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Simple Summary: This study investigates the spatial analysis of morphological and chemical changes
and how reflectance hyperspectroscopy and fluorescence kinetics spectroscopy can enhance our
understanding of biophysical, biochemical, and photochemical changes in Codiaeum variegatum (L.) A.
Juss, a plant with variegated leaves and different pigments. The analysis included pigment profiling,
hyperspectral curves, chlorophyll a fluorescence induction kinetics, and multivariate analyses asso-
ciated with 23 JIP test parameters and 34 vegetation indexes. The results show that the analysis of
chemical composition combined with vegetation indexes, such as PRI, PSSRc, ARI1, RARS, and SIPI,
are highly correlated with pigment concentration and photochemical components of photosystems in
leaves. Furthermore, decreased damage to energy transfer in the electron transport chain is associated
with the accumulation of carotenoids, anthocyanins, flavonoids, and phenolic compounds linked
with specific wavelengths. Our results reveal the potential of optical spectroscopy techniques and
multivariate data analyses to enhance the management and monitoring of the leaf color status of
plants. This is the first study and report on the monitoring of nonuniform leaves, particularly in the
alteration of photosystem changes in variegated leaves together with high-throughput analyses.

Abstract: The adjustments that occur during photosynthesis are correlated with morphological,
biochemical, and photochemical changes during leaf development. Therefore, monitoring leaves,
especially when pigment accumulation occurs, is crucial for monitoring organelles, cells, tissue, and
whole-plant levels. However, accurately measuring these changes can be challenging. Thus, this study
tests three hypotheses, whereby reflectance hyperspectroscopy and chlorophyll a fluorescence kinetics
analyses can improve our understanding of the photosynthetic process in Codiaeum variegatum (L.) A.
Juss, a plant with variegated leaves and different pigments. The analyses include morphological and
pigment profiling, hyperspectral data, chlorophyll a fluorescence curves, and multivariate analyses
using 23 JIP test parameters and 34 different vegetation indexes. The results show that photochemical
reflectance index (PRI) is a useful vegetation index (VI) for monitoring biochemical and photochemical
changes in leaves, as it strongly correlates with chlorophyll and nonphotochemical dissipation (Kn)
parameters in chloroplasts. In addition, some vegetation indexes, such as the pigment-specific simple
ratio (PSSRc), anthocyanin reflectance index (ARI1), ratio analysis of reflectance spectra (RARS), and
structurally insensitive pigment index (SIPI), are highly correlated with morphological parameters
and pigment levels, while PRI, moisture stress index (MSI), normalized difference photosynthetic
(PVR), fluorescence ratio (FR), and normalized difference vegetation index (NDVI) are associated
with photochemical components of photosynthesis. Combined with the JIP test analysis, our results
showed that decreased damage to energy transfer in the electron transport chain is correlated with
the accumulation of carotenoids, anthocyanins, flavonoids, and phenolic compounds in the leaves.
Phenomenological energy flux modelling shows the highest changes in the photosynthetic apparatus
based on PRI and SIPI when analyzed with Pearson’s correlation, the hyperspectral vegetation index
(HVI) algorithm, and the partial least squares (PLS) to select the most responsive wavelengths. These
findings are significant for monitoring nonuniform leaves, particularly when leaves display high
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variation in pigment profiling in variegated and colorful leaves. This is the first study on the rapid
and precise detection of morphological, biochemical, and photochemical changes combined with
vegetation indexes for different optical spectroscopy techniques.

Keywords: Codiaeum variegatum; JIP test; modeling pigment; nonphotochemical quenching; optical
spectroscopy; phenomenological modeling; photosynthesis; variegate leaves; vegetation indexes

1. Introduction

Plants are constantly exposed to varying light conditions, which can lead to limitations
in biophysical, biochemical and photochemical processes of photosynthesis. This results in
natural physiological adjustments in both the photosystems and the plant as a whole during
leaf accumulation of pigments and the advancement of variegated leaf development [1,2].
These changes in photosystems can be measured directly or indirectly from chloroplasts
to leaves to whole-plant levels, helping to identify injuries and stresses, understand spec-
tral modifications in leaf optical properties, and comprehend pigment biosynthesis and
degradation, as well as changes in the electron transport chain and membrane energy
flow [3–6]. Current research focuses on structural, biochemical, and spectral changes in
different anatomical and morphological leaves [2,7], which are important for understanding
biological communities, agricultural productivity, and monitoring ecosystems.

The Euphorbiaceae family is abundant and encompasses 6000 species and 300 dif-
ferent plant types. The Codiaeum genus, part of this family, includes 46 species found in
tropical and subtropical regions worldwide. Codiaeum variegatum (L.) A. Juss is known for
its naturally variegated leaves resulting from a combination of genetic and environmental
factors. In this way, variegation in leaves is characterized by color variations, particularly
in normally green tissues, leading to changes in photosynthetic parameters, chlorophyll flu-
orescence, and reflectance factors [8,9]. C. variegatum (L.) A. Juss has normal chloroplasts in
its green sections, but exhibits significant changes in chloroplasts and thylakoid membranes
in its yellow sections [10]. Furthermore, orange and red–purple sections have chlorophylls
in chloroplasts influenced by interactions among phenolic compounds, anthocyanins and
flavonoids [5,11].

Leaves are essential for photosynthesis and directly interact with incoming light. They
contain molecules that promote energy absorption and reflection, and can modify the
leaf’s optical properties and alter the pigment content and concentration [10]. In this way,
different bands of the electromagnetic spectrum have distinct biochemical, biophysical,
or structural characteristics that provide insights into physiology through spectroscopy
analyses [5,6]. On the other hand, pigments absorb radiation in the ultraviolet-visible
spectrum (350–700 nm), while the NIR (700–1300 nm) and SWIR (1300–2500 nm) bands
are influenced by cellular components such as cellulose, lignin, nitrogen concentrations,
and leaf water levels [12,13]. Therefore, VIS–NIR–SWIR analysis has greatly contributed
to identifying plant communities and unique species by monitoring biochemical and
photochemical changes from chloroplasts to leaves [5,6,14,15].

Hyperspectroscopy techniques, including vegetation index (VI) analyses, are widely
used in ecophysiology, environmental research, agricultural monitoring, plant distribution,
and ecosystem studies. These techniques provide insights into biochemical and physiologi-
cal processes in plants and vegetation, as well as ecological interactions on local and global
scales [14,16–18]. For example, VIs offer valuable information about the chemical and
physiological-photosynthetic parameters of plants, including dark respiration, dissipation
by photochemical and nonphotochemical processes, stomatal conductance, and water use
efficiency [14,19–21]. In addition, few studies have demonstrated the usefulness of various
vegetation indexes as predictors of optical and spectral properties, as well as the status of
plant growth over time [22–25].
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Chlorophyll fluorescence (ChF) techniques, including the JIP test, should assess the
photosynthetic profile and electron transport chain points. The JIP test provides a compre-
hensive view of photosynthetic apparatus conditions using high-resolution measurements
of fast fluorescence [9] to calculate various parameters on a one-second time scale [26,27].
These parameters describe energy flows in and around photosystem II (PSII) reaction cen-
ters [9,28,29], including active cross sections (CSs) and phenomenological energy flows. The
JIP test parameters evaluate consecutive photon absorption energy flows (ABS), excitation
capture (TR), energy dissipation (DI), electron transport (ET), and the reduction of final elec-
tron acceptors on the PSI acceptor. Additionally, PSII behavior parameters define quantum
yields and efficiencies, such as the maximum quantum yield of primary photochemistry
(ϕPo), quantum yield of electron transport (ΦEo), trapped exciton probability of electron
transfer to ET/CS beyond QA (ΨEo), and electron transfer probability to reduce the final
electron acceptors on the PSI acceptor side (δRo) [9,28–30]. However, it is unclear whether
the JIP test correlates with VIs and how hyperspectral tools can determine this status.

This study aims to determine the effectiveness of using vegetation indexes (VIs) as an
alternative to monitoring morphological, biochemical and photochemical information in
variegated leaves. For this purpose, high-resolution equipment, including hyperspectral
data and fluorescence techniques via the JIP test, was used to test three hypotheses. First,
the study hypothesizes that hyperspectral reflectance curves can evaluate, separate, and
correlate changes in morphological, pigment content, and photochemical activity in colorful
leaves with VIs. Second, chlorophyll a fluorescence kinetics curves can detect changes
in the electron transport rate in chloroplasts when correlated with vegetation indexes.
Third, hyperspectral and fluorescence tools combined with multivariate analysis can better
distinguish colorful leaves and changes in variegated leaves. This study is the first to report
the combined use of hyperspectroscopy and JIP test fluorescence techniques applied to
Codiaeum variegatum (L.) A. Juss for evaluating the morphological and chemical composition
in variegated leaves.

2. Material and Methods
2.1. Plant Material and Experimental Design

Codiaeum variegatum (L.) A. Juss (croton) plants were selected for their natural variation
in leaf pigment content, color, and development from the Plant Cultivation Sector of the
Botanical Garden at the State University of Maringá (Maringá, Paraná, Brazil). The plants
were irrigated twice daily (8 a.m. and 6 p.m.) with sprinklers. Leaves of different ages,
ontogenesis, and colors were selected from the top to the bottom of the plants (n = 224)
for hyperspectral reflectance analysis, chlorophyll a fluorescence kinetics curves, and
leaf pigment profiles. To classify the leaf color, the previous chromaticity indexes and
hierarchical cluster analysis were performed across four groups: green, yellow, orange,
and red leaves (Chromaticity Index Script, Wolfram Mathematica v.11.0, Champaign, IL,
USA). To avoid variations in the photoperiod, environmental irradiance or dehydration
that may compromise leaf comparisons when measuring hyperspectral reflectance data
and fluorescence kinetics, all measurements were taken at the same time (11 a.m. to 1 p.m.)
(Figure 1).

2.2. Spectral Data Collection

Leaf reflectance spectra were collected using a FieldSpec® spectroradiometer 3 (An-
alytical Spectral Devices ASD Inc., Longmont, CO, USA) coupled with an ASD contact
PlantProbe® probe with a 10 mm diameter. The spectroradiometer had three detection
sensors: one with 512 Si photodiodes capturing wavelengths from 350 to 1000 nm, and
two with graduated index InGaAs photodiodes (two-stage TE cooled) capturing light
from 1000 to 1800 nm and 1801 to 2500 nm. The PlantProbe® leaf clip (Analytical Spectral
Devices ASD Inc.; Longmont, CO, USA) was used to ensure acquiring data free of atmo-
spheric effects. Standard white reference plates (Spectralon®, Labsphere Inc., Longmont,
CO, USA) were used for equipment calibration and optimization. Each measurement was
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taken at a single point on the adaxial face of the leaves in the medial region, excluding
the central rib when possible. The reflectance spectra of the leaves were obtained in the
350–2500 nm range, using a 3 nm spectral resolution for short wavelengths (350–700 nm)
and 10 nm spectral resolution for longer wavelengths. The data were interpolated at 1 nm
using the equipment, resulting in a total of 2151 bands. The equipment was programmed
to perform 50 readings for each sample, generating an average spectral curve. A total of
224 hyperspectral leaf curves (n = 224) were collected with hyperspectral sensors, allowing
for the variation in biophysical, pigment content and leaf color group analysis (L01–L13;
see Figure 1 for variegated leaves), which were used to calculate different VIs, as described
in Table S1. After the hyperspectral measurements, the corresponding leaves were placed
in wipes, wrapped, and kept in the dark in a saturated humid chamber for 60 min for
chlorophyll a fluorescence kinetics (ChlF) and profiling pigment measurements.
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Figure 1. Representative image of the plants and leaves of Codiaeum variegatum (L.) A. Juss. The
top images display the general morphological features of the plants, including the arrangement of
the leaves and the accumulation of different pigments. The center images show the arrangement of
leaves in phytomeres. The bottom images demonstrate the changes in pigment accumulation and
variation in leaf color. From left to right, the colors depicted are green, yellow, orange, and red. The
variegation of the leaves and the accumulation of different pigments can be seen from the apical to
the basal region of each branch.

2.3. Fluorescence OJIP Data Collection

The chlorophyll a fluorescence induction kinetics (ChlF) data were measured using
a new method-based LI-6800 IRGA (Gax Exchange System, Li-Cor Inc., Lincoln, NE,
USA), and the leaves were acclimated for 60 min in a dark, humid chamber. Fluorescence
curves were obtained using the following settings: a sample chamber (6 cm2), relative
humidity (75%), CO2 (400 ppm), fan speed (10,000 rpm), a pulse of saturating light (625 nm)
of 15,000 µmol m−2 s−1 for 1 s, dark mode at 500 Hz, and flash mode rate at 250 kHz
output rate by aligning at the induction mode measure. Each point obtained for relative
fluorescence intensity at 20 µs, 50 µs, 100 µs, 300 µs, 2 ms, 30 ms, and Fmt0 − tf was used
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to calculate the JIP test parameters between 20 µs and 1 s. The curves were normalized
as variable fluorescence (∆Vt), where t0 represents the initial time for fluorescence before
the flash, tf denotes the final time for fluorescence after the flash, and the difference in
kinetics for each OJIP phase was calculated with green leaves (L01) as a reference following
Strasser et al., (2000) [29]. The five bands, ∆L (at ~20 µs), ∆K (at ~300 µs), ∆J (at ~2 ms), ∆I
(at ~10 ms), and ∆H (at ~40 ms), were calculated, resulting in 925 points of high-resolution
curves. The Biolyzer software v4.0® (Laboratory of Bioenergetics, University of Geneva,
Geneva, Switzerland) was used to estimate the JIP test parameters associated with the
electron transport chain of plants according to Table S2 and Strasser et al., (2000) [29].

2.4. Biophysical Parameters of Leaves

The destructive analysis of leaves was conducted to obtain the leaf blade dry weight
(DW) using a forced ventilation oven for 72 h at 70 ◦C. The leaf area (LA) was obtained using
a scanner (HP Scanjet 300, Palo Alto, CA, USA) that utilized the ImageJ software Available
online: https://imagej.nih.gov/ij (accessed on 25 January 2023). Derived parameters of the
specific leaf area (SLA = LA/DW) and estimation of leaf thickness (LT* = 1/(SLA × DW))
were calculated to assess physical and structural attributes associated with the vegetation
index and JIP test parameters [4].

2.5. Profile of the Pigments Extracted

The following procedure allowed for the simultaneous quantification of total chloro-
phyll (Chl), carotenoids (Car), anthocyanins (AnC), and flavonoids (Flv) in leaf extracts, as
described by Gitelson and Solovchenko, (2018) [31] and Falcioni et al., (2022) [32]. Briefly,
the leaf segments (1 cm2) were ground in 2 mL tubes with a chloroform–methanol (2:1, v/v)
solution in the presence of CaCO3. After complete extraction, distilled water (20% of the
total extract volume) was added for polar and nonpolar phase separation. Extracts were
centrifuged at 15,000 rpm for 5 min for full separation. All extract measurements were
performed with 200 µL of a quartz glass UV 96-well microplate using a Biochrom Asys
UVM-340 Microplate-Reader with ScanPlus VisibleWell® software (Biochrome Ltd., Milton
Road, Cambridge, UK).

2.5.1. Chlorophyll and Carotenoid Quantification

The concentrations of chlorophylls a, b, a + b, and carotenoids (carotenes + xantho-
phylls) were measured by adding 200 µL of methanol extract to each well. The absorbance
readings were performed at 470, 652, and 665 nm, and the blank sample was 100% methanol.
The concentrations of chlorophylls and carotenoids (Chla, Chlb, Chla + b, and Car(C+X))
were determined using the equations defined by [33] and expressed in mg cm−2:

Chla = 16.72 × Abs665 − 9.16 × Abs652

Chlb = 34.09 × Abs652 − 15.28 × Abs665

Chla+b = Chla + Chlb

Car(C + X) = (1000 × Abs470 − 1.63 × Chla − 104.96 × Chlb)/221

2.5.2. Flavonoid and Anthocyanin Quantification

To quantify flavonoids (Flv), they were measured in the polar phase of the methanolic
extract. The upper phase, containing extrachloroplastidic pigments, was used to determine
total Flv by measuring the absorbance of a microplate reader at λ358 nm with a molar
absorption coefficient of ε358 = 25 mM−1 cm−1 according to Gitelson and Solovchenko
(2018) [31]. Before the Flv measurement, the water–methanol phase was acidified with
hydrochloric acid (HCl; final concentration of 0.1% HCl) to quantify anthocyanins (AnC) at
λ530 nm using a molar absorption coefficient of ε530 = 30 mM−1 cm−1 [31].

https://imagej.nih.gov/ij
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2.5.3. Total Soluble Phenolic Compound Quantification

Soluble phenol (PhC) quantification was performed based on Ragaee’s (2006) [34]
method with some modifications. To initiate phenolic quantification, 150 µL methanolic
extract, 70 µL Folin–Ciocalteu reagent (1 M), 140 µL Na2CO3 (3.56 M), and 850 µL deionized
water were added to a 2 mL Eppendorf tube. The samples were kept in the dark for 50 min,
followed by centrifugation for 120 s at 15,000 rpm. The resulting supernatant was analyzed
using a quartz glass microplate reader at λ725 nm. The equivalent PhC concentration was
determined using gallic acid as a reference; Ŷ = 87.651x + 1.6515; R2 = 0.993.

2.5.4. DPPH Free Radical Scavenging Activity

To assess antioxidant activity, the free radical scavenging method using DPPH (2,2-
diphenyl-1-picrylhydrazyl) was carried out as described by [5], with modifications. The
DPPH solution was used at a concentration of 1 mM. The reaction started with the addition
of 50 µL of the methanolic extract and 200 µL of the DPPH solution. The samples were
shaken and kept in the dark for 60 min. Readings were performed in a quartz glass 96-plate
microplate reader at λ515 nm [34]. The absorbances obtained were used to calculate the
capacity to eliminate free radicals.

% radical scavenging activity = (1 − (AbsDPPH/Abssample) × 100)

where:

AbsDPPH = absorbance of DPPH
Abssample = absorbance DPPH after 60 min

2.6. Wavelength Selection Using Algorithms for Biophysical Parameters

Wavelength variable selection was performed using six algorithms: variable impor-
tance in projection (VIP), genetic algorithm (GA), sparse partial least squares regression
(s-PLS), interval partial least squares regression (i-PLS), recursive partial least squares
regression (r-PLS), and nonlinear partial least squares regression (n-PLS) [8]. These algo-
rithms were used to select the most responsive wavelengths within the range of 350 to
2500 nm for assessing biophysical parameters in variegated leaves. For this purpose, MAT-
LAB 2022a software (MathWorks, Inc., Natick, MA, USA) and PLS_Toolbox (Engenvector
Research, Inc., Manson, WA, USA) were utilized for data analysis. The performance of
each algorithm was evaluated based on its ability to discriminate between wavelengths
and select the most responsive ones for the generated models based on weight (g leaf−1),
leaf area (m2), specific leaf area (cm2 g−1), and leaf thickness (mm) (Figure S2).

2.7. Hyperspectral Vegetation Index for the Most Responsive Wavelength

To determine if choosing the two most responsive wavelengths by hyperspectral
bands could improve the accuracy of phenomenological energy flow through excited
cross-sections (CSs), we calculated all potential combinations between two spectral bands
employing a normalized difference vegetation index formula (Equation (1)), following the
suggestion of Crusiol et al., (2023) [35]. Each combination (involving two spectral bands
under a normalized difference vegetation index formula) corresponds to one hyperspectral
vegetation index (HVI), and every HVI was subsequently correlated to cross sections
for phenomenological flows, evaluated with the Pearson correlation coefficient® and the
coefficient of determination (R2) using a custom-created code in the IDL language. The
ground-based sensor was examined using full spectra (from 350 nm to 2500 nm). The
matrices were represented in a contour map (Figure S3).

HVI =
(Wavelength1 − Wavelength2)
Wavelength1 + Wavelength2)

(1)
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2.8. Statistical Analyses
2.8.1. Univariate Statistical Analysis

Data were submitted to a variance homogeneity analysis via Bartlett’s test for all
variables. The mean ± SD data obtained were submitted to a one-way analysis of variance
(ANOVA) test, F-test (p < 0.001). The effects of the wavelengths on the untransformed
reflectance profiles (averaged per leaf) were assessed using PERMANOVA by employing
Euclidian measurements of dissimilarity using the Euclidean distance with the “vegan”
package in R-Core Team 2021. Available online: https://www.r-project.org (accessed on
25 January 2023). Statistical significance was considered at p < 0.001 [36]. A Scott–Knott test
was applied to compare data means, also at p < 0.001. Pearson’s correlation test was applied
when applicable (p < 0.001). A multilevel exploratory factor analysis via hierarchical cluster
methods was used to calculate tree plot-based linkage Euclidean distances. All univariate
statistical analyses were performed using the Statistica 12.0® software (Statsoft Inc., Tulsa,
OK, USA) and Sisvar Software v.5.7 (DEX/UFLA, Lavras, MG, BRA). All graphs were
prepared using the Microsoft Excel® (Microsoft Office Professional 2019, Sunnyvale, CA,
USA) and SigmaPlot® 12.0 (Systat Inc., Santa Clara, CA, USA) software packages. In
addition, the correlation analysis and correlation graphs were generated by the R software
package Corrplot R-Core Team 2021. Available online: https://www.r-project.org (accessed
on 25 January 2023). The pipeline models of energy fluxes through the leaf RC–CSs were
created using CorelDraw 2020® (Corel Corp., Ottawa, ON, Canada), based on Sitko’s
model [9,30].

2.8.2. Multivariate Statistical Analysis

A multivariate statistical analysis of the spectral curves (hyperspectral reflectance,
chlorophyll a fluorescence kinetics, and total parameter measure) by principal component
analysis (PCA) was performed using the Unscrambler X 10.4® software (Camo Software,
Oslo, NOR). The degree of explanation was attributed using the first two components (PC1
and PC2) prior to obtaining Fisher’s discriminant linear models. In addition, Leverage’s
correction and NIPALS’s model were used to validate the residual variance. Principal
component analysis graphics were obtained via a script that identified green, yellow,
orange, and purple clusters (p < 0.90).

3. Results
3.1. Chromaticity Indexes by Color and Pigment Concentration in Leaves

In general, Codiaeum variegatum (L.) A. Juss. showed color and pigment variation in its
variegated leaves, ranging from green to yellow to orange to red (Figure 1). For example,
young leaves exhibited an accumulation of green pigments, while older leaves located at
the base and away from the apical region showed a predominance of orange and red colors
(Figure 1). To analyze pigment accumulation associated with biophysical, biochemical,
and photochemical changes, different chromaticity indexes and single-linkage Euclidean
distances were used (Figure S1).

The distribution of chlorophylls, carotenoids, anthocyanins, flavonoids, phenolic
compounds, and antioxidant compounds in leaves contributed to the formation of three
distinct clusters for green, yellow–orange, and red–purple, based on visual and chromaticity
index plots (Figures 1 and S1).

3.2. Biophysical Changes by Variegated Leaves

The boxplot and Scott–Knott tests (p < 0.001) displayed variegated leaf pigment
changes associated with alterations in biophysical parameters (Figure 2). In general, these
alterations were related to the morphological and structural organization of the leaves
(Figure 2A–D; p < 0.001). Two to four groups were formed based on the variegated
stage of development (p < 0.001). The younger leaves had a lower weight (W) and leaf
area (LA) (0.103 to 0.875 g; 15.02 to 117.48 cm2) compared to those that accumulated
higher levels of orange pigments (L07–13), or leaves with predominantly red pigments

https://www.r-project.org
https://www.r-project.org
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(Figure 2A,B). On the other hand, increases (49.6 and 125.2%) were recorded from leaves
at more advanced developed stages (L07–13) or in leaves that primarily accumulated red
pigments (Figure 2A,B). Consistently, the specific leaf area (SLA) decreased (59.3%) as W
(weight) increased in yellow and orange leaves (r = −0.656; p < 0.001). However, SLA and
leaf thickness decreased (44.7 and 14.6%) in leaves with higher levels of carotenoids and
anthocyanins (yellow, orange, and red leaves) (Figure 2C,D).
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Figure 2. Box plot of the biophysical parameters of Codiaeum variegatum (L.) A. Juss due to the
accumulation of pigments in variegated leaves. (A) Weight (g leaf−1). (B) Leaf area (m2). (C) Specific
leaf area (cm2 g−1). (D) Estimated leaf thickness (mm). Mean ± SD and raw data were reported.
Different letters over the box indicate significant differences identified from the Scott–Knott test
(p < 0.001). (n = 224). L01 to L13 reference the increased green to red colors in leaves.

3.3. Hyperspectral Reflectance in Variegated Leaves

The hyperspectral reflectance curves (p < 0.001) are linked with pigment content,
concentration, biochemical properties, leaf structure, and water absorption rates across
VIS–NIR–SWIR bands (Figure 3). Despite some overlap in the UV and near/medium
infrared regions for the leaves with high pigment levels, spectral analysis can distinguish
clusters and identify four color groups using the chromaticity index and PLS algorithm
(Figures 2, S1 and S2).

The leaf reflectance curves in the visible (VIS) region showed significant increases at
wavelengths above 550 nm in yellow (Car and PhC) and red (AnC, Car, and PhC) leaves,
despite the presence of chlorophylls (L05–L06 and L08) by specific wavelengths with i-PLS,
r-PLS, and n-PLS algorithms (Figure S2). For example, the interaction between green and
red pigments (L12) showed similar patterns to green leaves (L01, L02), with progressive
reductions above 580 nm. In addition, leaves with higher concentrations of carotenoids and
anthocyanins (L04, L05, L06, L07, and L08) demonstrated between 47% and 75% increments
in the green and red regions (550 and 674 nm) and up to 53% increases in reflectance
indexes between 500 and 800 nm (Figures 2 and S2; VIS pigments). However, there were
no characteristic peaks or bands between 530 and 580 nm, unlike for typical green leaves
(L01) ((Figures 2 and S2).
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Figure 3. Factor of reflectance for spectral from 350 to 2500 nm in Codiaeum variegatum (L.) A. Juss.
variegated leaves. For leaf color abbreviations (L1–13), see Figure 1. Dotted lines delimit the inflexion
points of 700 and 1300 nm for VIS (visible) to NIR (near-infrared) to SWIR (shortwave infrared) bands.
Mean ± SD were calculated and p-values from permutation analysis of variance (PERMANOVA) for
the effects of leaf color on the full range (350 at 2500 nm) are reported in the bottom left corner of the
panel. Each repetition represents the means of the measurements taken from green to red colors in
leaves, as reported in Figure 2. Standard deviation was omitted for clarity. (n = 224).

In accordance with the NIR spectrum (800–1400 nm), distinct patterns among the
leaves during development with advanced stages (L06–L13) showed increments com-
pared to L01 (Figures 2 and S2; NIR-structure). On the other hand, in the SWIR region
(1500–2500 nm), characteristic bands of water absorption and peaks related to the structural
components (1192, 1678, and 2220 nm) and phenolic compounds (1270, 1797, and 2130 nm)
were observed (Figures 3 and S2). This result was consistent with the i-PLS and r-PLS
algorithms (Figure S2A,C,D). Furthermore, the bands close to 1500, 1600, and 1810 nm in
the SWIR band can be correlated with parameters such as photochemical–photosynthetic
efficiency and electron transport chain ((Figures 2 and S2; SWIR water structures).

3.4. Profiling of Pigments and Free Radical Scavenging in Variegated Leaves

A wide spectrum of pigment profiles and antioxidant capacity was quantified in
variegated leaves (p < 0.001) (Figure 4A–H). The concentrations of chlorophyll a (7.64 to
119.43 mg cm−2) and chlorophyll b (6.14 to 91.65 mg cm−2) were independent (p > 0.001) of
the levels of carotenoids (9.66 to 49.13 mg cm−2), which exhibited high concentrations in
orange and red leaves, and marginally in green or yellow leaves (Figure 4A–D).

The concentration of anthocyanins increased (1.51 to 27.51 mg cm−2) gradually and
progressed from green to red leaves (L01–L13). However, the concentration of flavonoids
(13.70 to 43.79 mg cm−2) did not show significant correlations with the levels of antho-
cyanins, carotenoids, and chlorophylls (p > 0.05). The total soluble phenolic compounds
increased (5.20 to 29.70 mg cm−2) progressively from yellow to orange to red leaves
(L04–L13). Similarly, leaves with higher levels of carotenoids, anthocyanins, and phenolic
compounds showed significant and negative correlations (r = −0.697, −0.857, −0.815) in
response to free radical scavenging, indicating an increased antioxidant capacity due to
variegated leaves (Figure 4E–H).



Biology 2023, 12, 704 10 of 24

Biology 2023, 12, x FOR PEER REVIEW 10 of 24 
 

 

3.4. Profiling of Pigments and Free Radical Scavenging in Variegated Leaves 
A wide spectrum of pigment profiles and antioxidant capacity was quantified in var-

iegated leaves (p < 0.001) (Figure 4A–H). The concentrations of chlorophyll a (7.64 to 119.43 
mg cm−2) and chlorophyll b (6.14 to 91.65 mg cm−2) were independent (p > 0.001) of the 
levels of carotenoids (9.66 to 49.13 mg cm−2), which exhibited high concentrations in or-
ange and red leaves, and marginally in green or yellow leaves (Figure 4A–D). 

The concentration of anthocyanins increased (1.51 to 27.51 mg cm−2) gradually and 
progressed from green to red leaves (L01–L13). However, the concentration of flavonoids 
(13.70 to 43.79 mg cm−2) did not show significant correlations with the levels of anthocya-
nins, carotenoids, and chlorophylls (p > 0.05). The total soluble phenolic compounds in-
creased (5.20 to 29.70 mg cm−2) progressively from yellow to orange to red leaves (L04–
L13). Similarly, leaves with higher levels of carotenoids, anthocyanins, and phenolic com-
pounds showed significant and negative correlations (r = −0.697, −0.857, −0.815) in re-
sponse to free radical scavenging, indicating an increased antioxidant capacity due to var-
iegated leaves (Figure 4E–H). 

 
Figure 4. Concentration of leaf pigments in Codiaeum variegatum (L.) A. Juss due to green to red 
variegated leaves (L01–13). (A) Chlorophyll a (mg m−2). (B) Chlorophyll b (mg m−2). (C) Total 

Figure 4. Concentration of leaf pigments in Codiaeum variegatum (L.) A. Juss due to green to red
variegated leaves (L01–13). (A) Chlorophyll a (mg m−2). (B) Chlorophyll b (mg m−2). (C) Total chloro-
phyll (a + b) (mg m−2). (D) Carotenoids (mg m−2). (E) Anthocyanins (nmol cm−2). (F) Flavonoids
(nmol cm−2). (G) Phenolic compounds (mL L−1). (H) Radical scavenging (g gallic acid). Mean ± SD.
Different letters over the bars indicate statistically significant differences from the Scott–Knott test
(p < 0.001). (n = 224).

3.5. Vegetation Indexes and Putative Contribution for Biophysical, Biochemical, and Photochemical
Parameters for Variegated Leaves

We evaluated the 15 putative most responsive VIs associated with morphological-
structural, biochemical components, and photochemical parameters (Figure 5). The highest
normalized contributions to the total variability performance were PSSRc (26.6%), followed
by ARI1 (23.5%), RARS (20.7%), and SIPI (16.8%), which were related to specific pigments,
ratios between reflectance bands, accumulation of carotenoids and anthocyanins and
structural leaf thickness components, respectively. Other evaluated indexes (11) did not
contribute significantly (p > 0.001) (Figure 5 and Table S1). The vegetation indexes for
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pigment variation (PSND, VOG1-2, PVR), structural contribution (CAI, NDLI, NDNI),
leaf senescence indexes (PSRI1-2, CRI1-2) or even activity to change the fluorescence of
chloroplast parameters, stress (WBI, MSI), and photochemical activity (PRI, FR) showed
null or negative contributions (Figure 5). In addition, the NDVI750 (0.59%), widely used
for vegetation characterization, did not demonstrate sufficiently consistent performance
and contributions, although there were great variations among the infrared hyperspectral
bands (Figure 5 and Table S1). In this sense, the inset displays the possible interaction of
light with color leaves, which contributes to the selected vegetation indexes and putative
contributions in estimating and monitoring evaluable to variegated leaves (Figure 5; inset).
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Figure 5. Normalized contribution of vegetation indexes (VIs) to total (100%) variability for biophysi-
cal, biochemical, and photochemical efficiency of variegated leaves. PSSRc (pigment-specific simple
ratio), RARS (ratio analysis of reflectance spectra), SIPI (structurally insensitive pigment index),
WBI (water band index), PSND (pigment-specific normalized difference) for biophysical parameters.
ARI1 (anthocyanin reflectance index), VOG1 (Vogelmann index 1), and VOG2 (Vogelmann index 2)
for biochemical parameters. MSI (moisture stress index), PSRI (plant senescence reflectance index),
PSRI2 (plant senescence reflectance index 2), FR (fluorescence ratio), NDVI750 (normalized difference
vegetation index ρ750), PRI (photochemical reflectance index), and PVR (normalized difference pho-
tosynthetic) for photochemical parameters. The inset displays the interaction of light with colorful
leaves (arrows display the input and output sensors and generate putative relationships between
the vegetation indexes), highlighting potential changes in biophysical (morphological structures),
biochemical (pigments), and photochemical parameters. Each wavelength is correlated with changes
in a specific vegetation index. As variegated leaves change, their interaction with light promotes
changes in the most responsive vegetation indexes.

3.6. OJIP Chlorophyll a Fluorescence Kinetics

Chlorophyll a fluorescence induction kinetics, combined with the derivative JIP test
parameters, allows us to evaluate information along the electron transport chain and the
contribution of specific changes in photochemical and quantum efficiency of energy flow
(Figure 6).
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Figure 6. Chlorophyll a fluorescence kinetics in variegated leaves of Codiaeum variegatum (L.) A.
Juss. Means ± SDs were calculated. (A) Chlorophyll a fluorescence induction kinetics. (B) Variable
fluorescence kinetics of standardized chlorophyll (∆Vt = (Ft − F0)/Fv) − Vt control)). The ∆L, ∆K, ∆J,
∆I, and ∆H relative changes in variable fluorescence over time, reflecting alterations in the efficiency
of the light-harvesting complex (LHC), active reaction centers (RCs), and energy flow in the electron
transport chain between PSII and PSI. Each repetition of variegated leaves represents the means of the
measurements taken from green to red colors in leaves, as reported in Figure 2. Standard deviation
was omitted for clarity. (n = 224). For abbreviations, see Section 2 and Table S2.

The performance and damage to the photosynthetic machinery apparatus were ob-
served in the OJIP curves and the differences between the variable fluorescence curves
associated with each leaf pigment in ∆Vt. The impact of pigment variation was most
significant in leaves L02–13 compared to L01 (p < 0.001). The progressive reduction in Chl
a, b, a + b, Car, AnC, Flv, and PhC, radical scavenging was followed by decreases in ∆Vt, in
the four main bands in ∆L (in ~20 µs; p < 0.001), ∆K (in ~300 µs; p < 0.001), ∆J (in ~2 ms;
p < 0.001), ∆I (in ~10 ms; p < 0.001), and ∆H (in ~40 ms; p < 0.001).

The ∆Vt kinetics in all bands (∆L, ∆K, ∆J, ∆I, and ∆H) were strongly negative, in-
dicating a reduction in the efficiency of the light-harvesting complex (LHC), active RCs,
and energy flow in the electron transport chain between PSII and PSI (Figure 6). This was
due to decreases in chlorophyll concentrations in green and yellow leaves, and increases
in anthocyanins, flavonoids, and soluble phenolics in orange and red leaves (L05–L13),
which are associated with photoprotective mechanisms necessary to prevent damage to the
components of the electron transport chain.

Absorption pigments, whether photosynthetic or not, assisted in maintaining the
efficiency of the oxygen-evolving complex (OEC), reducing damage to the PSII D1 proteins,
the pool of pastoquinone (PQ), plastocyanin (PC), or the ATP synthase subunits (Fo, and
F1), and supported functional levels for the adequate flow energy in the transport of
electrons and proton electrochemical gradient formation (∆pH) for the synthesis of NADP
and NADPH used in the stages of the Calvin–Benson cycle (Figures 6A and 7A).

The OEC and D1 proteins were not affected (L10–L13) in leaves with higher levels of
Flv, AnC, and PhC, as evidenced by the negative linear portion of the OJIP curve in the
∆K, ∆J, and ∆H variation (Figure 6B). Additionally, the antioxidant activity contributed to
more than 36.5% of the total free radical sequestration (Figure 6A,B).

The quantum yield of PSII (ΦPSII), thermal dissipation (∆K), OEC decoupling (∆J)
and the probability of electron transport from QA- to plastoquinone (ΨEo and ΦEo), in
addition to the maximum quantum efficiency of PSII (ΨRo and ΦPo), increased in all
cases (p < 0.001), except for L06 (Figure 7A). The quantum yield of energy dissipation
(ΦDo) and nonphotochemical dissipation (Kn) decreased in many leaves, including ΦDo,
up to 21.6%, and carotenoid accumulation in orange leaves showed increases (>51.7%)
(L04, L05, and L08) (Figure 7A). The quantum yield and the likelihood of a reduction in
acceptors of the final electrons on the PSI acceptor side (ρRo, ΦRo, and δRo, respectively)
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demonstrated significant increases (~86.3%) in response to L01 (Figure 7A). This was also
corroborated by the observations of the ∆I and ∆H bands, which prevented damage to
energy transfer by reducing the concentration of carotenoids, anthocyanins, flavonoids,
and phenolic compounds in the variegated leaves (Figure 6).
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Figure 7. Analysis of the chlorophyll a fluorescence kinetics and pipeline flux in Codiaeum variegatum
(L.) A. Juss due to the variegated leaves. (A) Radar plot indicating parameters derived from the
chlorophyll a fluorescence kinetics transient (JIP test). (B) Pipeline leaf displayed phenomenological
energy flow through excited cross sections (CSs) of Codiaeum variegatum (L.) A. Juss leaves in green,
yellow, orange, and red representative color leaves (L01, L05, L10, L13). Yellow arrow–ABS/CS, ab-
sorption flow by approximate CS; green arrow–TR/CS, energy flow trapped by CS; red arrow–ET/CS,
electron transport flow by CS; blue arrow–DI/CS, energy flow dissipated by CS; circles inscribed
in squares–RC/CS, indicate the % of active/inactive reaction centers. The white circles inscribed in
squares represent reduced (active) QA reaction centers, black circles represent nonreducing (inactive)
QA reaction centers, and 100% of the active reaction centers responded with the highest average
numbers observed in relation to the control. Arrow sizes indicate the changes in energy flows com-
pared to the control. Each repetition was produced by taking the means of the JIP test parameters
calculated and applied to representative L01, L05, L10 and L13 color leaves. Different letters over an
arrow or a box indicate significant differences from the Scott–Knott test (p < 0.001). For abbreviations,
see Section 2 and Table S2.

3.7. Target Modeling of the Fluorescence Kinetics of Phenomenological Energy Fluxes in
Variegated Leaves

Phenomenological models of energy flow by cross sections (CSs) are demonstrated
in Figure 7. Due to the fluorescence kinetics information following the function of the
hyperspectral patterns and targeting pigments for profiling, it was possible to obtain a
quantitative estimate of the photosystem’s efficiency levels and photoprotection/extinction
mechanisms present in the electron transport chain between PSII and PSI in leaves with
different colors (Figure 7A).

The decrease or degradation in Chl, Car, AnC, Flv, and PhC content reduced the
energy flow, as well as scavenging activity, compared to green, orange–green, and red
leaves (Figure 7). Additionally, the reduction in Car levels promoted severe damage to the
antenna complex (ABS) and reaction centers (RCs) of the photosystems. This contributes
to the reduction of the required energy intake for the electron transport chain and the
formation of reducing power in the form of NADPH and ATP (Figure 7B). The fraction of
energy that would be available for absorption by a cross section of the leaves (ABS/CS),
energy capture (TR/CS), and electron transport flow (ET/CS) decreased (>79.3%) in relation
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to green leaves (L01–L03). However, leaves that accumulated AnC, Flv, and PhC exhibited
increased antioxidant activity and reduced effects on energy flow (Figure 7B, sizes of arrows
and active RCs). Based on the models (Figure 7B), the electron transport chain appears to
be on the verge of imminent collapse (L05–L07) or experiencing a more moderate collapse
(L09–L10), taking into account the relative energy flow from RCs to ET/CS (Figure 7B). In
addition, the wavelength for VIS contributes to these changes (Figure S3).

The models also demonstrate that energy dissipation (DI/CS), even with a reduced
accumulation of carotenoids, can be directed to other pigments considered to be accessories
(Figure 7B, arrows). Plants with reduced levels of Car, AnC, and Flv, in addition to
impairing the efficiency of electron transport and energy or thermal dissipation, showed
signs of chronic photoinhibition and reduced the performance of PSII and PSI (L05 and
L08). Furthermore, our data demonstrated that even a minor accumulation of AnC, Flv,
and PhC contributed to an increase in energy dissipation and a reduction in free radical
scavenging activity, according to L10. Thus, in response to pigment biosynthesis and greater
antioxidant capacity, it could be demonstrated that photochemistry efficiency was only
slightly compromised, following a specific interaction with each wavelength (Figure S3).
According to ABS/CS, TR/CS data, DI/CS, and ET/CS in orange and red leaves, although
these leaves exhibited fewer open reaction centers (RCs) and an oxidized QA− in relation
to L01, they were photosynthetically functional (p < 0.001) (Figures 7B and S3; L10).

3.8. Hyperspectral Reflectance, Fluorescence Kinetics, Variables Total Performance and Pearson’s
Correlation Coefficients Associated with Biophysical, Biochemical and Photochemical Parameters

The principal component analysis (PCA) indicates a greater number of clusters when
compared to other statistical tools previously used in classification (Figure 8). For the
reflectance data, the first two components, PC1 and PC2 (accounting for 76% and 12% of
the data variability, respectively), explained 88% of the total data variability in the curves
from 350 to 2500 nm (Figure 8A). Similarly, for fluorescence kinetics curves, PC1 and PC2,
which accounted for 99% and 1% of the data variability, respectively, explained 100% of
the data variability (Figure 8B). When morphological and anatomical variables, pigment
concentrations, vegetation indexes, and photochemical fluorescence were combined, they
contributed to 82% of the total data set, with PC1 and PC2 accounting for 51% and 31%
(Figure 8C), respectively.

Figure 9 shows the correlations between the concentrations of chlorophylls and
NDVI750 indexes PSRI1-2, VOG1-2, PRI, FR, and NDVI680 (r ≥ 0.559; p < 0.001). An-
thocyanins were found to be correlated with ΦEo, SFI(abs), PI(abs) vs. NDVI750, RARS,
ARI1, VOG1-2, Achl, BNb, CRI2, CAI2, and DSWI-5 (r ≥ 0.532; p < 0.001). It is worth
noting that several variables derived from the JIP test curves correlated with vegetation
indexes (VIs) as well. For example, PSRI was correlated with ΨRo, δDo, and Kp (r = 0.587,
0.659, 0.667). FR was correlated with δDo and Kp (r = 0.657, 0.779), and NDVI680 was
correlated with δDo and Kp (r = −0.649, −0.771). BNb was correlated with SFI(abs) and
PI(abs) (r = 0.617, 0.657), PRI was correlated with Kp (r = −0.654), and PSRI was correlated
with δDo and Kp (r = 0.659, 0.764). CRI2 was correlated with PI(abs) (r = 0.588), ARI1
was correlated with SFI(abs) and PI(abs) (r = 0.584, 0.632), VOG1 was correlated with Kp
(r = −0.673), and DSWI-5 was correlated with ΨEo, ΨDo, KP, SFI(abs), and PI(abs) (r = 0.556,
−0.553, −0.739, 0.501, 0.539).



Biology 2023, 12, 704 15 of 24Biology 2023, 12, x FOR PEER REVIEW 15 of 24 
 

 

 
Figure 8. Principal component analysis (PC) of the Codiaeum variegatum (L.) A. Juss due to pigment 
accumulation in variegated leaves. (A) Hyperspectral reflectance data. (B) Chlorophyll a induction 
kinetics (fluorescence kinetics). (C) Variable total performance between reflectance and fluorescence 
kinetics data. Clustering color leaves are displayed as green, yellow, red, and purple circles. 

Figure 9 shows the correlations between the concentrations of chlorophylls and 
NDVI750 indexes PSRI1-2, VOG1-2, PRI, FR, and NDVI680 (r ≥ 0.559; p < 0.001). Anthocy-
anins were found to be correlated with ΦEo, SFI(abs), PI(abs) vs. NDVI750, RARS, ARI1, 
VOG1-2, Achl, BNb, CRI2, CAI2, and DSWI-5 (r ≥ 0.532; p < 0.001). It is worth noting that 
several variables derived from the JIP test curves correlated with vegetation indexes (VIs) 
as well. For example, PSRI was correlated with ΨRo, δDo, and Kp (r = 0.587, 0.659, 0.667). 
FR was correlated with δDo and Kp (r = 0.657, 0.779), and NDVI680 was correlated with 
δDo and Kp (r = −0.649, −0.771). BNb was correlated with SFI(abs) and PI(abs) (r = 0.617, 
0.657), PRI was correlated with Kp (r = −0.654), and PSRI was correlated with δDo and Kp 
(r = 0.659, 0.764). CRI2 was correlated with PI(abs) (r = 0.588), ARI1 was correlated with 
SFI(abs) and PI(abs) (r = 0.584, 0.632), VOG1 was correlated with Kp (r = −0.673), and 
DSWI-5 was correlated with ΨEo, ΨDo, KP, SFI(abs), and PI(abs) (r = 0.556, −0.553, −0.739, 
0.501, 0.539). 

Moreover, some vegetation indexes (VIs) contributed more significantly to the corre-
lations between pigments and antioxidant mechanisms and parameters derived from flu-
orescence kinetics curves for thermal dissipation (Figure 9). VIs such as RARS, ARI1, SIPI, 
and PSSRc showed stronger correlations (r ≥ 0.53; p < 0.001) with nonchloroplastidic pho-
toprotectors (AnC, PhC). However, carotenoids demonstrated poor correlations with 
other derivatives of the JIP test when compared to VIs such as CRI1-2, VOG1-2, and PRI. 
The PRI displayed a strong correlation with Chls and Kp (>±0.651), and indirectly with 

Figure 8. Principal component analysis (PC) of the Codiaeum variegatum (L.) A. Juss due to pigment
accumulation in variegated leaves. (A) Hyperspectral reflectance data. (B) Chlorophyll a induction
kinetics (fluorescence kinetics). (C) Variable total performance between reflectance and fluorescence
kinetics data. Clustering color leaves are displayed as green, yellow, red, and purple circles.

Moreover, some vegetation indexes (VIs) contributed more significantly to the cor-
relations between pigments and antioxidant mechanisms and parameters derived from
fluorescence kinetics curves for thermal dissipation (Figure 9). VIs such as RARS, ARI1,
SIPI, and PSSRc showed stronger correlations (r ≥ 0.53; p < 0.001) with nonchloroplastidic
photoprotectors (AnC, PhC). However, carotenoids demonstrated poor correlations with
other derivatives of the JIP test when compared to VIs such as CRI1-2, VOG1-2, and PRI.
The PRI displayed a strong correlation with Chls and Kp (>±0.651), and indirectly with
other VIs, including NDVI750, NDVI680, PSRI1-2, VOG1-2, SR680, SR705, PSSRa, PSSRb,
and DSWI-5 (>±0.723). These VIs showed an indirect relationship with pigment levels and
photochemical efficiency in Codiaeum variegatum leaves (Figures 8 and 9).
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4. Discussion

In this study, alternative methods such as hyperspectral reflectance and fluorescence
kinetics curves were combined with multivariate statistical analyses to increase the under-
standing of changes in the electron transport rate and energy flux in chloroplasts [8,27].
The results showed the highest correlation between JIP test data and biophysical, biochemi-
cal, and photochemical changes in croton leaves, with many associations found between
vegetation indexes (VIs). The most responsive VIs, including PSSRc, ARI1, RARS, and
SIPI, were strongly correlated with pigment levels, while others, including MSI, PVR,
PRI, FR, and NDVI, were linked to the photochemical components of photosynthesis
(Figures 4 and 9). However, the total relative contribution was low (Figure 5). Nevertheless,
many VIs showed strong correlations (r ≥ ±0.651) with parameters derived from the JIP
test (Figures 6–9 and S1–S3).

Our findings suggest that structural and biochemical changes in variegated leaves
linked to the accumulation of pigments can be detected through hyperspectral reflectance
curves, absorbance curves, [8,27] photosynthetic data, and metabolomics [37]. Other
techniques, such as photosystem proteins [38], spectroscopy [39], antioxidant activity [40],
heavy metal contamination [30], primary and secondary metabolites [12], gene expression,
and molecular markers [41], can also be used to evaluate changes in leaf pigments and
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variegation [42]. By using these techniques, new insights into the relationship between
variegated leaves, pigments, and structural and biochemical changes in croton leaves can
be gained, as well as in other plants. Overall, our study confirmed three initial hypotheses,
which are discussed in more detail in the following sections.

4.1. The Effect of Morphological, Physiological, and Anatomical Attributes on the
Vegetation Indexes

The use of vegetation indexes (VIs) has been shown to be an effective way of identify-
ing consistent morphological and anatomical changes in plants [6]. According to, Falcioni
et al., (2020) [5] and Fernandes et al., (2020) [6], these changes are often related to the
biosynthesis and degradation of pigments, such as chlorophylls, carotenoids, anthocyanins,
phycobiliproteins, and flavonoids, as well as total antioxidants, which are influenced by
many structural components and cellular organelles, such chloroplasts, vacuoles, and
pastoglobules during leaf development [5]. Furthermore, the distribution of pigments in
the leaf profile can be affected by changes in specific leaf area (SLA) and leaf thickness,
which can result in different VIs [5,6]. Thus, the use of VIs allows for the non-destructive
evaluation of changes in leaf pigments, as reported in Coast et al., (2019) [43], and other
tissues in plants, providing a useful tool for understanding the development responses and
environmental interaction factors such as temperature, photoperiod, radiance, and light
qualities [44–46].

Accordingly, hyperspectral changes observed in the near-infrared and shortwave-
infrared bands are attributed mainly to the organization and structure of cellular compo-
nents, such as cell wall components (cellulose, lignin, nitrogen), water content, and air cell
interfaces, rather than pigments [5,13]. In this way, these changes may not always correlate
with classic VIs, such as NDVI, VOG, PSI, and PRI, but are observed at the ontogenetic
development level and influenced by environmental factors such as irradiance intensity,
quality, and duration [21,43,47]. In accordance with Fine et al., (2021) [37] and Sinanoglou
et al., (2018) [40], vegetation indexes (VIs) such as PSSRc, ARI1, RARS, and SIPI may be
more effective in identifying changes in the structural components and cell organelles
during leaf development in light qualities or variegated leaves.

Furthermore, leaf internal structure, such as mesophyll cell volume, can influence
energy absorptivity and flow within the leaf [3,5]. Other studies have demonstrated energy
dissipation components, nonphotosynthetic pigments, thermal influences, efficient water
use, and leaf water content [13,21,48,49]. Therefore, these components contribute to changes
in VIs across the entire spectral range (350–2500 nm).

4.2. The JIP Test Parameters Indicate Dissipation to the Thermally Based Vegetation Indexes

The JIP test demonstrated a correlation between reduced levels of carotenes and xan-
thophylls and photosynthetic performance indexes (Kp, PI(abs), SFI(abs), and D.F. [50,51].
This suggests the existence of alternative mechanisms for photoprotection and a decline
in the electron transport rate, with significant implications for both the biochemical and
photochemical processes of photosynthesis [50,51]. Moreover, employing hyperspectral
and fluorescence technique measurements can further reinforce these findings.

A strong correlation was observed between the PRI and photochemical indexes (OJIP
variables) and environmental changes on a global scale, despite the lack of correlation
with Car [52]. Following Bag et al., (2020) [50] and Jin et al., (2020) [51], there are two
potential explanations for this finding. Firstly, from a statistical perspective, the high
resolution of reflectance and fluorescence kinetics factors enables a positive association
between each generated point and the VIS. This remains true even when the VIs may not
be sufficiently robust for detecting changes in multispectral analysis or hierarchical cluster
analysis [53]. Second, from a physiological perspective, nonphotochemical processes, such
as the presence of accessory pigments (AnC, PhC, Flv, or antioxidants), can influence
the energetic dissipation mechanisms (Figures 4, 5 and 7), which impacts the efficiency
of certain indexes not correlated with photochemical efficiency, aligning with the initial
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hypotheses. For instance, the presence of pigments that enable energy dissipation or
antioxidant activity (AnC, PhC, or scavenging) was found to be highly correlated with the
PRI, PSRI, CR1, VOG1-2, and MSI (Figures 5, 8 and 9).

Our findings suggest that the PRI, PSRI, and VOG1-2 variables of VIS-VIs are sub-
stantially influenced by orange and red pigment accumulation and photochemical activity
in variegated leaves. Conversely, the FRI and NDLI are associated with pigments and
energy absorption by phenomenological components, but do not significantly impact pho-
tochemical efficiency. Additionally, a strong correlation was observed between anthocyanin
and flavonoids or other phenolic compound levels with ARI1, but not with CRI1, FRI, or
FR (Figures 5, 7B, 9, S2 and S3). Therefore, our first hypothesis has been confirmed, as
many vegetation indexes can be utilized to evaluate, separate, and correlate changes in
orange–red–purple variegated leaves that have not been discussed in previous research.

4.3. PRI and PSSRc Indexes Are Strongly Associated with VIS–NIR–SWIR Bands

The application of the PRI and PSSRc indexes in analyzing the hyperspectral re-
flectance curves of variegated leaves or large areas of uneven vegetation has been an
effective tool in understanding rapid changes in leaf development and pigment accumula-
tion patterns [5,13,43]. According to Braga et al., (2021) [13], PSSRc indexes are strongly
associated with the variations and interactions of NIR–VIS bands, which contribute to the
improved classification and use of vegetation indexes (VIs) [1–3]. However, it is important
to note that VIs are associated with reflectance characteristics and linked with the surface
of biomaterials, which can lead to a loss of information related to pigment absorbance
patterns at the leaf level [3,5]. Thus, VIs such as NDVI, FR, or even PRI were not highly
correlated with the broad spectrum of pigments in this study (Figures 2, 5 and 9), while
PSSRc made a significant contribution (26.6%), contrasting with the data found by Onoda
et al., (2017) [1].

According Falcioni et al., (2020) [5] and Coast et al., (2019) [43], the factor of reflectance
(R) in detecting changes in plant physiology has been shown to be effective in previous
studies [6,13,48] (Figures 3 and 8). However, the impact of surface interactions with the
factor of reflectance (R) and leaf components such as waxes, stomata, epicuticular layers,
or trichomes can affect the accuracy of vegetation indexes (VIs) [5]. For example, the
Gitelson group has developed VIs that take colorimetric variations into consideration.
Furthermore, advances in chemometric data analysis and modeling to address specific
plant biology should be solved by applied VIs and spectroscopy techniques. These in-
dexes have been found to be effective in analyzing changes in plant physiology and are
reported in our data. In this way, the NIR–SWIR and VIS regions are particularly useful for
discerning information about the PSII and PSI for increased or decreased photosynthesis
rates (Figures 5, S2 and S3). Therefore, future studies could explore the potential of these
indexes in assessing the impact of biotic and abiotic factors, such as diseases and drought,
and other changes in photosynthetic dynamics within plant physiology research.

4.4. PSSRc Photosynthetic Apparatus Could Be Measured Using Fluorescence Techniques Based on
Vegetation Indexes in Variegated Leaves

The JIP test curves are effective in tracking the absorption and release of saturating light
as photochemical and nonphotochemical processes through the QA redox principle [54].
These curves can be more effective when combined with ontogenetic standards and leaf
pigment concentrations and contents for a better understanding of data viability [5]. Our
analysis shows that the OJIP curves are the most effective for measuring the PSSRc aligned
with the photosynthetic apparatus in colorful leaves (Figures 5–7 and S3) compared to
the sum of individual reflectance parameters and fluorescence spectroscopy. The clusters
observed in response to variated leaves in our study reveal the role of various pigment
classes and concentrations in the biophysical and photochemical interactions between
PSII and PSI [20,41]. This is crucial, as the dissipation pathways through NPQ, qL, or qE



Biology 2023, 12, 704 19 of 24

quenching and photoprotection mechanisms in chloroplasts differentiate photochemical
and nonphotochemical mechanisms resulting from pigment absorption (Figure 7B) [21].

For example, the discussion of the quenching transition (qT) can be mediated, resulting
in the formation of energy dissipating supercomplexes (LHCII-LHCI-PSII-PSI) [50,55],
leading to fluorescence indexes correlating with other indexes such as SIPI, PRI, and FR,
as reported in Figures 5–9. In the future, further research should focus on optimizing
and applying OJIP curve align optical spectroscopy, Raman microspectroscopy analysis,
and other techniques to improve the accurate measurement of the PSSRc photosynthetic
apparatus in various vegetation and other species.

In addition, the importance of fluorescence indexes such as the SIPI and FR in deter-
mining the photochemical parameters of photosynthesis, is highlighted. In accordance
with Wang et al., (2017) [56] and Bag et al., (2020) [50], these vegetation indexes showed
a better correlation with photochemical parameters than with pigment concentration
(Figures 4 and 9), which supports previous research suggesting a decrease in fluorescence
yield due to changes in thylakoid stacking and the yellowing of leaves [50,56].

On the other hand, other indexes, such as CRI1-2, which are commonly associated
with carotene contents, showed weak correlations with a wide range of green-to-red leaves
(Figures 1, 5 and 9). To improve accuracy, Gitelson and Solovchenko (2018) [31] and Falcioni
et al., (2020) [5] recommend using hyperspectral absorbance curves as additional measures
in combination with fluorescence and hyperspectral tools, to better understand the optical
changes in leaves. When considered in groups, these optical spectroscopy methods are
promoted as alternative methods to enhance photochemical monitoring in tobacco, lettuce
and many native species [5,6,20].

The use of the JIP test and fluorescence indexes in studying the photosynthetic pro-
cesses in leaves offers several advantages [26,27,57,58]. The JIP test is capable of identifying
changes in the components of ABS/CS, TR/CS, and ET/CS that correlated with the leaf pig-
ment concentration, primarily chlorophyll and other accessory pigments (Figures 8 and S3).
It also allows for the measurement of thermal and dissipative effects, encompassing both
photochemical and nonphotochemical effects [38,43,50]. For example, fluorescence indexes
such as SIPI and FR can provide information on the electron transport chain and its effi-
ciency, as well as important JIP test derivatives, such as ΦPSII, ΨEo, ΨRo, δDo, PI(abs),
SFI(abs), and D.F. [38,43,50].

The combination of the JIP test and fluorescence indexes facilitates a more compre-
hensive understanding of the photochemical processes in leaves with varying pigments,
such as Chl, Car, AnC, Flv, and PhC [26,59]. In this regard, it is valuable for monitoring
changes in vegetation health and productivity at different scales, including field, regional,
and global scales [18,60]. Future research should concentrate on employing these tools in
this context. Additionally, our second and third hypotheses were confirmed, demonstrating
correlations between fluorescence kinetics and VIs, as well as alterations in the electron
transport chain of chloroplast membranes. As a result, hyperspectroscopy and fluores-
cence tools, combined with multivariate analysis (Figure 8C), exhibited high accuracy and
precision in distinguishing these changes.

4.5. Novel Perspective of Hyperspectral–Fluorescence Techniques

Hyperspectral and fluorescence tools have been previously used in studies with other
plant species, such as tobacco, wheat, and coffee, to develop new indexes linking fluores-
cence parameters with the electron transport chain [19,61–63]. Our study on C. variegatum
offers two novel perspectives using these tools. Firstly, fluorescence kinetics can be ef-
fectively combined with hyperspectral tools to understand a plant’s photochemical and
photosynthetic capacity (Figures 8 and 9). Second, the separation of different clusters
enables the classification of at least 13 distinct variegated leaves with varying pigment con-
centration and contents [38,43,50]. Accordingly, the results should support the integration
of the JIP test into digital fluorescence airborne cameras and linked vegetation indexes
in mapping large, nonhomogeneous areas to detect changes in variegated leaves [50,56].
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This allows for the evaluation of photochemical components, differentiation between them,
and the monitoring of plant productivity in extensive crop fields, native species, and plant
ecosystems in real time.

The combination of hyperspectral and fluorescence techniques has proven to be rapid,
simple, and cost-effective (Figures 8C and 9). This approach has led to the validation of
several indexes related to different pigment classes, through pigment profiling and fluores-
cence kinetics linked to wavelength HVI algorithms (Figure S3). Therefore, indexes such as
PSSRc, PSRI, SIPI, and ARI have been found to be good predictors in the VIS–NIR–SWIR
range, as demonstrated in Figure 5 and Table S1, and should be used to identify unrelated
associations. These indexes not only predict pigment concentrations, but also offer valuable
insights into photosystems and vegetation dynamics. They account for differences in
indexes such as reflectance factors (R) and the effects of potential environmental factors
on plant ecosystems, ranging from organelles to extensive terrestrial environments [64,65].
However, it is crucial to conduct more in-depth evaluations of these VIs when analyzing
data collected from plants using optical spectroscopy and remote sensing techniques.

5. Conclusions

In summary, our study demonstrates the utility of integrating hyperspectral and
fluorescence techniques associate with pigment profiling and vegetation indexes for un-
derstanding the complex biophysical, biochemical, and physiological changes of Codiaeum
variegatum (L.) A. Juss in variegated leaves. Our findings reveal a novel approach in this
field, as well as enable the classification of different stages of color leaves using the JIP
test that can associate them with vegetation indexes. Overall, the integration of hyperspec-
tral and fluorescence tools has improved our knowledge of plant physiology and holds
significant potential for future research in plant ecology, optical spectroscopy, and remote
sensing applications.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12050704/s1, Figure S1: Chromaticity index obtained
using single linkage Euclidean distances and the formation of three clusters associated with variegated
leaves that are green, yellow, and red-purple; Figure S2: Selected most responsive variables among
the wavelengths of 350–2500 nm by VIP, GA, s-PLS, i-PLS, r-PLS, n-PLS algorithms for variegated
leaves. (A) Weight (g). (B) Leaf area (m2). (C) Specific leaf area (cm2 g−1). (D) Estimated leaf thickness
(µm); Figure S3: Count plot map of coefficient of correlation (R2) from the linear regression between
phenomenological energy flow through excited cross-sections (CSs) of Codiaeum variegatum (L.) A.
Juss leaves and wavelengths1 vs. wavelength2 for 350 to 2500 nm. (A) RC/CS, indicate the % of
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flow trapped by CS. (D) ET/CS, electron transport flow by CS. (E) DI/CS, energy flow dissipated
by CS. Dark blue to red displayed increased associations; Table S1: Biophysical, biochemical and
photochemical parameters-based efficiency-related for vegetation indices (VIs); Table S2: Parameter
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