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Simple Summary: In hematological malignancies, specifically in acute myeloid leukemia, aberrant
stem cells, also known as leukemic stem cells, may be responsible for the relapse of the disease. Since
several authors have related the quiescence and chemoresistance of leukemic stem cells with the
Wnt/β-catenin signaling pathway, new approaches to chemosensitize this population should be
studied. Therefore, in this review, we summarize the current information about the Wnt/β-catenin
signaling pathway in hematology.

Abstract: Wnt signaling is a highly conserved pathway in evolution which controls important
processes such as cell proliferation, differentiation and migration, both in the embryo and in the
adult. Dysregulation of this pathway can favor the development of different types of cancer, such as
acute myeloid leukemia and other hematological malignancies. Overactivation of this pathway may
promote the transformation of pre-leukemic stem cells into acute myeloid leukemia stem cells, as well
as the maintenance of their quiescent state, which confers them with self-renewal and chemoresistance
capacity, favoring relapse of the disease. Although this pathway participates in the regulation of
normal hematopoiesis, its requirements seem to be greater in the leukemic stem cell population. In
this review, we explore the possible therapeutic targeting of Wnt to eradicate the LSCs of AML.

Keywords: HSCs; LSCs; AML; quiescence; hematopoiesis; β-catenin; Hedgehog; Notch

Acute myeloid leukemia (AML) is a group of hematopoietic neoplasms characterized
by an increase in myeloid blasts. However, AML exhibits a high degree of molecular
heterogeneity, as recently recognized in the new diagnostic classifications [1,2]. AML shows
a hierarchical organization with leukemic stem cells (LSCs) at its apex. LSCs are thought to
be resistant to conventional chemotherapy and be the origin of the high rate of relapses
observed in AML. In this review, we will explore the role of Wnt signaling on hematopoietic
neoplasms with special emphasis on AML and LSC.

1. Wnt Signaling Pathway

In 1980, mutations in the wingless (wg) gene of Drosophila melanogaster were found
to produce aberrant embryonic development [3]. Later, in 1982, the proto-oncogene Int-
1 (Wnt1) was identified in mice as an homologue of wg [4]. This was the beginning
of multiple studies that revealed the existence of an evolutionarily conserved signaling
pathway involved in development, organogenesis and oncogenesis [5–9].

Wnt proteins act as morphogens, inducing cell differentiation processes during embry-
onic development [10]. In humans, there are 19 Wnt-related genes, as far as is known [11].
Wnt ligands can activate three signaling cascades: one canonical (Wnt/β-catenin) and the
other two non-canonical (Planar Cell Polarity [PCP] and Wnt/Ca2+). The process of Wnt
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maturation and secretion begins in the endoplasmic reticulum (ER) [12,13]. Modified Wnt
ligands interact with the transmembrane protein WLS/EVI in the Golgi apparatus to be
translocated to the plasma membrane [14,15]. Wnt proteins can then leave the cell directly
and solubilize in the extracellular medium [16], in exosomes [10] or lipoproteins [17].

In the canonical Wnt/β-catenin pathway, the absence of Wnt ligands subserves phos-
phorylation of the effector protein β-catenin by the destruction complex. This complex
is formed by APC, Axin and two Ser/Thr kinases (CK1α and GSK3β). Phosphorylated
β-catenin will be then ubiquitinated by β-TrCP and degraded in the proteosome. In
the absence of nuclear β-catenin, TCF/LEF and TLE/Groucho complexes recruit histone
deacetylases (HDACs) that repress expression of target genes. Binding of secreted Wnt
proteins (e.g., WNT1, WNT3A) to the Frizzled receptor (FZD) and receptor-related protein
5/6 (LRP5/6), which act as coreceptors, promotes phosphorylation of LRP5/6 by CK1α
and GSK3β kinases. This phenomenon induces the recruitment and activation of Dishev-
elled protein (DVL), which binds to FZD and polymerizes. DVL polymers inactivate the
destruction complex, resulting in the stabilization and accumulation of β-catenin in the
cytosol. Finally, β-catenin translocates to the nucleus, where it will form a complex with
TCF/LEF proteins to recruit transcriptional co-activators (e.g., CBP/p300, BRG1, BCL9 and
Pygo) and activate the expression of target genes [18,19] (Figure 1).

Most of the target genes of the canonical Wnt pathway are cell-type specific and can
promote cell proliferation, but also control postmitotic cell fate and differentiation [20].
Some of them are involved in the maintenance of cancer stem cells (CSCs), such as MYC
(Myc proto-oncogene protein), CCND1 (CyclinD1) and ABCB1 (ABC multidrug trans-
porter) [21].

As mentioned, some non-canonical Wnt ligands (e.g., WNT5A, WNT11) can acti-
vate non-canonical β-catenin-independent pathways, such as Wnt/PCP and Wnt/Ca2+

(Figure 1). These non-canonical pathways mainly regulate cell migration and adhesion
processes; their overactivation can promote epithelial–mesenchymal transition and survival
of CSCs [22,23].

The Wnt/PCP pathway is usually initiated when non-canonical Wnt ligands bind
to FZD and associated co-receptors, such as receptor tyrosine kinase-like ROR1/2. This
binding recruits cytosolic adaptor proteins, such as DVL, which activates small GTPases of
the Rho family (e.g., RHOA and RAC). These GTPases activate ROCK and JNK kinases,
resulting in cytoskeleton modifications and/or transcriptional responses through c-Jun
protein (JUN) activation by JNK and ATF2 recruitment, among others [24] (Figure 1).

The Wnt/Ca2+ pathway is activated by the binding of non-canonical Wnt ligands
to FZD receptors and co-receptors such as ROR1/2, which induces the recruitment of
DVL and the activation of phospholipase C (PLC) by G proteins. PLC transforms phos-
phatidylinositol 4,5-bisphosphate into diacylglycerol (DAG) and inositol triphosphate (IP3).
IP3 promotes the outflow of Ca2+ from the ER to the cytosol, whose increase favors the
activation of protein kinase C (PKC), calcium/calmodulin-dependent protein kinase type
II (CAMKII) and calcineurin phosphatase. The activation of these proteins derives in
Ca2+-dependent cytoskeleton responses through the small GTPase Cdc42 and/or changes
in gene transcription through NFAT, NFκβ and CREB, among others [18,19,25] (Figure 1).
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Figure 1. Canonical Wnt pathway. (A) In the canonical Wnt/β-catenin pathway, binding of the Wnt 
ligand to the FZD receptor and co-receptor LRP5/6 promotes phosphorylation of LRP5/6 by CKIα 
and GSK3β kinases and polymerization of the DVL protein. Therefore, the destroyer complex is 
inactivated (Axin, APC, CKIα and GSK3β) and the β-catenin protein is accumulated in the cytosol. 
The β-catenin translocates to the nucleus and interacts with the TCF/LEF complex, promoting the 
recruitment of transcriptional co-activators (CBP/p300, BRG1, BCL9 and Pygo), inducing the expres-
sion of target genes. (B) In the absence of the Wnt ligand, the destructor complex phosphorylates 
and induces ubiquitination of β-catenin by βTrCP for its degradation in the proteosome. The 

Figure 1. Canonical Wnt pathway. (A) In the canonical Wnt/β-catenin pathway, binding of the Wnt
ligand to the FZD receptor and co-receptor LRP5/6 promotes phosphorylation of LRP5/6 by CKIα and
GSK3β kinases and polymerization of the DVL protein. Therefore, the destroyer complex is inactivated
(Axin, APC, CKIα and GSK3β) and the β-catenin protein is accumulated in the cytosol. The β-catenin
translocates to the nucleus and interacts with the TCF/LEF complex, promoting the recruitment of
transcriptional co-activators (CBP/p300, BRG1, BCL9 and Pygo), inducing the expression of target genes.
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(B) In the absence of the Wnt ligand, the destructor complex phosphorylates and induces ubiquitina-
tion of β-catenin by βTrCP for its degradation in the proteosome. The absence of nuclear β-catenin
favors the recruitment of HDACs by the TCF/LEF and Groucho/TLE repressor complexes, thus
inhibiting the expression of target genes. Non-canonical Wnt pathway. Non-canonical Wnt ligands
can activate other non-canonical β-catenin-independent signaling pathways, such as the Wnt/PCP
and Wnt/Ca2+. In the Wnt/Ca2+ pathway, the Wnt ligand binds to FZD and ROR1/2 and promotes
PLC activation via G proteins in a DVL-dependent way. PLC catalyzes the formation of IP3 and
DAG, which results in an increase of Ca2+ in the cytosol and activation of kinases such as PKC,
Calcineurin and CAMKII. These kinases can modify the cytoskeleton through the small GTPase
CDC42 and/or regulate transcription of target genes through NFAT, NFκβ and CREB, among others.
In the Wnt/PCP pathway, binding of the Wnt ligand to the FZD receptor and co-receptors, such as
ROR1/2, favors the activation of small GTPases of the Rho family (RHOA, RAC) by DVL. RHOA
and RAC activate JNK kinases and ROCK kinases, which are involved in the reorganization of the
cytoskeleton and/or activation of gene expression via Jun/ATF2, among others. Dashed arrows
indicate an indirect activation.

2. Wnt Signaling in Normal Hematopoiesis

Hematopoietic stem cells (HSCs) are multipotent cells with self-renewal capacity,
precursors of blood cells of the myeloid and lymphoid lines. HSCs reside in the adult
bone marrow, where they are usually in a quiescent state in a specialized stroma that
regulates their migration and differentiation [26]. However, in the fetus, the liver is the
main hematopoietic organ, where HSCs have a high proliferation capacity [27].

Initially, Wnt ligands were described as growth factors (mainly WNT5A) that induced
HSC proliferation in in vitro assays [28,29]. Later, other studies suggested the importance
of the canonical Wnt pathway in the maintenance of HSCs, since its inhibition with Dkk1
disrupted the quiescence state of HSCs or the deficiency of Wnt3a disrupted the self-
renewal capacity of the same population [30,31]. The same results were obtained when
Wnt signaling was inhibited by overexpressing Wnt-inhibitory factor 1 (Wif1) in osteoblasts;
a study in which it was also observed that the deregulation of two other pathways, such as
Hedgehog and Notch, was involved in the maintenance of HSCs [32]. This fact highlights
the crosstalk established between these three pathways. Another study showed that Wnt
activation by overexpression of WNT3A in stromal cells induced B cell dedifferentiation,
whereas the non-canonical WNT5A ligand produced the opposite effect [33], suggesting the
possible reversibility of early differentiation stages in lymphopoiesis and the involvement
of the Wnt pathway in this process.

However, several Wnt gain-of-function studies showed contradictory results. Some of
them proposed that activation of the canonical Wnt pathway with WNT3A or by retroviral
expression of a constitutively active form of β-catenin favored self-renewal of HSCs and
their repopulation ability in vivo from irradiated mouse tissues [34,35]. On the other hand,
other studies revealed that constitutional activation of the canonical Wnt pathway with
a nondegradable form of β-catenin reduced the self-renewal capacity of HSCs and led to
failures in hematopoiesis [36,37].

The diversity of the exposed results suggested a possible dose-dependent regulation,
which was supported by a study performed with different strains of Apc mutant mice. The
results revealed that elevated levels of Wnt reduced the repopulating capacity of HSCs,
whereas a mild increase in the activity of this pathway favored the maintenance of their
stem cell functions [38]. Later, the same group associated the depletion of HSCs at high
levels of Wnt with increased differentiation and reduced proliferation of these cells [39].

Although all these studies imply the importance of the Wnt pathway in the regulation
of normal hematopoiesis, the requirements appear to be higher in fetal HSCs than in normal
adult bone marrow HSCs [40]. This could indicate the potential of the Wnt pathway as
a therapeutic target for the treatment of AML and other types of leukemia in which it is
deregulated.



Biology 2023, 12, 683 5 of 12

3. The Role of Wnt/β-Catenin Signaling in AML and Other Hematologic Neoplasia

The Wnt signaling pathway regulates the processes of cell proliferation, differentiation
and migration. Therefore, any mutation in the elements of this pathway can favor the
development of different types of cancer, such as AML and other hematological malignan-
cies [41,42]. Furthermore, in the previous section, we have reviewed the importance of Wnt
on HSCs; here, we will also address their malignant counterpart, leukemic stem cells. LSCs
have the same features as a stem cell: self-renewal and differentiation. LSCs seem to be
responsible for the relapse of the disease; therefore, it is important to understand the role of
β-catenin in this population.

It has been shown that in B-cells of Chronic Lymphocytic Leukemia (CLL), mRNA
related to Wnt elements is overexpressed, such as WNT3, WNT5B, WNT6, WNT10A, WNT14,
WNT16 or FZD3 [43]. Furthermore, 14% of CLL patients have mutations in the Wnt pathway
according to Wang et al. Indeed, this study with human samples also showed that the
survival of B-cells of CLL with mutations in elements of the Wnt pathway depended on the
activation of this pathway [44]. If we study the B-cells of Acute Lymphoblastic Leukemias
(ALL), the accumulation of β-catenin leads to downregulation of C-MYC and upregulation
of C-JUN, leading to apoptotic induction and cell cycle arrest [45].

The case in T-cell lymphoblastic leukemias is similar. Two studies carried out in mouse
models suggested that activation of β-catenin, together with inactivation of Pten and, in
this case, overexpression of C-Myc, favored expansion of LSCs in NOTCH1-independent
T-ALL [46,47]. Meanwhile, several authors highlight the interaction among Wnt signaling
and other signaling pathways, such as FOXO3 [48].

In myeloid leukemias, the Wnt signaling pathway also plays an important role. For
example, it has been described that the deletion of β-catenin delays the recurrence of
chronic myeloid leukemia (CML) after imatinib discontinuation [49]. Nevertheless, β-
catenin is not the only important protein of Wnt signaling; targeting DVL protein increases
the susceptibility of CML cell lines to imatinib. Nonetheless, the effects of silencing DVL
are complex, since while reducing the signaling of Wnt/β-catenin and Wnt/PCP signaling,
it increases the signaling of Wnt/Ca2+ [50]. Finally, it has been proven that β-catenin can
be stimulated by BCR-ABL1 during the blast phase of CML. This result shows that the
inhibition of β-catenin in combination with inhibitors of the tyrosine kinase may delay the
blastic transformation of CML [51].

On the other hand, several studies reported the upregulation of Wnt elements in
primary samples of AML patients; some examples are the gene overexpression of ligands
(such as WNT1, WNT2B and WNT10B) and transcription factors (such as LEF-1), or the
protein overexpression of receptors (such as FZD4) [52–55]. These overexpressions were
associated with increased resistance to apoptosis [52,53] (Figure 2A). The results of one
of these studies showed that the expression of a long isoform of LEF-1 predominated in
AML cells, whereas normal HSCs expressed a short variant of LEF-1 that lacked a β-catenin
binding site [55]. Gsk3β regulates Wnt; its deletion increases Wnt signaling in HSCs and
favors the development of aggressive AML in mice; therefore, it appears to be involved
in the development of hematological malignancies [56] (Figure 2B). The transformation of
pre-LSCs into AML LSCs has also been related to overactivation of the Wnt pathway [57,58].

A recent study revealed higher expression of β-catenin protein levels in AML-relapsed
samples than in newly diagnosed patients. Furthermore, β-catenin levels were higher in
bone marrow samples than in peripheral blood samples, suggesting that the bone marrow
microenvironment might induce β-catenin expression in AML cells. They also determined
that inhibition of the Wnt/β-catenin pathway with PRI-724 in vitro induced apoptosis
in AML cells and suppressed their growth by retaining them in the G1 phase of the cell
cycle [59]. Another study showed that Foxm1 inhibited the proliferation of mouse and
human KMT2A-rearranged AML LSCs, favoring their quiescent state and self-renewal
through activation of the Wnt/β-catenin pathway, among other molecular pathways. Foxm1
loss favored the exit of LSCs from the G0 phase and entry into the S phase of the cell cycle,
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induction of apoptosis and sensitivity to chemotherapy, thus delaying relapse in murine
models [60] (Figure 2C).
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Figure 2. Studies related to the role of the Wnt/β-catenin signaling pathway in Acute Myeloid
Leukemia. (A) In AML, overexpression of ligands, receptors or transcription factors of the Wnt path-
way, such as WNT1, WNT2B, WNT10B, FZD4 and LEF-1, entails an antiapoptotic effect. (B) Silencing
by promoter hypermethylation of Wnt regulatory genes, such as SFRPs, DKK1, RUNX3, SOX17 or
WIF1, can activate the pathway. Deletion of Gsk3β also activates the Wnt pathway. These actions
favor aggressive development of AML. (C) The inhibition of Foxm1 in KMT2A-rearranged AML LSCs
favors the quiescent state due to the activation of the Wnt signaling pathway.

Finally, several studies have identified Wnt pathway regulatory genes whose silencing
by promoter hypermethylation leads to Wnt activation and may contribute to AML devel-
opment; among them are the antagonists of this pathway, such as SFRPs, DKK1, RUNX3,
SOX17 and WIF1 [61–63]. Treatment with demethylating agents favors the expression of
these genes and, therefore, the inhibition of Wnt signaling [62] (Figure 2B). Other epige-
netic mechanisms involved in tumor suppression are non-coding RNAs; the expression
of MiR-212-5p reduces cell viability and inhibits proliferation in Kasumi-1 cells targeting
FZD5 [64]; while MiR-150, which is related to FZD4, is downregulated in AML, ALL and
CML, and its expression levels are normalized after complete remission [65].

The value of β-catenin in the LSCs have been studied by several authors in different
hematologic neoplasia. Harrison et al. performed experiments on AML to show that
the transformation of a progenitor cell to a malignant clone requires the reactivation of
β-catenin. Certainly, the study demonstrates that the inhibition of β-catenin results in a
reduction of the proliferation and self-renewal of AML cells. In this work, the authors
employed NUC-7738, which may reduce this signaling pathway by regulating GSK3β [57].
Nevertheless, Zhao et al. warn that targeting β-catenin could have unexpected effects
beyond the purpose of eradicating AML LSCs, since genetic deletion of β-catenin did not
affect the ability of LSCs to propagate AML in xenotransplants [66].

Taken together, these studies suggest that overactivation of the Wnt/β-catenin path-
way may favor the development and relapses of different hematological malignancies
through the maintenance of LSCs. However, further studies are needed to gain a more
precise understanding of the molecular mechanisms involved in these processes and to
discover new therapeutic targets.

4. Wnt/β-Catenin Signaling Pathway as a Therapeutic Target in AML

Several studies have revealed the deregulation of the Wnt pathway in different neo-
plasms. This is why numerous drugs have been developed to target the elements of this
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cascade: inhibitors of LRP5/6, DVL and GSK3, antagonists and monoclonal antibodies
against FZD receptors or antagonists of the β-catenin/transcription factors interaction (e.g.,
CBP, TCF, LEF1 and CREB), among others [67,68]. The evaluation of most of these drugs is
in the preclinical phase. Some clinical trials have also been initiated, mainly in solid tumors,
reaching phases I or II. Nevertheless, these trials lack available results or have reported
important adverse effects [68].

Regarding clinical trials in patients with AML (Table 1), most of them employed
inhibitors (CWP291, PRI-724 and Celecoxib) or antagonists (Sulindac) of the Wnt/β-catenin
pathway to delay tumor progression and prevent relapses, as overactivation of this pathway
has been linked to AML progression and chemoresistance of LSCs [57,58,60]. However, the
only clinical trial that has reported results (NCT01214603) in refractory or untreated AML
patients employed a GSK-3 inhibitor (LY2090314), which produces an increase in β-catenin
levels; this agent was well tolerated by patients, but neither complete nor partial tumor
remissions were observed [69].

Table 1. Clinical trials on Wnt/β-catenin-targeted agents in AML. Source: https://www.clinicaltrials.
gov/ (accessed on 27 January 2023).

Drug Mechanism of Action Clinical Trial Phase Status

CWP291 β-catenin degradation NCT01398462 I Completed
PRI-724 β-catenin/CBP antagonist NCT01606579 I/II Completed

Sulindac Blocks PDZ domain of Dvl,
COX inhibitor NCT01843179 II Withdrawn

Celecoxib COX-2 inhibitor NCT03878524 I Recruiting
LY2090314 GSK-3 inhibitor NCT01214603 II Completed

Although all these drugs have a similar goal, they have different targets. CWP291
induces endoplasmic reticulum stress, which activates caspases. These proteins have been
revealed to target β-catenin for degradation through a directed cleavage [70]. PRI-724
is another drug related to the inhibition of β-catenin. In this case, PRI-724 disrupts the
interaction between β-catenin and CBP [71]. It seems that this drug has low off-targets
proteins and it is well tolerated in the clinic [72]; therefore, it could be a good approach to
inhibit the Wnt/β-catenin pathway. Finally, Ai et al. studied different compounds, some of
them with the possibility not only to inhibit Wnt/β-catenin but providing an anti-leukemia
effect at the same time in the CML K562 cell line [73].

Celecoxib, a COX-2 inhibitor, is a non-steroidal anti-inflammatory drug; it has been
shown that these kinds of treatments decrease the transcriptional activity of β-catenin [74].
Indeed, COX-2 and its enzymatic product PGE2 have been reported to induce β-catenin
expression and an increase in AML cells chemoresistance [75]. Nowadays, one of the
recently initiated clinical trials (NCT03878524), which includes Celecoxib, is an umbrella
trial that will evaluate the response of patients with various hematological malignancies to
different drugs. Another treatment of the family of non-steroidal anti-inflammatory drugs
is Sulindac. This approach seems to decrease the non-phosphorylated β-catenin, which
is responsible for translocation to the nucleus and starting the transcription of the target
genes [76,77].

In this review, it has been explained that Wnt is dispensable for adult hematopoiesis [78].
Henceforth, all these drugs have the potential to achieve different methods of inhibiting
the Wnt/β-catenin pathway.

5. Discussion

Since 1980, the study of the elements involved in Wnt signaling has revealed the fun-
damental role of this pathway in cell proliferation, differentiation and migration processes
during embryogenesis, as well as tissue renewal in adults [20]. Alterations in some of
these highly conserved molecules have been linked to the development and progression of
various types of cancer, including hematological malignancies [18,67].

https://www.clinicaltrials.gov/
https://www.clinicaltrials.gov/


Biology 2023, 12, 683 8 of 12

Although the canonical Wnt pathway is involved in the maintenance of normal HSCs,
its function appears to be more relevant to and dependent on bone marrow niche signals in
LSCs, suggesting the possibility of targeting Wnt without disrupting normal hematopoiesis
in patients [40,79]. Several studies have been carried out to evaluate the involvement of this
pathway in hematopoiesis. Loss-of-function studies revealed that inhibition of the canonical
Wnt pathway disrupts the quiescent state of HSCs, reducing their capacity for self-renewal
and tissue regeneration [30–32]. However, gain-of-function studies showed non-concordant
results [34–37], suggesting that the effects of the Wnt pathway in hematopoiesis are tightly
regulated in a dose-dependent manner [38]. Even so, more studies are needed to precisely
understand the mechanisms by which the canonical Wnt pathway regulates these processes.

Overexpression of β-catenin and other elements of the canonical Wnt pathway have
been observed in samples from patients with AML and other types of hematological malig-
nancies, suggesting that overactivation of this pathway plays a role in the physiopathology
of these cancers [43,44,46,47,52,53]. In addition, the bone marrow stroma appears to play an
important role in this process; the Wnt pathway is activated in a paracrine manner and the
expression of β-catenin is higher in bone marrow AML cells than in peripheral blood. This
fact suggests that its activation might come due to signals from the microenvironment [59].

Likewise, several studies reveal a close relationship between the canonical Wnt path-
way and LSCs, since its overactivation seems to be involved in the transformation of
pre-LSCs into AML LSCs [57,58], as well as in the maintenance of their quiescent state,
which confers them with chemoresistance and self-renewal capacity [60,75]. These chemore-
sistant LSCs would eventually lead to relapse of AML. Therefore, Wnt targeting seems
a feasible option to eradicate LSC and reduce the high rate of AML relapses. Neverthe-
less, we should not forget that crosstalk could occur with other pathways related to LSC
maintenance and regulation, such as Hedgehog and Notch, which are also essential in
embryogenesis and tissue renewal [80,81].

6. Conclusions and Future Directions

The role of the Wnt pathway in embryogenesis and adult tissue renewal has been
extensively studied; the activation of Wnt in adult normal hematopoiesis seems to be dose-
dependent. Nevertheless, Wnt signaling pathways may be important in hematological
malignancies, since the overexpression of β-catenin is observed in AML samples and its
overactivation might regulate the quiescence state of LSC. Therefore, delving into the
effects of this pathway, along with others such as Hedgehog and Notch, could open a new
therapeutic window to chemosensitize LSCs and prevent patient relapse in AML.

In order to avoid relapses in AML, it is important to eradicate the LSCs. One of the
current approaches is to target this population; nevertheless, due to the similarities between
LSCs and HSCs, it is hard to target the malignant cells correctly. In this review, we have
summarized the role of Wnt in both populations to conclude that an overexpression in this
pathway is common in AML. Furthermore, we have seen that the activation of Wnt entails
an increase in the quiescent state. Both findings seem to suggest that the inhibition of Wnt
could be a good therapeutic target to eradicate the LSCs of AML. Furthermore, it may be
that the Wnt pathway is not necessary for adult hematopoiesis.

It is likely that the best way to inhibit the Wnt pathway is to target β-catenin. This
protein translocates to the nucleus and finally activates the expression of target genes.
We believe that more experiments focusing on the inhibition of the correct Wnt signaling
pathway, which could decrease the quiescent state of the LSC population to eradicate them
with conventional chemotherapy, are required. Following this strategy, we could reduce
AML relapses and improve the reduced overall survival of patients with this disease.
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