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Abstract: A growing number of studies shows that it is possible to induce a phenotypic transformation
of cancer cells from malignant to benign. This process is currently known as “tumor reversion”.
However, the concept of reversibility hardly fits the current cancer models, according to which
gene mutations are considered the primary cause of cancer. Indeed, if gene mutations are causative
carcinogenic factors, and if gene mutations are irreversible, how long should cancer be considered as
an irreversible process? In fact, there is some evidence that intrinsic plasticity of cancerous cells may
be therapeutically exploited to promote a phenotypic reprogramming, both in vitro and in vivo. Not
only are studies on tumor reversion highlighting a new, exciting research approach, but they are also
pushing science to look for new epistemological tools capable of better modeling cancer.

Keywords: tumor reversion; microenvironment; embryo development; systems biology; morphogen-
esis; biological network

1. Introduction

The first clinical evidence of spontaneous cancer regression came from teratocarcinoma.
In 1907, the Swiss pathologist, Max Askanazy, observed the spontaneous reversion of an
ovarian teratocarcinoma [1]. A more thorough study of these processes was possible
in 1954 after Stevens and Little’s work on the 129/SvJ mouse had led to a model of
teratocarcinoma [2].

In 1959, Pierce made his first observations on the spontaneous differentiation of embry-
onal cancer cells deriving from testicular teratocarcinoma in the 129/SvJ mouse [3]. Pierce
highlighted the pivotal role of the cell microenvironment and introduced the hypothesis of
“the development of methods that would direct the differentiation of embryonal carcinoma
cells to benign forms as a logical means of controlling this type of cancer” [4]. These results
were instrumental in introducing the concept of “cancer reversion”, indicating the recovery
of a normal phenotype by cancerous cells when exposed to a specific microenvironment.

In 1974, Brinster confirmed Pierce’s hypothesis. He injected testicular teratocarcinoma
cells from the 129/SvJ black agouti into murine blastocysts, and then implanted these
blastocysts into albino female mice. This resulted in a healthy black-white hybrid offspring,
suggesting that “the embryo environment can bring under control the autonomous pro-
liferation of the teratocarcinoma cells” [5]. Similar results were obtained by Mintz and
Illmensee. They had injected embryonal cancer cells into 280 different blastocysts that
were further implanted into as many adoptive mothers. Both analyses on the fetus and
the offspring showed no signs of cancer cells. Even more interesting were the results of
the analyses on the composition of hair, the type of circulating red and white blood cells,
the protein composition of urine, and the characteristics of the kidneys, liver, and thymus.
From all of these analyses, it emerged that the teratocarcinoma cells deriving from the
129/SvJ black agouti mice participated in the normal formation of the organs by integrating
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“in mosaic” with the cells of the brown C57-b/b mouse strain. Following these results,
Mintz and Illmensee concluded:

“The capacity of embryonal carcinoma cells to form normally functioning adult tissues
demonstrates that conversion to neoplasia did not involve structural changes in the
genome, but rather a change in gene expression”. [6]

Subsequent experiments demonstrated the role of the embryonic microenvironment in
controlling the proliferation of different cancer types such as Rous sarcoma [7], leukemia,
neuroblastoma [8], melanoma [9,10], colon, and breast [11,12], to mention a few.

Despite this experimental evidence, the “reversion” approach in cancer research re-
mains insufficiently explored. One reason may be in the epistemological tools needed
to model reversion processes: experimental results on tumor reversion need a systemic
approach in cancer modeling. This approach forces us to reconsider entire cancer models
developed under a mainly reductionist approach. The aim of this article is, therefore, to
investigate how the epistemological tools that we need to model tumor reversion processes
may reshape our perspective on cancer and offer new heuristic models for cancer research.
Rethinking the carcinogenic model is mandatory to plan a very different strategy in cancer
treatment. During the last 40 years, the survival rate of patients suffering from different
kinds of cancer has increased up to 20%. This is an appreciable result, although it mostly de-
pended on early diagnosis and the development of improved surgical and radiation-based
therapies, while medical treatments provided only marginal benefits in solid cancers [13].
A similar perspective is emerging regarding target-based drugs, which show a limited
curative potential [14].

2. Tumor Reversion—An Experimental Model Overview

Different experimental models [15] have proven that, in certain circumstances, cancer
cells can revert their phenotype from malignant to benign. A systematic literature review
shows the emergence of the main experimental models. Schematically, these can be classi-
fied as follows: (a) observation of spontaneous in vivo cancer regressions; (b) in vivo model
of cancer cells grafted into normal tissues; (c) in vivo model of cancer cells grafted into
blastocyst, and (d) in vitro model of cancer reversion following the exposure of tumor cells
to embryonal microenvironmental factors or embryonic stem cell factors. The different
variables taken into consideration in these models are: (I) type of tumor; (II) specific phase
of the embryonic development of the organism in which the tumor is implanted, and (III)
anatomical site of the tumor graft. Table 1 recapitulates the most relevant studies published
in the field.

Table 1. This table organizes the main experimental works in which a “tumor reversion process” has
been observed or induced. Each work is presented highlighting the tumor model, the experimental
methodology, the results and some relevant comments.

Tumor Model Experimental
Methodology Results Comments Ref.

Ovarian
teratocarcinoma Clinical observation

Spontaneous regression,
differentiation of cancer cells

into normal tissue
Askanazy, 1907 [1]

Plant teratoma clonal
cells

Succession of grafts on
healthy tobacco plant

Disappearance of the
teratoma and plant

generation with seeds
capable of giving life to a

new plant

The results led the author
to introduce the concept of

pluripotentiality of
cancer cells

Braun, 1959 [16]

Murine embryonic
tumor cells Transplantation on mice Differentiation of cells

Hypothesis on the role of
the tissue context in

determining the fate of
cancer cells

Pierce, 1961 [4]
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Table 1. Cont.

Tumor Model Experimental
Methodology Results Comments Ref.

Hamster sarcoma cells
(induced by Rous

sarcoma virus)

Succession of cell cultures
and re-platings

Transformation of 19%
of cells, which return to

orienting themselves in an
orderly manner, as in

healthy tissues

The author uses the term
“reversion” to
describe results

Macpherson, 1965 [17]

Murine testicular
teratocarcinoma cells

(black mice)

Injection into murine
blastocyst implanted in

albino female mice

Development of
healthy mice

One of the mice had black
tufts, characteristic traits

of the genome of
teratocarcinoma cells

Brinster, 1974 [5]

Embryonic carcinoma
cells from black mice

Blastocyst injection
implanted in brown

female mice

Normal fetal development;
normal newborn mice

feature hybrid traits between
black and brown mice

Authors use the term
“reversion” to describe

their findings

Mintz and Illmensee,
1975 [6]

Lucke renal tumor cells
(tumor of viral origin)

Planting on regenerative
salamander limbs

Stopping of tumor growth
and subsequent

differentiation of cells

Failed to determine
whether the differentiated

cells came from cancer
cells or healthy tissue

Rose and Wa llingford,
1948 [18,19]

Spontaneous tumors
in animals

Observations on the rate
of onset

Reduced occurrence of
tumors in animals with high

regenerative capacities
Gersch, 1951 [20]

Triton-induced
epithelial tumors

Monitoring the
spontaneous evolution

of tumors

Tendency to tumor
regression in anatomical

areas with high
regenerative potential

Results confirmed by
histological analysis

Seilern-Aspangand
Kratochwil, 1962 [21]

Liver cancer cells
(marked with dye) Injected into liver tissue

Reduction of malignancy
and, in some cases,

differentiation of cancer cells

Use of the term “partial
reversion” to describe the
phenotypic change of cells

Coleman, 1993 [22]

Neuroblastoma cells Injected into 8 1
2 day old

murine blastocyst
Differentiation of tumor cells Podesta, 1984 [23]

Leukemia cells Injected into 10-day-old
murine blastocyst

Correct hematopoietic
maturation Gootwine, 1982 [24]

Rous sarcoma virus Injected into chicken
embryos No tumor development

If the virus is injected into
adult chickens, then
sarcoma develops

Dolberg and Bissell,
1984 [7]

Mouse melanoma cells Implanted into embryos in
murine uterus

Cell differentiation and
normal embryonic

development

Differentiation occurs
when cells are implanted

into a 14-day embryo
Gerschenson, 1986 [9]

Murine breast
adenocarcinoma cells

Exposure to diffusible
substances of murine

embryonic mesenchyme
Differentiation of tumor cells DeCosse, 1973 [25]

Primary murine
lung cancer

Administration (in vivo)
of homogenates of

pregnant murine uteri

Suppression of tumor
development Biava, 1988 [26]

Glioblastoma,
melanoma, renal

adenocarcinoma, breast
cancer, and

lymphoblastic
leukemia cells

Exposure to embryonic
extracts of zebrafish taken

before gastrulation

Reduction of cell
proliferation rates

Biava, 2001; 2002
[27,28]

Human melanoma cells
Implanted in zebrafish
embryos in the early

stages of development

Suppression of malignant
tumor phenotype and birth

of healthy fish
Lee, Hendrix, 2005 [10]

Leukemia cells Retinoic acid
administration

Differentiation of leukemia
cells into granulocytes,

subsequently digested by
macrophages

Today, acute
promyelocytic leukemia is
treated in most cases with

differential treatments
based on retinoic acid

Breitman, 1980 [29]
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Table 1. Cont.

Tumor Model Experimental
Methodology Results Comments Ref.

Various types of
human tumors Clinical remarks Spontaneous regressions

of tumors

Several cases of
spontaneous regression of

tumors have been
analyzed, confirmed,

and classified

Rohdenburg, 1918;
Everson and Cole, 1966;
Challis and Stam 1990;

O’Regan and Hirshberg,
1993; Papac, 1998 [30–34]

Advanced
hepatocarcinoma

(179 cases)

In vivo administration of
extracts of zebrafish

embryos

20% of cancer regressions, of
which 2.5% total

stabilization progression in
16% of cases

Partial or complete
disappearance of liver

cancer in terminally
ill patients

Livraghi, 2005 [35]

Melanoma cells and
breast cancer cells

Exposed to embryonic
stem cell factors

Reversal of the malignant
phenotype and activation of
apoptotic processes (nodal

signal inhibition was
also observed)

If cells are exposed to
factors extracted from

umbilical cord and bone
marrow stem cells, then
no phenotypic reversion

is observed

Henrix, 2007; Postovit,
2008 [36,37]

Ovarian, prostate, and
breast cancer cells

Microenvironmental
exposure of human

embryonic stem cells

Reversion of malignant
phenotype block of cancer

cells in phase G1

These results led
researchers to hypothesize
an inhibitory action on the

cell cycle by factors
extracted from embryonic

stem cells

Giuffrida, 2009 [38]

Melanoma cells
Microenvironmental
exposure of human

embryonic stem cells

Reversion of malignant
phenotype

The study identified some
mRNAs involved in these
cellular reprogramming

processes.

Costa, 2009 [39]

Breast cancer cells
Exposure to salamander,

frog, and mouse
embryonic cell extracts

Stable reversal of malignant
phenotype (confirmed with
subsequent implantation of

reprogrammed cells in
immunosuppressed mice)

Re-expression of some
cancer suppressor genes

has been observed; mouse
embryonic cells did not

give results

Allegrucci, 2011 [40]

Breast cancer cells

Exposure to embryonic
extracts of zebrafish taken

at different times of
embryogenesis

Reduction of invasiveness,
migration, and proliferation

parameters; action on
cytoskeleton and TCTP

downregulation

An activation method of
reversion was identified,

implying the
down-regulation of TCTP
by exposing the cells to a

specific embryonic
microenvironment
composition that

corresponds to a specific
phase of embryogenesis

Proietti and Bizzarri,
2019 [12]

Besides the complexity of the experimental and interpretative framework, some con-
clusions from the most recurrent elements can be drawn, namely:

(a) Cancer cells display relevant plasticity, and their fate is not “irreversibly” determined.
(b) It is possible to inhibit the phenotypic expression of the malignant characteristics

of cancer cells mostly through epigenetic processes, although other mechanisms are
likely to participate.

(c) Depending on the tumor type and stage, some context-dependent conditions/
constraints (such as those pertaining to the microenvironment of specific embryogen-
esis stages) can induce a phenotypic reversion of malignant cancer cells.

(d) Gene mutations do not play a “causative” role as the somatic mutation theory (SMT)
posits, albeit they can be associated throughout the process of cancer development.

Despite such experimental evidence, the concept of cancer reversibility has not been
systematically explored. It is important to specify that reversibility does not mean the
return of cancer cells to the original state. Rather, it indicates a phenotypic transformation
during which cells lose their main malignant traits (migrating and invasive capabilities)
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and acquire a benign-like architecture. From a clinical point of view, this response can be
associated with either regression or tumor dormancy. Eventually, fibrous transformation
can occur.

These results have been mostly underestimated, chiefly because current cancer models
essentially rely on the somatic mutation theory (SMT). Indeed, the SMT focuses on gene
mutations as the primary causes of cancer and can hardly provide a convincing explanation
of the reversion process.

Rather, the fact that cancer cells can undergo a phenotypic normalization without
entailing their “mutational” status contradicts the very basic premises on which the SMT
is grounded.

This draws attention to the concept of phenotypic expression, that is, the process
mediated by a complex network of signals and biological mechanisms that govern DNA
expression. For a long time, specific genes were associated with certain functions and
characteristics expressed at a phenotypic level: “a gene–a function” had become a sort
of axiom. Based on this approach, the SMT has implicitly excluded the concept of tumor
reversion: if the malignant cell characteristics are the result of genetic mutations, then it is
impossible to eliminate them without first correcting these coding errors [41].

However, the limits of the gene-centric view of cancer in accounting for certain experi-
mental observations have already emerged.

Notable is this quote from an editorial published in Nature Magazine, which clearly
states that “it urge(s) us to revisit the role of gene mutations in cancer (...) if not gene
mutations, what else could cause cancer?” [42].

Such a question is also highlighted by Weinberg, who lucidly explained how “the
identities of mutant cancer genes varied considerably from one type of tumor to another ( . . . ) Each
tumor seemed to represent a unique experiment of nature ( . . . ) We cannot really assimilate and
interpret most of the data we accumulate. How is all this going to end? I wouldn’t pretend to know.
It’s a job ( . . . ) for the next generation” [43].

Weinberg also pointed out that “the most potent carcinogens are actually not muta-
gens” [43].

3. Critical Aspects of Gene-Centric Models

A number of published studies question the centrality of gene mutations in cancer-
causing processes [44–46]. Moreover, it is becoming increasingly clear that not all oncogenes
are mutagens [47,48], and not all tumors are associated with specific mutations. Unex-
pectedly, cancer can develop even in the absence of specific mutated genes [49–51]. For
example, it has been observed that some oncogenes such as H-ras, N-ras, and K-ras are not
clonal in the prostate [52], the colon [53] and in melanomas [54]. Mutations such as Her and
EGFR, observed in tumors of the bladder [55] and the breast [56], as well as in gliomas [57],
are also non-clonal. Surprisingly, certain mutations deemed to exert a causative role in
malignant tumors are also detected in normal cells [58], while certain mutations affecting
oncogenes and tumor suppressor genes often occur only in an advanced stage of cancer
progression. In some cases, as in the case of EGFR changes, these mutations occur only
in a limited number of tumor cells [59]. The same was observed for the oncogenes c-fos
and c-erb B-3, which, paradoxically, turned out to be more frequent in healthy tissue cells
than in colon cancer cells [60]. Other studies show that only 30–40% of cancer cells present
genetic mutations [61], while mutations in genes highly correlated with tumors have been
found in healthy cells [62]. Finally, some tumors do not present mutations at all [63,64].

These observations allow the scientific community to hypothesize that alterations
in the “gatekeeper” and “caretaker” genes are not sufficient to initiate a tumor [65], and
that perhaps the very hypothesis that cancer is the result of genetic mutations may be
wrong [66,67].

The SMT derives from a reductionist approach. It moves from the assumption that in
order to understand the biological systems, one needs to break them down into discrete
entities, isolate each entity, and analyze them as if they were many small cogs of a complex
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machine. This assumption, also known as biological atomism, considers it possible to
identify the elementary units, which, in principle, can explain any biological process [68].

Coherently with this model, cancer is interpreted as a complex phenomenon caused
by a progressive accumulation of specific genetic mutations. Therefore, any understanding
of oncogenic processes should be sought at the genetic level. Accordingly, current cancer
research aims to identify the genetic footprint of each tumor, interpreted as the specific
cause of cancer [69,70], by isolating cells and their DNA from the biological context. This
approach, however, has to deal with the paradox that many of the mutations associated
with cancer have also been found in healthy cells and that cells reverted from cancer status
do not show any correction of mutated genes [71].

Cancer heterogeneity represents another critical issue: a tumor mass is composed of
a heterogeneous population of cancer cells that, contrary to what was originally hypoth-
esized by the monoclonal cancer origin model, show a different gene expression pattern
as well as several relevant differences in phenotypic and behavioral traits [72–74]. Conse-
quently, within an apparent homogenous population, clusters of cancer cells often respond
differently to cancer treatments. In the most extreme case, genetic and phenotypic hetero-
geneity ultimately cooperate in promoting the selection of chemotherapy-resistant cancer
cell lines [41,75,76].

These data suggest that it may be practically impossible to define a genetic fingerprint
for each type of tumor, as the cancer genome is heterogenous and always changing across
the disease progression. Consequently, the search for specific drug targets is a futile attempt.
These targets, even when they are identified in a large fraction of the cancer cell population,
could be numerous and constantly evolving, making it difficult to reach a definitive target-
based solution for the treatment of cancer [77–79]. This might be the reason why the
target-based therapy, i.e., the possibility of finding drugs capable of interfering exclusively
with tumor cells carrying specific mutations [80], is currently largely questioned, due to
disappointing results and the enormous imbalance between costs and results [81].

Generally, most of the recent anticancer drugs have not been able to make substantial
contributions to the treatment of cancer patients. The best achievements performed along
this path are actually limited to a six-month extension of the life expectancy of patients,
with an average of around four months. In addition, many of these therapies fail to avoid
relapses, which in most cases recur with greater malignancy than the primary tumor [41,82].

The aforementioned limits have been highlighted since the 1960s, when Barry Pierce, a
pioneer in tumor reversion studies, expressed his concern about the hypothesis that cancer
originated essentially from genetic mutations:

“Most oncologists believe that insertion of viral information into the genome, or mutation
(a structural change in the genome), is the underlying mechanism of carcinogenesis. On
the basis of our experiences with spontaneously occurring embryonal carcinoma, and
because all of the phenotypic traits of malignant cells appear to be encoded in the genome
of normal cells, I favor the idea that the production of a neoplasm is probably similar to
the production of any normal tissue (...) The mechanism of tissue genesis involves cell
division, differentiation, and organization. In other words, I believe that carcinogenesis is
an epigenetic event, similar to postembryonic differentiation”. [83]

Already then, in light of the experimental results obtained, he was able to trace a theoretical
path that still needs to be deepened today:

“If mutation proves to be the causative event, then our discovery that malignant cells
can differentiate to benign cells implies that the process of differentiation is capable of
regulating the mutation that causes cancer. If expression of an oncogene is the cause
of cancer, then what we have shown is that the process of differentiation represses the
oncogene”. [84]

When the role of genes and mutations within tumor processes is resized, then the theoretical-
experimental framework of SMT is also reframed. Hence, there is a need to identify a new
theoretical approach that can model the complexity inherent in the dynamic relationship
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between cells and (micro)environment that results in phenotypic expression processes. As
Denis Noble explains, “one cannot understand the physiology or the pathology of cardiac rhythm
by only referring to the gene expression and to the features of a single cardiomyocyte” [85].

Definitely, a theory is not neutral with respect to experimental data but plays an
important role in determining what can be observed and, consequently, the setting of
experimental models [86]. In other words, the interpretation of the same data can differ
according to the theoretical frame we are embracing. Moreover, even the selection of
relevant parameters and observables strictly depends on the theory, which is a prerequisite
for any experimental endeavor. Even the most basic and simple empiricism relies on a set
of a priori, i.e., fundamental theoretical premises within which experimental data should
be nestled and interpreted [87].

Herein, what we would propose is, therefore, an interpretation of tumor reversion
under a systemic view of cancer, i.e., the organicist approach.

4. The Role of the Microenvironment

The initial concept of the microenvironment was developed in the seed and soil theory
by Paget at the end of the 19th century [88]. According to this theory, it was possible to
explain the mechanisms of metastases as the product of favorable interactions between
metastatic tumor cells, the “seed”, and their microenvironment, the “soil”. Nowadays,
the cellular microenvironment means the environment surrounding the cell—a complex
system composed of the extracellular matrix, capillaries, stroma cells (namely fibroblasts
and immuno-competent cells), active substances (including cytokines and hormones) and
many other diffusible molecular factors [89]. This whole set of elements, topographically
positioned according to a balanced architecture, affects the cell by means of physical and
biochemical pathways. In turn, cells can significantly perturb their microenvironment
by releasing substances (collagen, fibronectin, metalloproteinases) that modify some criti-
cal features.

The pivotal role of the microenvironment in addressing cell fate is emerging also from
studies performed in regenerative medicine and tissue bioengineering. These attempts seek
to reproduce the processes of organogenesis by replicating what occurs in nature during
embryonic development [90].

The cells, together with the tumor microenvironment, represent an integrated, dynamic
system whose state is determined by the interactions of all of its components, modulated
according to non-equilibrium thermodynamics. Genes are expressed through processes
finely tuned by the gene regulatory network [91]. Examples of these mechanisms involve
the micro-RNA-dependent post-transcriptional regulation and epigenetic control of gene
expression [92].

However, the activity of gene and molecular regulation is not based only on signals
that act at the local molecular level. It is also strongly modulated by signals and constraints
that depend on the higher levels of biological organization [93]. The cells and the microenvi-
ronment are, therefore, essentially two entities that interact with each other. A higher level
of observation shows that they constitute a single entity, i.e., an integrated system—the
tissue that can, in turn, exert its influence onto lower levels.

Within this framework, the focus shifts from genes to the system, from single entities—
cells and DNA—to the complex relationships between the components of the system. The
most suitable tools for studying these interactions must, therefore, be sought in network and
complex systems science.

4.1. Essentiality of the Microenvironment in Biological Models

In vitro experimental settings oversimplify the context within which genes and cells
express their functions. In order to understand the logics that guide the dynamics of a
system, we should pay attention not only to the single elements that compose it but also
the context, that is, the microenvironment.
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In this sense, a gene could be described not only by its specific nucleotide sequence
but also its specific network of interactions, that is, its “connectivity” [94].

Undoubtedly, only an in vivo model can reproduce the entire relational context within
which each single gene operates. The verification of the linear correspondence between
gene and phenotypic characteristics is not always possible. On the contrary, unexpected
effects due to the intricate network of gene expression pathways are often observed [95]. For
example, the same pathological phenotype can be originated from different combinations
of gene mutations [96].

The gap between the results of in vitro genetic studies and in vivo expression is still
wide. It is clear that current therapeutic cancer strategies struggle to manage this complexity:
different genes, in different contexts, can originate the same proteins, while the same genes
can express themselves in different ways [78,97,98].

This is not meant to deny the relevance of genes and their specific sequences. However,
there is a need to reinterpret their functioning in the context. The latter, in fact, is able to
amplify, modulate, or inhibit the activity of each gene. Oncogenes and tumor suppressor
genes inevitably also fall into this picture [99].

4.2. The Microenvironment as a Target

Some interesting experimental works have highlighted the role of the microenviron-
ment in tumor processes and, more generally, in cell phenotypic commitment.

For instance, the carcinogen N-nitroso-methyl urea can trigger a malignant trans-
formation of epithelial cells only by targeting the stroma in which these cells belong. If
N-nitroso-methyl urea is administered directly on the epithelial cells, no tumor transforma-
tion is elicited [100]. Small modifications in the composition and stiffness of the extracellular
matrix are sufficient to modify the regulatory activity of the cell cycle and consequently can
inhibit or promote cell proliferation accordingly [101–103]. In fact, through its interaction
with the cytoskeleton, the microenvironment is able to modulate the transcription of genes
and activate or inhibit the various associated molecular pathways [104–107]. Moreover,
changes in microenvironment composition and structure are often associated with the
development of fibrosis, the formation of intricate collagen networks, and even tissue
stiffening. All of these processes increase the risk of developing cancer [108,109]. Contrarily,
a physiological microenvironment is able to favor the processes of apoptosis [110,111] so
much that it is possible to induce a reversion of the tumor phenotype by re-normalizing
the characteristics of the extracellular matrix [112]. More generally, physical as well as
biochemical anomalies in the microenvironment can act by exerting a pro-tumoral action,
thus acting as a true oncogenic, “causative” factor [113,114].

Furthermore, as discussed later, oncogenic mutations are also present in normal
tissues. This can be interpreted as a clue to the existence of mechanisms—expressed by
the “normal” microenvironment—that prevent the malign expression of mutated genes in
the microenvironment of healthy tissues [115]. Indeed, the microenvironment can exert
a double action: the inhibition of tumors, even in the presence of oncogenes, and the
promotion of tumors, even in the absence of gene mutations [113].

However, a full understanding of the dynamics of biological organization requires
that we look at genes with new eyes in order to grasp the global dynamics of networks,
whose behavior is collective and is regulated at a higher order than that of individual genes
kept in isolation [116].

4.3. The Integration of the Microenvironment within Biological Models

In consideration of the above, a reliable appreciation of gene activity should be in-
vestigated within a complex system that is capable of integrating the characteristics and
functions of the microenvironment, the morphogenetic fields, and the entire biological
organization [117]. Consequently, it would be possible to understand the phenotypic
characteristics, as derived from a complex interaction between the cells and the microenvi-
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ronment, rather than just a linear, hierarchical correlation between them as posited by the
reductionist approach [118].

Denis Noble has thoroughly investigated the generation and propagation of the
rhythm of the heart by means of a mathematical model. This is a paradigmatic example of
the approach to which we refer. Nobles’ work required a multi-scale approach that included
the tissue structure and macroscopic anatomy of the heart, without which the model could
not have worked. Functionalities emerge from the interaction of genes, proteins and all the
cascades of signals that develop within the microenvironment [119].

Here, the very concept of “genetic information” is questioned [120]. The reductionist
framework seems misled by the concept of information as developed in computer science,
where a clear meaning of biological information is missing along with the observables that
should be taken into consideration [121]. Thereby, the hypothesis that the genes determine
the entire biological organization in every detail by “controlling” the flux of “biological
information” is becoming weaker and weaker [122].

As mentioned, the reductionist approach focuses on entities, while the systemic/
organicist approach focuses on the dynamic relationships among entities. While the re-
ductionist approach has proven to be extremely effective in investigating certain aspects
of biology and in developing therapeutic solutions, it struggles when dealing with more
complex issues, such as tumor reversion or embryogenesis.

5. The Systemic Approach

The word system derives from the Greek verb, synistanai (συνίστηµι), which means to
put together, to organize. By system, therefore, we generally mean an “organized whole”,
an aggregate of parts that depend on each other according to fixed laws and rules and have
the same goal. We may describe a biological system as a network of integrated components
that can feature nonlinear dynamics [123]. The organizational structure of the living world
seems to obey different hierarchical levels. These range from the subatomic level to the
entire ecosystem, in=cluding cells, tissues, and organs. Emerging laws that do not appear
at the lower levels of organization simultaneously characterize and govern each of these
levels [124].

The investigation of a complex biological system requires the following: (a) under-
standing how its components relate and integrate into increasingly larger and more complex
organizational structures; (b) recognizing the correlations between local processes and the
global structure at different organizational levels; (c) investigating how the laws that occur
at the organic level can influence the behavior and organization of the lower levels (bottom-
up and top-down causation); and (d) studying biological homeostasis, i.e., the way all of
the different parts contribute to the robustness of the organic properties. In other words,
the space between molecules and life needs to be studied [125].

In an attempt to investigate these issues, two different approaches to the application
of systems science in biology have been developed: a purely computational one, based on
data and statistical analysis, and a more theoretical one aimed at identifying principles that
drive the biological organization. Rather than oppose, these approaches complement each
other [126].

What is known as the pragmatic approach focuses on molecules to describe all interac-
tions that occur at this level by means of mathematical and biochemical models. This is the
case of the various omics sciences [127]. The theoretical approach argues that it is necessary
to rethink the study of biology from both a speculative and a methodological point of view.

Here, we present the contribution of this perspective in the study of tumor reversion
processes. We will, therefore, introduce some concepts borrowed from organicism, useful
in modeling tumor reversion processes.

5.1. Limits of the Pragmatic Approach

One of the main critical issues with the pragmatic approach concerns data production
and management. In an effort to study the complex interactions that occur at the lower
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biological levels, different analytical methods are employed. These include gene expression
patterns, microarrays, and all the “omics” technologies, for example, metabolomics and
proteomics [128]. The pragmatic approach aims to integrate all data coming from molecular
biology within complex computational and mathematical network models [129,130].

There are two main limitations with this approach. First, how can data produced at the
molecular level be correlated so that there is a biological meaning for higher organizational
levels? Second, how can the conditioning of the epistemic premises in the very process of
data collection, selection, and modeling be decided [131].

In fact, data collection is not a purely empirical and neutral activity. Science does not
collect data randomly. Rather, it does so through experiments. These are designed and
conducted to identify the parameters that are thought to be relevant. Inevitably, the implicit
epistemic premises of the experimental model influence the choice of the parameters, hence
data. The latter are no longer neutral with respect to theory [132]. The possibility of telling
or even perceiving certain facts, data, and objects depends on the point of view of the
observer [133]. Privileging the molecular level as causal is an example of how epistemic
premises condition the criteria of data collection and the processes of scientific research.

Systems biology’s pragmatic approach takes shape from the belief that causal rela-
tionships can be deduced from a mere process of data collection and processing. Big data
science is a form of technology-based empiricism. It implicitly affirms the primacy of
inductive reasoning and has inspired the idea that future automated data mining leads
directly to new discoveries. However, more data do not necessarily generate more knowl-
edge [133,134]. In several cases, it has been found that many correlations observed in
certain data sets were spurious and did not indicate a real interdependence [135].

The enormous amount of data produced by the Human Genome Project failed to
deliver any of the expected knowledge shifts. This testifies that data alone are insufficient
for understanding biological processes [53]. The huge quantity of information accumulated
was not only unable to clarify certain phenomena but also increased the distance between
data and the comprehension of the organizing principles of biology [136,137].

It does not matter how intense and well-performing the computational activity is. It
can never replace a theory for giving laboratory data a biological meaning.

Theory as a guide to experimental design is, therefore, crucial for efficient data collec-
tion, as well as producing reliable predictive models and conceptual knowledge [85,138].

According to the reductionist approach, biological information linearly flows from
DNA to proteins until the phenotypic expression [127]. This makes any proper investigation
into tumor reversion impossible within the SMT framework, since a transformation of tumor
phenotype without accompanying changes in specific gene mutations is inconceivable.

The theoretical approach, instead, offers new conceptual tools and even a different
lexicon. These include complexity, organizational structures, multilevel organization,
non-linear dynamics, network modeling, multi-scale biophysical constraints, and other
incomputable aspects of the living world [139]. This allows for new experimental models to
highlight and measure relevant observables and better understand the dynamics of tumor
reversion. In this sense, it is necessary to clarify some concepts of complex systems that
may play roles as descriptors and methodological tools.

5.2. From Entities to Relations

In order to understand a biological organism, it is necessary to look beyond the
intrinsic properties of the individual entities and consider the relational dynamics that exist
between them [131,140]. One cannot define what biological entities can or cannot do only
by investigating their internal properties. The organism’s behavior rather depends on the
integrated set of interactions between its different elements [140].

Isolated entities may not show the same behavioral properties in different contexts.
For example, cell lines cultured in vitro may produce data and information inconsistent
with the organic context of in vivo studies [141].
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Indeed, the functional properties of a biological organism are not “intrinsically” inher-
ent in its individual components. Rather, they emerge because of a specific organization
among these various parts. This organized structure features properties that do not directly
come from its components. Instead, the overall configuration exerts a “binding” and regu-
latory action on the components themselves [142]. This introduces the distinction between
the intrinsic properties of individual entities, i.e., the properties that entities have by virtue
of what they are, and relational (“emergent”) properties, i.e., the properties that entities
have as a consequence of the way in which they interact with each other and with other
environmental structures [140].

Even in the inorganic world, molecular interactions occur within complex matrices
including water [143], electromagnetic fields [144], and gravitational fields [145]. All of
these elements contribute to a single background field that guides and constrains chemical
reactions.

A paradigmatic example is the different organizational models of carbon atoms that
characterize two very different materials, i.e., graphite and diamond. It is clear that the
property of hardness does not depend on the specific entities of carbon atoms but on
how these are organized, that is, how they relate to each other. Even the property of
acidity, which corresponds to the ease with which a substance in water releases H+ protons,
depends on relations: no compound can be defined as acidic or basic per se. It can behave
as an acid or a base depending on the context, that is, depending on the other substances in
the solution, which may be more or less prone to release H+ protons.

In the same way, genes for cells and cells for tissues can modify the properties of
higher systems based on how they are organized. The opposite is also true in biology, i.e.,
higher-level context and dynamics can affect the activity of genes and cells. From this
perspective, it is agreed that causal processes proceed both from the microscopic world
toward the macroscopic and vice versa [146].

Thus, when separated from their neighbors, cells lose most of their functional and
structural attributes. A sort of causality reverberates from higher to lower levels: macro-
molecules, metabolites, genes, and proteins are all intimately linked to each other. They
form an integrated system that changes according to the stimuli coming from the higher
levels.

This approach requires a style of systemic reasoning that does not consider observables
as autonomous entities within the system but focuses on the relationships between them.

Explanatory models should, therefore, search for the appropriate biological observ-
ables where target phenomena and their meaningful correlations occur [147,148].

As Noble showed, it is impossible to develop explanatory models of the functioning
of the heart or any organ by exclusively studying its genetic level [119]. There, stochastic
fluctuations in gene expression generate disorder [149]. However, leveling up makes the
collective coherence of the non-linear dynamics of the lower levels emerge: the same pro-
cesses that appear chaotic on lower scales give rise to ordered structures at the mesoscopic
level. In principle, the same phenomenon can be studied at different levels: from the atomic
one to the cellular one. A system, therefore, appears different according to the various
levels of magnification; all of the levels concur in the form and functionality of the system,
but the mesoscopic level should be the privileged level of observation. In fact, it is there
that the most scientifically relevant phenomena can be observed [125,141,150].

In short, the difference between reductionism and the systemic approach lies in this:
the reductionist approach considers it theoretically possible to derive all of the properties
of an organism from its components. The systemic approach considers this impossible
because organic forms and functions emerge gradually from the non-linear interaction
between different sub-structures.

It is interesting what Denis Noble points out: evolutionary processes rarely act on
single cells or distinct species. Rather, they affect complex multi-scale systems and the
non-linear way that components interconnect [151].
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5.3. Bottom-Up and Top-Down Causation

Unlike a machine, where each function is directly deducible from the characteristics
of its components, living organisms show “emergent” properties that cannot be deduced
from fundamental laws or single parts [150]. Each level in biology is governed by emerging
laws that do not appear at the lower levels.

It is key to understand how these emerging properties can influence the lower levels
with a top-down causation, and how the lower levels can determine certain higher-level
behaviors via a bottom-up causation [152,153].

In fact, living organisms are hierarchically organized so that the dynamics that occur
at the lower scales integrate with the constraints that come from the higher levels. This
determines the rules of functioning and adaptation [154,155].

The systemic approach to biology aims to understand how causality operates and
functional processes integrate on the different levels [127]. Specifically, it seeks to identify
the levels of the system in which the most relevant dynamics take place. In this sense, the
mesoscopic level is where biological dynamics acquire greater coherence in terms of causal
correlations. There, the effects of constraints coming from the higher scales harmonize
with the stochastic dynamics of microscopic scales. This integration produces emerging
properties [156]. Order within living systems is mainly imposed by higher levels in the form
of general constraints and forces such as electromagnetic, gravitational, and mechanically
transduced forces dependent on cells and tissues [148,157].

Explaining cancer in genetic terms does not mean that cancer is a genetic phenomenon.
There is an explanatory asymmetry between the level at which a phenomenon is explained
and the terms in which it is explained [71]. If it is true that every biological phenomenon is
molecular, it is also true that no phenomenon is just molecular. An approach based only
on molecules only ignores the relevance of morphological forms and morphogenesis. In
this sense, cancer can be seen as a developmental phenomenon emerging at the tissue
level [158].

Here, the morphogenetic field takes on a central role in determining the constraints
and dynamics by which living systems organize and adapt. The laws of motion channel
the possible movements of the planets. Likewise, the morphogenetic fields can determine
biological processes [125,159,160].

5.4. The Morphogenetic Field Concept

The “morphogenetic field” concept arises from the first speculations about the laws of
form developed by D’Arcy Thompson in the early 1900s. This author hypothesized that it
was possible to understand the laws of biological development through a mathematical
modeling of different living forms and their mutation [161]. The morphogenetic field can
be described as the result of the integration of biochemical and biophysical forces. Under
this field, the various degrees of freedom of the biological components and processes are
bound to an “ordered pattern” that integrates the functions of its parts into the integral
activity of the whole system [162].

For a long time, the morphogenetic field concept was used as an analogy, but since the
1980s it has been a fundamental concept for the study of developmental biology [163,164].
During early developmental steps, the fertilized egg draws the topological information
necessary for its development mostly from its microenvironment. A fine program guides the
progressive differentiation of the cells and their space–time organization according to three
growth axes (dorsoventral, right–left, and craniocaudal). Such a program depends on the
interaction of the cells with their field [165]. This is a very critical point, and consequently,
morphogenetic processes have come of age, becoming a field of useful theoretical and
methodological tools [166,167].

Cells lose many of their differentiated functional characteristics when isolated and
placed in a culture medium. This shows that cellular specialization depends on the context,
i.e., the morphogenetic field [168]. Cells are not a homogeneous colloidal soup in which
processes occur following the classical laws of diffusion and kinetics. Rather, their highly
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organized environments obey laws that go well beyond those of Newtonian fluids [169].
For this reason, it is impossible for the genetic code to dictate every detail of a biological
form [122].

The morphogenetic field binds cells to a specific dynamic adaptation to external
stimuli, such as shear or traction forces, compression, hydrostatic pressure, and even
electromagnetism. Cellular response occurs through cytoskeletal changes in shape and be-
havior. These modifications can, in turn, exert an influence on both their microenvironment
(mechano-reciprocity) and gene expression in a self-regulating mechanism that guarantees
the cell’s homeostasis [170–172]. In this framework, what matters is the set of reciprocal
relationships rather than the behavior of individual isolated elements. Every single entity
behaves according to the rules and schemes imposed by the system, like an orchestra that
plays following the higher organizational level of the score.

The cellular microenvironment and its morphogenetic field can play a decisive role in
the development or regression of cancer. Their effects on tissue organization and cellular
interaction processes can activate or block mechanisms such as apoptosis, cell proliferation,
and even migration [173,174].

This framework allows for shifting the focus from “local”, lower scale systems to
more complex global networks. This can be seen as an expansion of Waddington’s early
metaphorical conceptualization of the morphogenetic field, i.e., the “epigenetic landscape”,
where a biological system can move toward different states depending on the topology. The
landscape can change in response to genetic, physical, and environmental signals. Even
slight and gradual variations in a single parameter can affect non-linear processes and
determine significant phenotype changes [175].

Waddington’s landscape has been conceptualized as “phase space” by the theory of
dynamic systems. The resulting mathematical formalization can represent any state of the
system, independent of its observable parameters [176,177].

A unified model of multilevel complex dynamical systems consisting of interacting
molecules, physical signals and intra- and extracellular structures was proposed under the
name of interactome [178]. The interactome is a graph of all of the complex networks of
molecules, proteins, genes, physical factors, and any other element constituting a living or-
ganism. The interactome of Saccharomyces cerevisiae yeast, for example—the most complete
to date—lists over 20,000 interactions between proteins [179] and over 170,000 interactions
between genes. This model made it possible to create functional maps of cellular processes
where genes with similar functions are grouped together. The map allows for observing
the processes of genetic interaction from different levels. The interactome contributed a
lot of new information on network dynamics and produced several relevant observations.
For example, scientists found that the negative (inhibitory) interactions are much more
numerous than the positive (stimulatory) ones. They also understood that the genes with
the greatest number of connections are the most vital for the network. In fact, their mutation
or perturbation may generate lethal effects on the entire network [180].

Nonetheless, such models still have several limitations. Many elements such as bond
strength, sensitivity to signals, microenvironment factors, specific physiological states of
the cell, and electromagnetic factors, to name a few, can play a crucial role in biological
processes but are not integrated within the interactome [181].

A biological organism, whatever its level of organization, can, therefore, be described
from the point of view of complex networks. This allows the natural convergence of micro-,
meso-, and macroscopic data, i.e., the harmonization of the individual nodes, the cluster of
nodes, and the entire network [182].

5.5. Conceptual Tools for Describing a Biological Network

The interpretative framework based on the theory of systems and complex networks
leads to new experimental questions and observables. It offers new conceptual tools to
interpret phenomena that were previously difficult to explain, such as reversion tumor.
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As mentioned, a biological network can be described by means of the characteristics
of nodes and links at different scales.

A node is any element with a relevant role in the system, for example, a gene, a protein,
a molecule, or a cell. The key element of a node is called “degree”, i.e., the number of
connections. A network consists of a series of nodes linked to each other via correlation
factors, physical interactions, or spatial proximity. A node with many connections is called
a “hub” [183]. At an upper scale, it is possible to evaluate the “connectivity”, that is, the
density of connections in the network. On the other hand, “module” indicates a group of
nodes characterized by a high density of connections. In turn, modules can be connected
to each other. The mathematical structure that describes this network organization is a
graph [147].

Within a network, the dynamics of each component depend on the simultaneous
dynamics of the other components. The result is a correlated behavior as if from a single
entity. These collective dynamics are the basis of all of the adaptive and evolutionary
movements of the system and allow for a continuous adaptation that preserves the internal
coherence of the organism.

The main types of network organization are exponential and scale-free. An exponential
network is largely homogeneous and has about the same number of links per node. Its
nodes are very unlikely to feature many links. On the contrary, scale-free networks are not
homogeneous—most of their nodes have few connections, while some have a large number
of connections. Scale-free networks characterize biological organisms, where the laws
emerging at each level cannot stem directly from the laws governing the lower levels [184].
Further, the dynamics and characteristics that emerge on higher scales can influence the
lower levels, for example, by providing constraints to cell behavior [150]. This significantly
limits the number of possible conformations of the system [185,186], i.e., the number of
network conformations. The dynamics of these systems are non-linear, that is, the extent
of the effects and their variations is not proportional to the causes and their variations.
Accordingly, small lower-scale variations can determine large modifications at the upper
scale [187]. Unlike linear systems, nonlinear dynamic systems can appear chaotic and
unpredictable. Most natural systems are nonlinear [188].

A system switches from a linear to a non-linear regime when one or more parameters
of its state fluctuate above a certain threshold value. Beyond this threshold, the system
reaches a bifurcation point and accesses the possibility of reorganizing itself in a new
stable conformation. This process is known as symmetry breaking. It gives the system
the characteristic of multistability, i.e., the possibility of stabilizing in different ways and,
therefore, adapting. The various stable conformations of the system are called “attractors”,
which mathematically represent the solutions of the set of equations that describe the
system. In terms of Waddington’s landscape metaphor, the attractors are stable states, i.e.,
“valleys”. Metastable and unstable states, instead, are “hills” (Figure 1) [189].

The system can change state moving toward different attractors thanks to the bifurca-
tion points that lead to a break in symmetry, that is, a metastable state that favors a sort
of phase transition. The symmetry break gives the system a historical dimension, a sort
of memory of an event that occurs at a critical point and will influence the next evolution.
This leads to relevant consequences studied in depth by thermodynamics [190].

From a thermodynamic perspective, a living organism is described as an open system
that is far from equilibrium. It is characterized by dissipative structures that self-organize
through fluctuations between stable and unstable states [191]. Each fluctuation corresponds
to a bifurcation following the system’s state change. These approaches have contributed to
the development of non-equilibrium thermodynamics and have been a prelude to systems
biology. In fact, they have provided further tools for the analysis and modeling of biological
processes [192].
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6. Interpreting Tumor Reversion Processes within the Systemic Framework

The systemic perspective offers models, methodological tools, and a lexicon that can
contribute to a more complete interpretation of tumor reversion processes.

From this perspective, attention shifts from entities to relationships, from genes to
the cellular context, and from the characteristics of DNA to the processes that guide the
entire organization of cells in higher-level structures. We no longer interpret the tumor as
an entity in itself but rather a pathology of biological organization.

The main issue relates to the concept of identity: what is cancer? Such a question recalls
the famous essay by Erwin Schrödinger, What Is Life? This famous physicist investigated
what allows living organisms to remain the same over time and, therefore, their identity
principle [193].

Clearly, DNA represents the element of continuity that, from cell division to cell
division, reproduces copies of itself and maintains the unaltered, genetic “identity” of the
cell. In this case, genetic identity refers to the precise sequence of purine and pyrimidine
bases (ATCG).

However, each cell expresses only some genes of the entire DNA. For this reason, differ-
ent cell types are distinguished at the histological level: hepatocyte, neuron, cardiomyocyte,
mesenchymal stem cell, etc., as their identity is defined “phenotypically”.

In fact, the well-known hallmarks of cancer are criteria that do not allow us to affirm that
the tumor cell owns a proper ontology, identified by a well-recognizable genotype; rather,
the identification is based upon structural and behavioral traits [194,195]. Moreover, during
their life cycle, cells can change their behavior and phenotypic expression in reaction to
external stimuli: the wound healing processes in which involved cells acquire a behavior
that is very similar to that of cancer for a defined period are an emblematic case. Biological
identity is something that goes beyond both the concepts of genotype and phenotype.

Similarly, tumor reversion represents a case of modification in phenotypic expression:
the same genes, even if mutated, change the way they express and, consequently, the
features and behavior of the cell. In this sense, research on tumor reversion shifts attention
to the relationship between genotype and phenotype and aims to study the dynamics that
direct the process of phenotypic expression.

6.1. Genotype and Phenotype

Increasing evidence shows that the idea of a linear correlation between genotype and
phenotype does not correspond to the reality of biological dynamics [196]. For a long time,
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it had been thought that each gene encoded a specific protein or characteristic of the cell.
This concept entered the collective imagination so much so that even today we speak of a
“green eyes gene”, “height gene”, or even, entering the psychological domain, an “empathy
gene” or “jealousy gene”. Although these expressions are more attributable to popular
simplifications, the basic concept of a linear correlation between genotype and phenotype
remains. This is also one of the fundamental elements of SMT, in which proto-oncogenes
and tumor suppressor genes are considered linearly correlated to tumors. The reality
has proven to be much more complex: not only do several phenotypes correspond to a
genotype, but also, in some cases, the opposite is true, i.e., a phenotype can be determined
by different genotypes. These data indicate that there is a non-unique genotype–phenotype
relationship, suggesting that the “robustness” of the phenotypic state cannot be attributed
linearly (only) to gene configuration [197].

These processes can, in fact, be described using concepts such as network, network
state, phase space, attractor, and epigenetic landscape. The phenotype can, therefore, be
interpreted as a specific functional state of the cell that results from the expression of a
well-defined combination of genes [41]. These concepts should be considered together with
factors such as cell–microenvironment interaction and both macro- and microscopic system
constraints. In other words, it is a matter of studying these processes from a topological
point of view, taking the morphogenetic fields into account.

Phenotypic changes are determined by one or more perturbations that destabilize
the entire system. These perturbations cancel the action of the attractor corresponding
to a specific state of phenotypic expression—a “valley” [198] or, in embryology terms, a
morphogenetic field [164]—and trigger a non-linear transition. This means that the system
does not necessarily pass from A to B but is in a multistable state—a bifurcation that can
lead to a state B or a state C attractor [41]. The stochastic nature of these processes can
be appreciated when the attention shifts from a single cell to a population of cells. The
population will react by presenting a series of new stable states or phenotypes that are
stochastically distributed [199].

In addition, it should be considered that the phenotype characteristics are not deter-
mined exclusively by the activation or deactivation processes of gene expression, but also
by processes of non-genetic plasticity that involve the dynamics of post-transcriptional
regulation. This has also been observed in cancer cells [200,201].

All of these dynamics contribute to determining the functional state of individual
cells, their organizational architecture, and, consequently, the characteristics from which
functional tissues derive.

Therefore, it is theoretically possible to identify a discrete and finite number of classes
of attractors that correspond to the configurations allowed by their genetic and biophysical
constraints. The set of these correlation constraints and environmental factors drastically
reduces the number of conformations that the system can take by channeling the behavior
of the cells [185,186,202].

In order to provide relevant information, this type of model requires a huge amount
of data [185]. For this purpose, it relies on techniques such as metabolomics, proteomics,
and single-cell gene expression [203,204] for in silico simulations.

An interesting example is the gene regulatory network (GNR). Genes are not indepen-
dent entities but belong to complex networks known as “gene regulatory networks”. Here,
genes influence and bind to each other, further limiting the possible combinations of gene
expression [91].

The GRN structure represents a constraint for the genes and a sort of “background
field” that coordinates its functioning. Within the metaphor of the Waddington landscape,
each valley corresponds to a stable state of phenotypic expression that derives from a
precise configuration of the GNR [205]. When a cell, following a perturbation, changes
state and, therefore, its phenotype, what changes is not the way in which the different
genes are connected to each other, that is, the GRN, but the level of expression of the
various genes. Because of such an interlinked and coordinated process, a single cell’s
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change of state cannot be triggered by the change in expression of a single gene. For that, it
takes many genes to do so, and only according to a specific set of combinations. Such a
configuration can be defined as an attractor and corresponds to the new state of the cell.
This information has been made possible by new techniques, such as those of single cell
transcriptomics [206]. This allows for analyzing gene expression at the level of single cells
and, for example, contributes to the study of tumor heterogeneity, i.e., the presence of
different types of cells within the same tumor mass.

Since the stability of cell functional states also depends on external signals [207], this
approach risks having several limitations.

We are now able to interpret cancer as a particular state of the cell that evolves over time
within the “landscape model”. This transition from one state to another is fundamentally
determined by two variables: the external signals and constraints, and the internal adaptive
response of the cell.

Accordingly, cancer should be interpreted as an epiphenomenon that emerges from
the disintegration of the cell–microenvironment system. Hence, it is essential to identify
suitable indicators to highlight the state of system integration, as well as the correct level of
observation.

The consequent therapeutic strategy should, therefore, no longer try to eliminate
tumor cells. Rather, it should aim to induce a benign modification of the phenotype.
Tumor reversion research points out that this phenotypic change can be induced through
specific biological signals. These modify the microenvironment or, more generally, the
morphogenetic field, and channel the cell toward new stable states.

6.2. The Systemic View of Pathology

Disease can be interpreted as a non-linear process that is subject to various subsystems,
different attractors, and their multistability, resilience, and robustness. The redundancy
of alternative pathways within the network allows the expression of the same phenotype
through different attractors [94].

The landscape model may also describe pathological states. Here, stable states (“val-
leys”) represent the physiological states of health, while unstable states (“hills”) represent
the unstable processes that determine the onset of a pathology. When an external agent (a
pathogen) disturbs the system, then the system tends to move away from its attractor and
signals the fluctuation of certain critical parameters [208]. The perturbation can lead the
system to overcome the “energetic” boundary of the attractor, thus opening up the possi-
bility of moving toward new attractors and, therefore, new stable states. This transition
from one attractor to another can take place gradually or abruptly depending on the type
of pathological process. Based on the type of progression of the pathophysiological state
along the landscape, the process can be classified into three different stages: normality,
pre-disease, and disease. Notice that the three are steady and stable states [209]. These three
distinct states present a series of intermediate critical stages, which are highly unstable.
This means that the pathological process can take radically different directions: either
toward the progression of the disease or toward recovery.

By modeling the disease process in this way, the sudden deterioration of a state can be
seen as a phase of transition occurring at a bifurcation point [210].

The various critical stages, as well as the pre-illness stage, therefore, correspond to
bifurcation points. Here, the fate of the system depends on a set of internal and external
conditions, which can guide the process toward very different destinies. Recognizing such
critical points by building a dynamic network will likely help to understand the logic of
the process [211]. Biomarkers such as metabolites can signal an impending bifurcation or a
sudden deterioration before the critical transition occurs. These early warning signs can
help plan an appropriate management of the disease [212].

Indeed, the current challenge is to move from molecular parameters linked to specific
targets toward the system parameters of the pathological process and its state. This ap-
proach is partly developed through the study of metabolomics [213,214], since fluctuations
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in metabolites usually amplify the subtle modulation of the genome and proteome net-
works, thus representing a more sensitive criterion for capturing changes in the dynamics
of complex systems [215,216]. In this sense, it can be said that metabolomics offers the best
representation of the phenotype to date [204].

In conclusion, it is impossible to deterministically predict the patho-phenotype of even
a monogenic disease [217].

We can read the pathological process as a complex and multilevel network of non-
linear interactions between the various components of the organism. In fact, a complex
network of non-linear interactions between stroma, extracellular matrix (ECM), and epithe-
lium guides the development of tissues [218]. The relevance of cell–tissue relationships
suggests that tumors may be tissue-originating pathologies [219,220]. Evidence suggests
that cancer develops as a consequence of the interruption of interaction between cells
and their microenvironment. This provides for unexpected and complex changes in cell
morphology, signaling pathways, and genomic functions [100]. The causes of this condition
should no longer be sought exclusively at the lower levels of the organization, but also at
the higher levels where the phenomenon appears [182,221].

6.3. Tumor Reversion as a Reorganization/Transition Process

Multilevel organization is an intrinsic characteristic of living organisms. The terms
“organism” and “organization” share the same roots, from Greek ὄργανoν (“tool”, “what
exercises a function”) and ἒργoν (“work”, “action”). Both terms refer to an energy aimed at
a specific function. In other words, organism and organization are both structured systems
for channeling energy in such a way as to perform a specific function.

If a tumor is a “pathology of biological organization”, then network science offers the
best language for defining it. Accordingly, we want to propose the use of the term “reorga-
nization”, which refers to a transformation process directed toward a more organized state
than the starting one. The empirical term “reversion” suggests a backwards process of the
cells. The term “differentiation” does not take into account the spontaneous processes of
apoptosis. The term “regression” says nothing about the typology of its cytotoxic, sponta-
neous, or differentiative processes. On the contrary, reorganization offers a more complete
and centered perspective within the conceptual framework of the systemic approach. It
does not refer exclusively to a single cell. Rather, it directs attention to the organizational
aspect that can be both internal and external to the cell because there is a network of cells
in the environment.

We propose the introduction of the expression, “process of cellular reorganization”, to
indicate a biological-state transition process.

7. Conclusions: Challenges and the Way to Move Forward

Several studies have shown that numerous molecular and biophysical factors—namely
those obtained from eggs/embryonic cells/microenvironments—can efficiently promote
the reversion of the cancerous phenotype toward a “normal” physiologic condition [222].
Noticeably, those results highlighted that tumor reversion can be accomplished when
proper cell-to-cell and cell-substrate adhesion structures are restored. There is no doubt that
a critical role is sustained by the reconstitution of E-cadherin-based junctions associated
with a rewiring of the overall cytoskeleton (CSK) structure. Changes in cell architecture are
instrumental in modifying tissue properties and cell responsiveness to mechanical stimuli.
Furthermore, changes in CSK involve epigenetic and post-translational modifications
that ultimately can significantly antagonize the malignant phenotype (Figure 2). Namely,
changes in the mechano-transduction apparatus can have a profound impact even on
the malignant behavior of cancer stem cells that can lose stemness and malignant-related
properties when challenged by different stiffness conditions [223]. However, these studies
are still in their infancy, as a number of questions have been left aside [224]. What should
be a reliable model to vindicate these preliminary results? How to validate in vivo—both in
animal studies and in clinical trials—those promising insights? Specifically, a “strategy” to
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trigger the reversion should include the preliminary destabilization of the cancer state that
displays an appreciable resilience to a wide range of perturbations. Indeed, only after the
cell has entered a condition in which fluctuation in gene expression approaches a threshold
value, “reverting” factors can display their powerful effects in driving the system toward
a different phenotypic configuration. Cancer cells reach a critical transition state during
mitotic/regenerative processes, although their stability can be proficiently perturbed by
several factors, including drugs and molecules affecting the microenvironment homeostasis.
Indeed, tissue regeneration is a delicate procedure; such a procedure is closely related to the
possibility of neoplastic transformation when proper constraints and directional cues are
not activated to address the transition toward a physiologic outcome. Thereby, a “reverting”
treatment plan should include a proper roadmap in which a destabilization “procedure”—
eventually triggered by anti-cancer drugs—should be followed by the addition of reverting
drugs. Furthermore, such a protocol must be tested in animals to ascertain the treatment
effectiveness in vivo. Promising studies have been already published, but the evidence is
still scarce. Undoubtedly, there is a long way. But we must begin with the first step.
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Figure 2. Normal and cancerous phenotypic reversion. Somatic and stem cells undergo critical
phenotypic transitions during physiologic (cell repair, mitosis) and adaptive (epithelial–mesenchymal
transition) processes, as well as in response to perturbations that destabilize their equilibrium in
a previously stable basin of attraction. Once the system’s resilience exceeds a certain threshold,
the system experiences an increase in the fluctuation of a few, critical parameters. At this point,
several molecular and biophysical factors—namely those affecting stability of cell-to-cell adhesion
and microenvironment architecture—can efficiently drive the system toward a new, stable and
differentiated phenotype. However, the coexistence of an inflammatory condition, deregulated
microenvironment homeostasis, or other unknown factors can direct the transition towards different
outcomes (inflammatory phenotype, cancer). By analogy, even a cancerous cell, when challenged by
perturbing cues, can be displaced from its stable state and re-enter into a differentiating pathway. If
proper constraints and differentiating factors are in place, the overall process can lead to a “reversion”
of the cancerous phenotype by following an “inverse” path.
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