021; Ognibene, Fiore, & Gu, 2019; Redish, 

Jensen, Johnson, & Kurth-Nelson, 2007; Shimomura, Kato, & Morita, 2021), and behavioral 

features (Grant & Chamberlain, 2014; Grant, Potenza, Weinstein, & Gorelick, 2010). These 

include widely accepted behavioral addictions such as pathological gambling (el-Guebaly, 

Mudry, Zohar, Tavares, & Potenza, 2012), as well as others on which the consensus is 

still forming, such as videogaming (Petry & O'Brien, 2013; Yao, Potenza, & Zhang, 2017), 

social network or internet addiction (Jorgenson, Hsiao, & Yen, 2016; Veisani, Jalilian, 

& Mohamadian, 2020), compulsive buying (Granero et al., 2016; Grant et al., 2010), 

compulsive sexual behavior or pornography addiction (Griffiths, 2016; Love, Laier, Brand, 

Hatch, & Hajela, 2015) and finally, more controversial, disordered eating behaviors such as 

binge eating (Wiss, Avena, & Gold, 2020; Wiss, Avena, & Rada, 2018; Wiss, Criscitelli, 

Gold, & Avena, 2017).

In this review, we cast a wide net relying on an inclusive definition of addictions: 

a relapsing, chronic disorder characterized by an initial pursuit of a desired outcome 

that leads to the inflexible repetition of maladaptive behaviors, despite the harmful 

consequences (Everitt & Robbins, 2016; Koob & Volkow, 2016). This definition highlights 

two complementary elements of behavioral and cognitive control in addictions. First, 

it emphasizes a transition from reinforcing action-outcome associations to compulsive 

stimulus-responses, i.e., from goal-oriented to habitual behavior (Ersche et al., 2016; Everitt 

& Robbins, 2013; Volkow & Morales, 2015). In other words, an ‘urge’ to respond to a 

reinforced cue is triggered irrespective of an actual desire for the outcome (cf. 'need' vs 

'want', Berridge & Robinson, 2016) or any assessment about desired future environment 

or body states (cf. 'model-free control', Dolan & Dayan, 2013). Second, the chronic and 

relapsing elements of the definition assign an important role to an underperforming goal-

oriented behavior and forward planning (or 'model-based control', cf. Dolan & Dayan, 

2013), possibly due to an incomplete, incorrect, or otherwise impaired belief structure or 

internal model of both environment and body states. For instance, incorrect representations 

of future positive and negative interoceptive outcomes can lead to craving (Grimm, Hope, 

Wise, & Shaham, 2001; Gu & Filbey, 2017), often followed by the reinstatement of the 

addictive behavior (relapse), even after prolonged periods of abstinence.

Kato et al. Page 2

Addict Behav. Author manuscript; available in PMC 2023 May 26.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Here we consider computational models of addiction based on reinforcement learning 

algorithms, Bayesian inference and biophysical neural simulations, with a focus on ‘model-

free’ and ‘model-based’ aberrant control. We discuss whether computational models 

originally conceived to describe substance use disorders could be validly extended to 

behavioral addictions and we present computational models that have been specifically 

developed to describe maladaptive behaviors in behavioral addictions.

Reinforcement learning models

Reinforcement learning (RL, Sutton & Barto, 1998) is the dominant approach for modeling 

addictive behaviors (CPSYMAP, Kato, Kunisato, Katahira, Okimura, & Yamashita, 2020). 

In RL, a behavioral policy determines one’s actions at each state, resulting in state 

transitions that can yield positive or negative outcomes, so allowing an agent (e.g., a 

person or an animal) to pursue total reward maximization with temporal discounting. In 

model-based RL, agents use an internal model of the environment (i.e., representations of 

transitions and rewards) to estimate the values of behavioral policies and plan a course 

of action-state transitions. By contrast, in model-free RL, agents estimate immediately 

available state/action values, typically through updating them by using reward prediction 

errors (RPEs, Watkins & Dayan, 1992). As a result, model-based RL is computationally 

costly yet flexible to changes in the environment, once these are represented in the internal 

model, whereas model-free RL is computationally parsimonious yet characterized by low 

flexibility (Strehl, Li, & Littman, 2009). Within this perspective, addictions are described as 

a dysfunction of value-based behavior that affects both model-free and model-based control 

modalities (Redish et al., 2008).

Based on the understanding that substances of abuse interfere with dopamine signals, which 

have been suggested to encode RPEs in biological agents (Schultz, Dayan, & Montague, 

1997; see section: Neural models), a seminal model (Redish, 2004) proposed that drugs 

of abuse could act as fictitious RPEs. Due to their exogenous cause, these RPEs cannot 

be canceled out by reward predictions, so that the estimated value of drug indefinitely 

increases. Other models have proposed that enhanced RPEs may cause a decrement 

in the reward system sensitivity (Dezfouli et al., 2009), resistance to habituation (Di 

Chiara, 1999), or sensitization to reinforced cues (Bernheim & Rangel, 2004), and might 

accumulate through hierarchical decision-making processes (Keramati & Gutkin, 2013). 

Any of these dysfunctions would promote overwhelming biases towards the model-free 

control, driving the compulsive and inflexible selection of addictive behaviors, irrespective 

of the negative outcomes (e.g., detrimental effects for one’s health or social relations). These 

models assume that over-reliance on model-free control is caused by dopamine-related, 

drug-induced, alterations in healthy neural circuit dynamics (Koob & Volkow, 2016; Korpi 

et al., 2015; Luscher & Malenka, 2011). However, aberrant functioning in the neural regions 

involved in reward processing have been also described in association with compulsive use 

of pornography (Hilton, 2013), compulsive sexual behavior (Gola et al., 2017; Golec, Draps, 

Stark, Pluta, & Gola, 2021), compulsive buying behavior (Granero et al., 2016), eating 

disorders (Baik, 2013; G. K. W. Frank, Shott, Stoddard, Swindle, & Pryor, 2021; Wiss 

et al., 2018), problematic videogaming (Palaus, Marron, Viejo-Sobera, & Redolar-Ripoll, 

2017), and internet addiction (Love et al., 2015). These findings indicate that aberrant 
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RPE signals putatively responsible for the over-reliance on model-free, at the expenses of 

model-based, control can be elicited in the absence of pharmacological manipulation, e.g., 

due to predisposing factors (Antons et al., 2020), suggesting the computational models based 

on these mechanisms can be used to describe behavioral addictions, as well. For instance, 

a bias towards model-free control has been reported in binge eating disorder using a task 

designed to highlight model-free vs model-based arbitration (Voon et al., 2015). In another 

RL model tackling social network use, participants showed high sensitivity to social rewards 

and reliance on RPE updates to determine their post sharing policies (Lindstrom et al., 

2021). However, formal testing with computational modeling is still very sparce across 

behavioral addictions.

Interestingly, RL models focusing only on aberrant model-free control underperform when 

trying to account for those behaviors in addiction that are not cue-induced, e.g., because they 

are novel, complex, or context-dependent. To fill this gap, several models have proposed to 

include addiction-related dysfunctions in the model-based control component, so focusing 

on the generation, update, and recall of state-action-state transitions. Crucially, although 

dopamine is suggested to be also involved in model-based control (Deserno et al., 2015; 

Wunderlich, Smittenaar, & Dolan, 2012), aberrant RPEs are not directly considered in 

the computational models focusing on the dysfunctions of model-based control, rendering 

irrelevant the issue of whether behavioral addictions can develop in the absence of the 

drug-based manipulation of the brain reward system. Model-based control dysfunctions fall 

into a few categories: forward planning malfunctions (Redish & Johnson, 2007), incomplete 

representations in the internal model (Redish et al., 2007), or incomplete access to the 

internal model during recall (Simon & Daw, 2012) . In other words, this new class of RL 

models focuses on one’s internal representation of the environment, showing that incomplete 

or incorrect representations of state transitions (or mental forward explorations of these 

transitions) can drive addiction-like suboptimal goal selections, planning and ultimately 

behaviors. This approach, which changes the focus of investigation from the generation of a 

habitual response to an impaired ability to plan and select goals, was used in several models 

to account for behavioral addictions.

One study (Redish et al., 2007) simulated state misrepresentation in pathological gambling. 

While gambling, one can experience big wins and subsequent losses, developing a 

(mis)recognition that there is a state associated with wins and a different state associated 

with losses, thus misrepresenting the same state as two different states. Then, negative RPEs 

caused by losses would not attenuate a large positive value of the state associated with wins, 

and this misassignment of credit due to the discrepancy between the actual environment 

and its internal representation could lead to pathological gambling and relapse. Another 

proposal addresses the issue of forward planning malfunctions by focusing on the relation 

between environment complexity and cognitive resources available to the agent (Fiore, 

Ognibene, Adinoff, & Gu, 2018; Ognibene et al., 2019). In this case, a mismatch between 

resources available and those required results in repetitive suboptimal behavioral policies, 

reducing the sampling of contingencies in the environment and escalating the exploration 

cost across phenotypes characterized by different model-based and model-free control 

balance. Thus, addiction-like behaviors can emerge in agents with bounded model-based 

resources, also inducing an inadequate representation of the environment and irrespective of 
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RPE malfunctions. Another study (Shimomura et al., 2021) developed a model that relied 

on the "successor representation" (SR) of states (Dayan, 1993), a process suggested to be 

used by humans (Momennejad et al., 2017; Russek, Momennejad, Botvinick, Gershman, 

& Daw, 2017). In SR encoding for a given policy, states are similar if they give access to 

similar sets of states, e.g., two doors leading to the same reward room would have similar 

SR representations. Formally, a state is represented by a matrix of expected cumulative 

discounted future state occupancies under a certain policy. The matrix that describes 

the relationship among states enables partially model-based behavior through model-free 

RL-like RPE-based value update. Shimomura et al. (2021) proposed that: 1) through a 

long-standing reward-obtaining behavior, one potentially establishes “dimension-reduced 

SR”, and (2) the reduced SR can become rigid. Under such a rigid and dimension-reduced 

SR, a sustained large positive RPE is generated at the state with reward due to the 

inaccurate value approximations caused by inadequate state representations, irrespective 

of any pharmacological manipulation, potentially enhancing reward-obtaining behavior. 

Moreover, negative outcomes occurring after the addictive positive reward cannot induce 

changes in behaviors, under the rigid reduced SR.

All these models (Ognibene et al., 2019; Redish et al., 2007; Shimomura et al., 2021) 

are theoretically applicable across behavioral addictions, irrespective of the type of reward. 

Potentially related to the environment exploration and representation dysfunctions, studies 

have indicated that a key factor in the development of behavioral addictions such as 

problematic gambling, videogaming, shopping, or social network use can be found in the 

complex (i.e., difficult to compute and predict) organization of rewards experienced on a 

variable ratio reinforcement schedule (Cash, Rae, Steel, & Winkler, 2012; Greenberg, Zhai, 

Hoff, Krishnan-Sarin, & Potenza, 2022; Young & Abreu, 2011). Another study has shown 

that gamblers are characterized by reduction in directed (uncertainty-based) exploration and 

not in random exploration compared with healthy controls (Wiehler, Chakroun, & Peters, 

2021). Finally, a deficit in the exploration-exploitation balance has been also suggested 

for binge-eating disorder (Reiter, Heinze, Schlagenhauf, & Deserno, 2017). However, 

the mechanisms proposed in these models have not yet been directly tested in ad hoc 

experiments.

Bayesian and active inference models

Computational models based on Bayesian inference suggest that the brain computes 

probability distributions associating states, actions and events or outcomes (whether value-

based or not). These probability distributions, termed as prior beliefs or priors, are updated 

into posterior beliefs or posteriors, relying on a signal of precision in prediction error, i.e., 

the dopamine-encoded discrepancy between one’s priors and actual state-action-outcome 

observations (Friston et al., 2012). This is a relatively new approach in comparison with 

RL, with a comparably smaller literature in terms of models of addictive behaviors. Current 

analyses carried out in relation with substance use disorders have highlighted slower belief 

updating and related behavioral adaptation, as in perseverative habitual responses (Ide, Hu, 

Zhang, Yu, & Li, 2015) and reduced ability to use environment representations to guide 

choice selections, as in over-reliance on model-free control (Harle, Zhang, et al., 2015). 

Other studies have highlighted the relation between neural responses evoked by non-value 
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based prediction errors and likelihood to relapse (Harle, Stewart, et al., 2015; Harle, Yu, & 

Paulus, 2019), suggesting that the aberrant RPEs described within the RL framework might 

be part of a more generalized dysfunction across all prediction errors. One further study 

(Schwöbel, Markovic, Smolka, & Kiebel, 2021) has proposed that context inference may 

play a key role in substance use disoders, in a mechanism analogous to context-based RL 

(Redish et al., 2007). An advantage that Bayesian inference models have on RL algorithms 

is that they estimate the computational processes underlying belief updates, irrespective of 

rewards, therefore allowing their seamless use across addictive behaviors. One example is 

provided by a recent investigation into instrumental learning in bulimia nervosa (Berner 

et al., in press), in which a Bayesian observer model highlighted slow belief updates 

and associated behavioral rigidity, consistent with similar investigations in substance use 

disorders (Ide et al., 2015). Further investigations using Bayesian inference models are 

required to reveal whether these mechanisms can be found across behavioral addictions and 

highlight shared computational mechanisms with substance use disorders.

Among the theories based on Bayesian inference, active inference (Friston, 2013; Friston 

et al., 2015) has emerged to describe behaviors as the result of the minimization of 

dopamine-encoded prediction error (Friston et al., 2012). This theory has been successful 

in accounting for a wide range of physiological and behavioral phenomena, including 

substance use disorders (Smith, Taylor, et al., 2021). Similar to the described effects of over-

reinforcement of addiction-related cues, resulting in an over-reliance on model-free control, 

active inference explains compulsive behavior in addiction in terms of excessive prediction 

error signaling. This in turn, results in excessive belief confidence (precision), characterized 

as narrow distributions for the priors (Kinley, Amlung, & Becker, 2022). Such distributions 

make it more likely to repeat the choice associated with the addictive behaviors (Miller, 

Kiverstein, & Rietveld, 2020; Schwartenbeck et al., 2015) and at the same time prevent 

further updates, e.g., to include negative outcomes or interoceptive signals, contributing to 

craving (Gu, 2018; Gu & Filbey, 2017). Consistent with this hypothesis, increased belief 

updating in association with drug related positive values, and a reduced sensitivity to 

negative outcomes has been described across substance use disorders (Smith, Kirlic, Stewart, 

Touthang, Kuplicki, Khalsa, et al., 2021; Smith et al., 2020). This hypothesis has not been 

formally tested in behavioral addictions, yet. However, the already discussed ubiquitous 

presence of both reward processing dysfunctions and aberrant rewards in association with 

behavioral addictions (Baik, 2013; G. K. W. Frank et al., 2021; Gola et al., 2017; Golec 

et al., 2021; Granero et al., 2016; Hilton, 2013; Love et al., 2015; Palaus et al., 2017; 

Wiss et al., 2018) once again suggests that a process triggered by excessive prediction 

error signaling will be found also across compulsive behaviors associated with behavioral 

addictions.

Active inference also describes model-based dysfunctions as affecting the formation or 

recall of the structure of priors characterizing an internal model. Different models have 

investigated aberrant forward planning in terms of low confidence in future outcomes 

(Schwartenbeck et al., 2015), reduced precision in the state transition matrix (Fradkin, 

Adams, Parr, Roiser, & Huppert, 2020), reduced confidence in the generated internal model 

of the environment (Smith, Kirlic, Stewart, Touthang, Kuplicki, Khalsa, et al., 2021), or 

a reduced ability to generate deep policies (Mirza, Adams, Parr, & Friston, 2019). These 
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deficits in turn generate the belief that events projected in the future, when computable, 

are characterized by uncertainty and unpredictability, and this bias seems to remain stable 

in the long term (Smith, Kirlic, Stewart, Touthang, Kuplicki, McDermott, et al., 2021). 

Therefore, immediate, precise, and easy to compute (and to predict) rewards are, once 

again, preferred, in a process analogous to the dysfunctions associated with model-based 

control for the RL framework. We previously discussed that a common feature across several 

behavioral addictions is the presence of environments characterized by complex reward 

schedules that are difficult to compute (Cash et al., 2012; Greenberg et al., 2022; Young & 

Abreu, 2011). The active inference framework generalizes this principle beyond the need to 

focus on rewards, entailing that behavioral addictions can emerge in the intersection between 

model-based dysfunctions and any sufficiently complex environment (e.g., due to ramified 

or variable state-action-outcome contingencies). This would include behavioral addictions 

characterized by complex reward schedules (such as gambling or videogaming), as well as 

others characterized by difficult to compute and variable health related, economic, or social 

outcomes (e.g., social network use, eating disorders, compulsive buying, compulsive sexual 

behavior, or pornography addiction).

Neural models

Both RL and active inference perspectives rely on dopamine signals to trigger behavioral 

plasticity. The RL paradigm interprets dopamine burst firings as encoding RPEs, responsible 

for value-based updates (Montague, Dayan, & Sejnowski, 1996; Schultz et al., 1997; 

Watabe-Uchida, Eshel, & Uchida, 2017). Instead, the active inference approach postulates 

that dopamine signals represent precision in event distribution predictions and trigger the 

update of beliefs (Friston et al., 2016; Friston et al., 2015). Whether in terms of rewards 

or precision, the ubiquity and robustness of the neurocomputational mechanisms underlying 

dopamine signals (Fiore, Dolan, Strausfeld, & Hirth, 2015) has led to the early belief 

that dopamine release would be significantly affected only by extreme events, such as 

pharmacological manipulations. Indeed, substances of abuse interfere with dopaminergic 

signals, albeit neither homogenously nor linearly (Nutt, Lingford-Hughes, Erritzoe, & 

Stokes, 2015), triggering significant and long-lasting synaptic alterations across several 

brain regions (Korpi et al., 2015; Luscher & Malenka, 2011). However, as mentioned 

above, several investigations have now revealed that a similar, prediction error-based (cf. 

Shimomura et al., 2021), multifaceted role is played by dopamine in behavioral addictions 

(Antons et al., 2020; Baik, 2013), including pathological gambling (Clark, Boileau, & Zack, 

2019; Potenza, 2013) , videogaming (Liu et al., 2017; Palaus et al., 2017; Weinstein, 2010), 

compulsive sexual behavior (Kraus, Voon, & Potenza, 2016; Voon et al., 2014), compulsive 

use of pornography (Gola et al., 2017; Hilton, 2013), and binge eating (Bello & Hajnal, 

2010; Volkow et al., 2002; Wang et al., 2011). These investigations further suggest that the 

neural plasticity triggered by drug-induced dopamine signals is comparable with the same 

dopamine-mediated process triggered by the consumption of palatable food, variable reward 

schedules characterizing gambling or videogaming, use of pornography and so forth.

A key target of dopamine-mediated neuroplasticity are the cortico-striatal synapses (Everitt 

& Robbins, 2016; Koob & Volkow, 2016; Luscher, Robbins, & Everitt, 2020). In biophysical 

neural models simulating cortico-striatal circuit dynamics, mesolimbic dopamine bursts 
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trigger cortico-striatal long-term synaptic potentiation (Montague et al., 1996; Nelson & 

Kreitzer, 2014; Redgrave, Prescott, & Gurney, 1999). These alterations in turn bias future 

choice selections, favoring the repetition of the stimulus-response combination that led 

to dopamine signals, resulting in instrumental conditioning, thus providing the neural 

mechanisms underlying the described increased reliance on model-free control (Barto, 

1995; M. J. Frank, Seeberger, & O'Reilly R, 2004; Gurney, Prescott, & Redgrave, 2001a, 

2001b). Furthermore, the presence of multiple parallel cortico-striatal circuits characterized 

by different functions, but similar architectures (Haber, 2016; Jahanshahi, Obeso, Rothwell, 

& Obeso, 2015; Obeso, Rodriguez-Oroz, Stamelou, Bhatia, & Burn, 2014) led to the 

hypothesis that dopamine signals could affect the neural dynamics of multiple circuits at 

the same time (Fiore et al., 2018). In particular, the neural dynamics of dorsal (sensorimotor 

selections) and ventral (value processing and goal selections) cortico-striatal circuits are 

usually associated with model-free and model-based control (Dolan & Dayan, 2013; 

O'Doherty, Cockburn, & Pauli, 2017). Therefore, in the dorsal circuit dopamine signals 

are assumed to bias sensorimotor selections and model-free behavior. Conversely, in the 

prefrontal circuit, these signals are hypothesized to bias the selections of goals or future 

values, affecting forward planning and goal selection plasticity, or the model-based control 

system (Fiore et al., 2018).

In terms of neural circuit transient dynamics (Durstewitz, Huys, & Koppe, 2021) cortico-

striatal long-term potentiation triggered by mesolimbic dopamine signals results in increased 

circuit stability (Fiore et al., 2018). Neural models indicated that drug-induced mesocortical 

dopamine signals have a similar effect on prefrontal cortico-cortical connectivity and 

dynamics (Lapish, Balaguer-Ballester, Seamans, Phillips, & Durstewitz, 2015), further 

deteriorating state-transition flexibility, and strengthening attractor-like dynamics. Although 

the effects of mesocortical dopamine release in substance use disorders are multifaceted 

(Ceceli, Bradberry, & Goldstein, 2022), attractor-like dynamics in the prefrontal cortex are 

consistent with the reported rigid representation of future state-action values (cf. 'incentive 

salience', Ceceli et al., 2022) and interoceptive states (Gu et al., 2015; Naqvi & Bechara, 

2009), both key elements in the phenomena of craving and relapse. As discussed for the 

mesolimbic dopaminergic signals, these phenomena associated with mesocortical dopamine-

induced alterations are not restricted to pharmacological manipulations, since behavioral 

addictions are based on the same dopamine dynamics (Antons et al., 2020; Baik, 2013). 

Further studies into the specific neural mechanisms underlying behavioral addictions will be 

needed to confirm or disprove this hypothesized similarity.

Conclusions and future directions

The objective of computational psychiatry (Huys, Maia, & Frank, 2016; Montague, 

Dolan, Friston, & Dayan, 2012) is to develop neurocomputational measures of disease- 

and subject-specific neural and cognitive mechanisms underlying decision-making, with 

the ultimate goal to inform precision diagnosis and treatment. Models relying on RL 

algorithms, Bayesian inference and neural dynamics that focus on vulnerabilities related to 

model-free and model-based control can explain the emergence and rigidity of maladaptive 

choices, despite the adverse consequences. Although most of the models here discussed 

were developed to describe substance use disorders, they can explain hallmark features 
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of a wide range of behavioral addictions, with RL and active inference models more 

suitable to investigate (aberrant) structures of rewards and beliefs, respectively, and neural 

models dedicated to the investigation of (aberrant) attractor dynamics in neural activity. 

A key challenge in relation with behavioral addictions is to determine which of these 

compulsive behaviors qualifies as a legitimate form of addiction. We propose that the 

multifaceted neurocomputational representations of substance use disorders here described 

across modelling frameworks can be used as a benchmark to formally define a cluster 

of alterations that characterizes addictions. Those behavioral addictions found to meet 

these criteria -e.g., behavioral rigidity due to over-reliance on model-free control, impaired 

forward planning due to inadequate representations in model-based control, or increased 

stability in transient neural dynamics- should be included as a form of addiction. Some data 

suggested that behavioral and brain activity measures estimated relying on computational 

models can outperform traditional clinical measures in predicting clinical status, likelihood 

of relapse or vulnerability in substance use disorders (e.g., see: Harle, Stewart, et al., 2015; 

Yu et al., 2020). Thus, we expect the discussed computational models could provide a guide 

for behavioral addiction classification, in the near future.

Finally, it has been suggested (Heilig, Epstein, Nader, & Shaham, 2016; van den Ende et 

al., 2022) that these models have so far neglected the complex interplay of social (e.g., peer 

influence or isolation, societal stigma or tolerance etc.) and psychobiological factors. As 

many behavioral addictions are clearly affected by social interactions, it will be crucial for 

future investigations to include these social components (cf. Frolichs, Rosenblau, & Korn, 

2022), using a new generation of tasks and neuro-computational models.
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